1
|
Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 2001; 293:293-7. [PMID: 11452123 DOI: 10.1126/science.1060191] [Citation(s) in RCA: 944] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gastrointestinal (GI) tract damage by chemotherapy or radiation limits their efficacy in cancer treatment. Radiation has been postulated to target epithelial stem cells within the crypts of Lieberkühn to initiate the lethal GI syndrome. Here, we show in mouse models that microvascular endothelial apoptosis is the primary lesion leading to stem cell dysfunction. Radiation-induced crypt damage, organ failure, and death from the GI syndrome were prevented when endothelial apoptosis was inhibited pharmacologically by intravenous basic fibroblast growth factor (bFGF) or genetically by deletion of the acid sphingomyelinase gene. Endothelial, but not crypt, cells express FGF receptor transcripts, suggesting that the endothelial lesion occurs before crypt stem cell damage in the evolution of the GI syndrome. This study provides a basis for new approaches to prevent radiation damage to the bowel.
Collapse
|
|
24 |
944 |
2
|
Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med 2002; 8:955-62. [PMID: 12161748 DOI: 10.1038/nm749] [Citation(s) in RCA: 937] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In both pediatric and adult patients, cranial radiation therapy causes a debilitating cognitive decline that is poorly understood and currently untreatable. This decline is characterized by hippocampal dysfunction, and seems to involve a radiation-induced decrease in postnatal hippocampal neurogenesis. Here we show that the deficit in neurogenesis reflects alterations in the microenvironment that regulates progenitor-cell fate, as well as a defect in the proliferative capacity of the neural progenitor-cell population. Not only is hippocampal neurogenesis ablated, but the remaining neural precursors adopt glial fates and transplants of non-irradiated neural precursor cells fail to differentiate into neurons in the irradiated hippocampus. The inhibition of neurogenesis is accompanied by marked alterations in the neurogenic microenvironment, including disruption of the microvascular angiogenesis associated with adult neurogenesis and a marked increase in the number and activation status of microglia within the neurogenic zone. These findings provide clear targets for future therapeutic interventions.
Collapse
|
|
23 |
937 |
3
|
Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, Weissman IL, Cyster JG, Engleman EG. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 2002; 3:1135-41. [PMID: 12415265 PMCID: PMC4727838 DOI: 10.1038/ni852] [Citation(s) in RCA: 735] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Accepted: 09/10/2002] [Indexed: 01/25/2023]
Abstract
Langerhans cells (LCs) are bone marrow (BM)-derived epidermal dendritic cells (DCs) that represent a critical immunologic barrier to the external environment, but little is known about their life cycle. Here, we show that in lethally irradiated mice that had received BM transplants, LCs of host origin remained for at least 18 months, whereas DCs in other organs were almost completely replaced by donor cells within 2 months. In parabiotic mice with separate organs, but a shared blood circulation, there was no mixing of LCs. However, in skin exposed to ultraviolet light, LCs rapidly disappeared and were replaced by circulating LC precursors within 2 weeks. The recruitment of new LCs was dependent on their expression of the CCR2 chemokine receptor and on the secretion of CCR2-binding chemokines by inflamed skin. These data indicate that under steady-state conditions, LCs are maintained locally, but inflammatory changes in the skin result in their replacement by blood-borne LC progenitors.
Collapse
|
research-article |
23 |
735 |
4
|
Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kägi D, Hakem A, McCurrach M, Khoo W, Kaufman SA, Senaldi G, Howard T, Lowe SW, Mak TW. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 1998; 12:806-19. [PMID: 9512515 PMCID: PMC316633 DOI: 10.1101/gad.12.6.806] [Citation(s) in RCA: 667] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1997] [Accepted: 01/09/1998] [Indexed: 02/06/2023]
Abstract
Caspases are fundamental components of the mammalian apoptotic machinery, but the precise contribution of individual caspases is controversial. CPP32 (caspase 3) is a prototypical caspase that becomes activated during apoptosis. In this study, we took a comprehensive approach to examining the role of CPP32 in apoptosis using mice, embryonic stem (ES) cells, and mouse embryonic fibroblasts (MEFs) deficient for CPP32. CPP32(ex3-/-) mice have reduced viability and, consistent with an earlier report, display defective neuronal apoptosis and neurological defects. Inactivation of CPP32 dramatically reduces apoptosis in diverse settings, including activation-induced cell death (AICD) of peripheral T cells, as well as chemotherapy-induced apoptosis of oncogenically transformed CPP32(-/-) MEFs. As well, the requirement for CPP32 can be remarkably stimulus-dependent: In ES cells, CPP32 is necessary for efficient apoptosis following UV- but not gamma-irradiation. Conversely, the same stimulus can show a tissue-specific dependence on CPP32: Hence, TNFalpha treatment induces normal levels of apoptosis in CPP32 deficient thymocytes, but defective apoptosis in oncogenically transformed MEFs. Finally, in some settings, CPP32 is required for certain apoptotic events but not others: Select CPP32(ex3-/-) cell types undergoing cell death are incapable of chromatin condensation and DNA degradation, but display other hallmarks of apoptosis. Together, these results indicate that CPP32 is an essential component in apoptotic events that is remarkably system- and stimulus-dependent. Consequently, drugs that inhibit CPP32 may preferentially disrupt specific forms of cell death.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptosis/physiology
- B-Lymphocytes/cytology
- B-Lymphocytes/physiology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/physiology
- CD3 Complex/pharmacology
- Caspase 3
- Caspases
- Cell Death/physiology
- Cell Division/physiology
- Cell Nucleus/metabolism
- Cysteine Endopeptidases/deficiency
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/physiology
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/physiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/physiology
- Embryonic and Fetal Development
- Female
- Gene Expression/genetics
- Gene Expression/physiology
- Longevity/genetics
- Longevity/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Mutant Strains
- Mutation/genetics
- Mutation/physiology
- Neutrophils/physiology
- Osmotic Pressure
- Stem Cells/radiation effects
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/physiology
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/physiology
- Tumor Cells, Cultured/radiation effects
- Ultraviolet Rays
- fas Receptor/pharmacology
Collapse
|
research-article |
27 |
667 |
5
|
Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM. A role for adult neurogenesis in spatial long-term memory. Neuroscience 2005; 130:843-52. [PMID: 15652983 DOI: 10.1016/j.neuroscience.2004.10.009] [Citation(s) in RCA: 649] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2004] [Indexed: 10/26/2022]
Abstract
Adult hippocampal neurogenesis has been linked to learning but details of the relationship between neuronal production and memory formation remain unknown. Using low dose irradiation to inhibit adult hippocampal neurogenesis we show that new neurons aged 4-28 days old at the time of training are required for long-term memory in a spatial version of the water maze. This effect of irradiation was specific since long-term memory for a visibly cued platform remained intact. Furthermore, irradiation just before or after water maze training had no effect on learning or long-term memory. Relationships between learning and new neuron survival, as well as proliferation, were investigated but found non-significant. These results suggest a new role for adult neurogenesis in the formation and/or consolidation of long-term, hippocampus-dependent, spatial memories.
Collapse
|
|
20 |
649 |
6
|
Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 2007; 104:618-23. [PMID: 17202265 PMCID: PMC1766434 DOI: 10.1073/pnas.0606599104] [Citation(s) in RCA: 478] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Indexed: 12/21/2022] Open
Abstract
Recent studies have identified a subpopulation of highly tumorigenic cells with stem/progenitor cell properties from human breast cancers, and it has been suggested that stem/progenitor cells, which remain after breast cancer therapy, may give rise to recurrent disease. We hypothesized that progenitor cells are resistant to radiation, a component of conventional breast cancer therapy, and that that resistance is mediated at least in part by Wnt signaling, which has been implicated in stem cell survival. To test this hypothesis, we investigated radioresistance by treating primary BALB/c mouse mammary epithelial cells with clinically relevant doses of radiation and found enrichment in normal progenitor cells (stem cell antigen 1-positive and side population progenitors). Radiation selectively enriched for progenitors in mammary epithelial cells isolated from transgenic mice with activated Wnt/beta-catenin signaling but not for background-matched controls, and irradiated stem cell antigen 1-positive cells had a selective increase in active beta-catenin and survivin expression compared with stem cell antigen 1-negative cells. In clonogenic assays, colony formation in the stem cell antigen 1-positive progenitors was unaffected by clinically relevant doses of radiation. Radiation also induced enrichment of side population progenitors in the human breast cancer cell line MCF-7. These data demonstrate that, compared with differentiated cells, progenitor cells have different cell survival properties that may facilitate the development of targeted antiprogenitor cell therapies.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
478 |
7
|
Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S. Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus 2006; 16:296-304. [PMID: 16411241 DOI: 10.1002/hipo.20163] [Citation(s) in RCA: 448] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rats treated with low dose irradiation, to inhibit adult hippocampal neurogenesis, and control rats were administered a non-matching-to-sample (NMTS) task, which measured conditional rule learning and memory for specific events, and a test of fear conditioning in which a discrete CS was paired with an aversive US in a complex environment. Irradiated rats were impaired on the NMTS task when the intervals between sample and test trials were relatively long, and in associating the shock-induced fear with contextual cues in the fear conditioning task. Irradiated rats were not impaired in learning the basic NMTS rule or in performing that task when the intervals between the sample and test trials were short. Nor were there group differences in conditioning the fear response to the CS in the fear conditioning task. The results, which extend the range of hippocampus-dependent tasks that can be said to be vulnerable to the effects of neurogenesis suppression, support the hypothesis that new hippocampal cells generated in adulthood participate in a broad range of hippocampal functions.
Collapse
|
|
19 |
448 |
8
|
Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 2013; 14:149-59. [PMID: 24332836 DOI: 10.1016/j.stem.2013.11.008] [Citation(s) in RCA: 444] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/20/2013] [Accepted: 11/08/2013] [Indexed: 12/11/2022]
Abstract
The intestinal epithelium continually self-renews and can rapidly regenerate after damage. Lgr5 marks mitotically active intestinal stem cells (ISCs). Importantly, intestinal homeostasis can be maintained after depletion of Lgr5(+) cells due to the activation of Lgr5(-) reserve ISCs. The Lgr5(-) ISC populations are thought to play a similar role during intestinal regeneration following radiation-induced damage. We tested this regeneration hypothesis by combining depletion of Lgr5(+) ISCs with radiation exposure. In contrast to the negligible effect of Lgr5(+) ISC loss during homeostasis, depletion of Lgr5(+) cells during radiation-induced damage and subsequent repair caused catastrophic crypt loss and deterioration of crypt-villus architecture. Interestingly though, we found that crypts deficient for Lgr5(+) cells are competent to undergo hyperplasia upon loss of Apc. These data argue that Lgr5(-) reserve stem cells are radiosensitive and that Lgr5(+) cells are crucial for robust intestinal regeneration following radiation exposure but are dispensable for premalignant hyperproliferation.
Collapse
|
Journal Article |
12 |
444 |
9
|
Potten CS, Owen G, Booth D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 2002; 115:2381-8. [PMID: 12006622 DOI: 10.1242/jcs.115.11.2381] [Citation(s) in RCA: 432] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The stem cells in the crypts of the small intestinal mucosa divide about a thousand times during the lifespan of a laboratory mouse, and yet they show little evidence of any decline in proliferative potential and rarely develop carcinogenic mutations, suggesting that their genome is extremely well protected. Protection against DNA-replication-induced errors can be achieved by the selective sorting of old (template) and new DNA strands with all template strands retained in the stem cell line. The template strands in the stem cells can be labelled during development or during tissue regeneration using tritiated thymidine (3HTdR). Labelling newly synthesised strands with a different marker (bromodeoxyuridine, BrdUrd) allows segregation of the two markers to be studied. Template strand label is retained(3HTdR), whereas label in the newly synthesised strands (BrdUrd) is lost following the second division of the stem cell. Random errors may occur in the template strands owing to environmental elements. These are protected against by the altruistic cell suicide (apoptosis) of the cells incurring such errors. A final level of protection for the tissue compensates for excessive deletion of stem cells via the apoptosis pathway. This is achieved by a hierarchical age structure in the stem cell compartment, with some cells being able to efficiently repair DNA damage and hence being more radioresistant. The presence of these protective mechanisms ensures that the small intestine rarely develops cancer and that stem cells can sustain the extensive cell proliferation needed during life.
Collapse
|
|
23 |
432 |
10
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2018; 94:199-212. [PMID: 29164625 PMCID: PMC5844808 DOI: 10.1111/php.12864] [Citation(s) in RCA: 429] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/31/2017] [Indexed: 12/23/2022]
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
429 |
11
|
Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, Monroe BC, Ciccone DN, Yan C, Vlasakova K, Livingston DM, Ferguson DO, Scully R, Alt FW. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci U S A 2002; 99:8173-8. [PMID: 12034884 PMCID: PMC123040 DOI: 10.1073/pnas.122228699] [Citation(s) in RCA: 410] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In mammalian cells, DNA double-strand breaks (DSBs) cause rapid phosphorylation of the H2AX core histone variant (to form gamma-H2AX) in megabase chromatin domains flanking sites of DNA damage. To investigate the role of H2AX in mammalian cells, we generated H2AX-deficient (H2AX(Delta)/Delta) mouse embryonic stem (ES) cells. H2AX(Delta)/Delta ES cells are viable. However, they are highly sensitive to ionizing radiation (IR) and exhibit elevated levels of spontaneous and IR-induced genomic instability. Notably, H2AX is not required for NHEJ per se because H2AX(Delta)/Delta ES cells support normal levels and fidelity of V(D)J recombination in transient assays and also support lymphocyte development in vivo. However, H2AX(Delta)/Delta ES cells exhibit altered IR-induced BRCA1 focus formation. Our findings indicate that H2AX function is essential for mammalian DNA repair and genomic stability.
Collapse
|
research-article |
23 |
410 |
12
|
Madsen TM, Kristjansen PEG, Bolwig TG, Wörtwein G. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience 2003; 119:635-42. [PMID: 12809684 DOI: 10.1016/s0306-4522(03)00199-4] [Citation(s) in RCA: 374] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The generation of new neurons in the adult mammalian brain has been documented in numerous recent reports. Studies undertaken so far indicate that adult hippocampal neurogenesis is related in a number of ways to hippocampal function.Here, we report that subjecting adult rats to fractionated brain irradiation blocked the formation of new neurons in the dentate gyrus of the hippocampus. At different time points after the termination of the irradiation procedure, the animals were tested in two tests of short-term memory that differ with respect to their dependence on hippocampal function. Eight and 21 days after irradiation, the animals with blocked neurogenesis performed poorer than controls in a hippocampus-dependent place-recognition task, indicating that the presence of newly generated neurons may be necessary for the normal function of this brain area. The animals were never impaired in a hippocampus-independent object-recognition task. These results are in line with other reports documenting the functional significance of newly generated neurons in this region. As our irradiation procedure models prophylactic cranial irradiation used in the treatment of different cancers, we suggest that blocked neurogenesis contributes to the reported deleterious side effects of this treatment, consisting of memory impairment, dysphoria and lethargy.
Collapse
|
|
22 |
374 |
13
|
Beauchamp JR, Morgan JE, Pagel CN, Partridge TA. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 1999; 144:1113-22. [PMID: 10087257 PMCID: PMC2150577 DOI: 10.1083/jcb.144.6.1113] [Citation(s) in RCA: 360] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Myoblasts, the precursors of skeletal muscle fibers, can be induced to withdraw from the cell cycle and differentiate in vitro. Recent studies have also identified undifferentiated subpopulations that can self-renew and generate myogenic cells (Baroffio, A., M. Hamann, L. Bernheim, M.-L. Bochaton-Pillat, G. Gabbiani, and C.R. Bader. 1996. Differentiation. 60:47-57; Yoshida, N., S. Yoshida, K. Koishi, K. Masuda, and Y. Nabeshima. 1998. J. Cell Sci. 111:769-779). Cultured myoblasts can also differentiate and contribute to repair and new muscle formation in vivo, a capacity exploited in attempts to develop myoblast transplantation (MT) for genetic modification of adult muscle. Our studies of the dynamics of MT demonstrate that cultures of myoblasts contain distinct subpopulations defined by their behavior in vitro and divergent responses to grafting. By comparing a genomic and a semiconserved marker, we have followed the fate of myoblasts transplanted into muscles of dystrophic mice, finding that the majority of the grafted cells quickly die and only a minority are responsible for new muscle formation. This minority is behaviorally distinct, slowly dividing in tissue culture, but rapidly proliferative after grafting, suggesting a subpopulation with stem cell-like characteristics.
Collapse
|
research-article |
26 |
360 |
14
|
Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, Goetz M, Barde YA. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci 2004; 7:1003-9. [PMID: 15332090 DOI: 10.1038/nn1301] [Citation(s) in RCA: 342] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 07/14/2004] [Indexed: 01/08/2023]
Abstract
Although it has long been known that cultured embryonic stem cells can generate neurons, the lineage relationships with their immediate precursors remain unclear. We report here that selection of highly proliferative stem cells followed by treatment with retinoic acid generated essentially pure precursors that markers identified as Pax-6-positive radial glial cells. As they do in vivo, these cells went on to generate neurons with remarkably uniform biochemical and electrophysiological characteristics.
Collapse
|
|
21 |
342 |
15
|
Gao Y, Chaudhuri J, Zhu C, Davidson L, Weaver DT, Alt FW. A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 1998; 9:367-76. [PMID: 9768756 DOI: 10.1016/s1074-7613(00)80619-6] [Citation(s) in RCA: 341] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) consists of Ku70, Ku80, and a large catalytic subunit, DNA-PKcs. Targeted inactivation of the Ku70 or Ku80 genes results in elevated ionizing radiation (IR) sensitivity and inability to perform both V(D)J coding-end and signal (RS)-end joining in cells, with severe growth retardation plus immunodeficiency in mice. In contrast, we now demonstrate that DNA-PKcs-null mice generated by gene-targeted mutation, while also severely immunodeficient, exhibit no growth retardation. Furthermore, DNA-PKcs-null cells are blocked for V(D)J coding-end joining, but retain normal RS-end joining. Finally, while DNA-PK-null fibroblasts exhibited increased IR sensitivity, DNA-PKcs-deficient ES cells did not. We conclude that Ku70 and Ku80 may have functions in V(D)J recombination and DNA repair that are independent of DNA-PKcs.
Collapse
|
|
27 |
341 |
16
|
Meshi D, Drew MR, Saxe M, Ansorge MS, David D, Santarelli L, Malapani C, Moore H, Hen R. Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci 2006; 9:729-31. [PMID: 16648847 DOI: 10.1038/nn1696] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 04/11/2006] [Indexed: 11/09/2022]
Abstract
Environmental enrichment increases adult hippocampal neurogenesis and alters hippocampal-dependent behavior in rodents. To investigate a causal link between these two observations, we analyzed the effect of enrichment on spatial learning and anxiety-like behavior while blocking adult hippocampal neurogenesis. We report that environmental enrichment alters behavior in mice regardless of their hippocampal neurogenic capability, providing evidence that the newborn cells do not mediate these effects of enrichment.
Collapse
|
|
19 |
337 |
17
|
Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sánchez Alvarado A. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 2005; 8:635-49. [PMID: 15866156 PMCID: PMC2267917 DOI: 10.1016/j.devcel.2005.02.014] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/09/2005] [Accepted: 02/24/2005] [Indexed: 11/21/2022]
Abstract
Planarians have been a classic model system for the study of regeneration, tissue homeostasis, and stem cell biology for over a century, but they have not historically been accessible to extensive genetic manipulation. Here we utilize RNA-mediated genetic interference (RNAi) to introduce large-scale gene inhibition studies to the classic planarian system. 1065 genes were screened. Phenotypes associated with the RNAi of 240 genes identify many specific defects in the process of regeneration and define the major categories of defects planarians display following gene perturbations. We assessed the effects of inhibiting genes with RNAi on tissue homeostasis in intact animals and stem cell (neoblast) proliferation in amputated animals identifying candidate stem cell, regeneration, and homeostasis regulators. Our study demonstrates the great potential of RNAi for the systematic exploration of gene function in understudied organisms and establishes planarians as a powerful model for the molecular genetic study of stem cells, regeneration, and tissue homeostasis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
334 |
18
|
Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R, Wahl GM. ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 1998; 8:145-55. [PMID: 9443911 DOI: 10.1016/s0960-9822(98)70061-2] [Citation(s) in RCA: 333] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Embryonic stem (ES) cells can contribute precursors to all adult cell lineages. Consequently, damage to ES cell genomes may cause serious developmental malfunctions. In somatic cells, cell-cycle checkpoints limit DNA damage by preventing DNA replication under conditions that may produce chromosomal aberrations. The tumor suppressor p53 is involved in such checkpoint controls and is also required to avoid a high rate of embryonic malformations. We characterized the cell-cycle and DNA-damage responses of ES cells to elucidate the mechanisms that prevent accumulation or transmission of damaged genomes during development. RESULTS ES cells derived from wild-type mice did not undergo cell-cycle arrest in response to DNA damage or nucleotide depletion, although they synthesized abundant quantities of p53. The p53 protein in ES cells was cytoplasmic and translocated inefficiently to the nucleus upon nucleotide depletion. Expression of high levels of active p53 from an adenovirus vector could not trigger cell cycle arrest. Instead, ES cells that sustained DNA damage underwent p53-independent apoptosis. The antimetabolite-induced p53-dependent arrest response was restored in ES cells upon differentiation. CONCLUSIONS Cell-cycle regulatory pathways in early embryos differ significantly from those in differentiated somatic cells. In undifferentiated ES cells, p53 checkpoint pathways are compromised by factors that affect the nuclear localization of p53 and by the loss of downstream factors that are necessary to induce cell-cycle arrest. A p53-independent programmed cell death pathway is effectively employed to prevent cells with damaged genomes from contributing to the developing organism. The p53-mediated checkpoint controls become important when differentiation occurs.
Collapse
|
Comparative Study |
27 |
333 |
19
|
Lombaert IMA, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, Visser WH, Kampinga HH, de Haan G, Coppes RP. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One 2008; 3:e2063. [PMID: 18446241 PMCID: PMC2329592 DOI: 10.1371/journal.pone.0002063] [Citation(s) in RCA: 330] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/12/2008] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer is the fifth most common malignancy and accounts for 3% of all new cancer cases each year. Despite relatively high survival rates, the quality of life of these patients is severely compromised because of radiation-induced impairment of salivary gland function and consequential xerostomia (dry mouth syndrome). In this study, a clinically applicable method for the restoration of radiation-impaired salivary gland function using salivary gland stem cell transplantation was developed. Salivary gland cells were isolated from murine submandibular glands and cultured in vitro as salispheres, which contained cells expressing the stem cell markers Sca-1, c-Kit and Musashi-1. In vitro, the cells differentiated into salivary gland duct cells and mucin and amylase producing acinar cells. Stem cell enrichment was performed by flow cytrometric selection using c-Kit as a marker. In vitro, the cells differentiated into amylase producing acinar cells. In vivo, intra-glandular transplantation of a small number of c-Kit+ cells resulted in long-term restoration of salivary gland morphology and function. Moreover, donor-derived stem cells could be isolated from primary recipients, cultured as secondary spheres and after re-transplantation ameliorate radiation damage. Our approach is the first proof for the potential use of stem cell transplantation to functionally rescue salivary gland deficiency.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
330 |
20
|
Essers J, Hendriks RW, Swagemakers SM, Troelstra C, de Wit J, Bootsma D, Hoeijmakers JH, Kanaar R. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 1997; 89:195-204. [PMID: 9108475 DOI: 10.1016/s0092-8674(00)80199-3] [Citation(s) in RCA: 324] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Double-strand DNA break (DSB) repair by homologous recombination occurs through the RAD52 pathway in Saccharomyces cerevisiae. Its biological importance is underscored by the conservation of many RAD52 pathway genes, including RAD54, from fungi to humans. We have analyzed the phenotype of mouse RAD54-/- (mRAD54-/-) cells. Consistent with a DSB repair defect, these cells are sensitive to ionizing radiation, mitomycin C, and methyl methanesulfonate, but not to ultraviolet light. Gene targeting experiments demonstrate that homologous recombination in mRAD54-/- cells is reduced compared to wild-type cells. These results imply that, besides DNA end-joining mediated by DNA-dependent protein kinase, homologous recombination contributes to the repair of DSBs in mammalian cells. Furthermore, we show that mRAD54-/- mice are viable and exhibit apparently normal V(D)J and immunoglobulin class-switch recombination. Thus, mRAD54 is not required for the recombination processes that generate functional immunoglobulin and T cell receptor genes.
Collapse
|
|
28 |
324 |
21
|
Takai H, Naka K, Okada Y, Watanabe M, Harada N, Saito S, Anderson CW, Appella E, Nakanishi M, Suzuki H, Nagashima K, Sawa H, Ikeda K, Motoyama N. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J 2002; 21:5195-205. [PMID: 12356735 PMCID: PMC129029 DOI: 10.1093/emboj/cdf506] [Citation(s) in RCA: 319] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2002] [Revised: 08/01/2002] [Accepted: 08/05/2002] [Indexed: 01/21/2023] Open
Abstract
The mammalian Chk2 kinase is thought to mediate ATM-dependent signaling in response to DNA damage. The physiological role of mammalian Chk2 has now been investigated by the generation of Chk2-deficient mice. Although Chk2(-/-) mice appeared normal, they were resistant to ionizing radiation (IR) as a result of the preservation of splenic lymphocytes. Thymocytes and neurons of the developing brain were also resistant to IR-induced apoptosis. The IR-induced G(1)/S cell cycle checkpoint, but not the G(2)/M or S phase checkpoints, was impaired in embryonic fibroblasts derived from Chk2(-/-) mice. IR-induced stabilization of p53 in Chk2(-/- )cells was 50-70% of that in wild-type cells. Caffeine further reduced p53 accumulation, suggesting the existence of an ATM/ATR-dependent but Chk2-independent pathway for p53 stabilization. In spite of p53 protein stabilization and phosphorylation of Ser23, p53-dependent transcriptional induction of target genes, such as p21 and Noxa, was not observed in Chk2(-/-) cells. Our results show that Chk2 plays a critical role in p53 function in response to IR by regulating its transcriptional activity as well as its stability.
Collapse
|
|
23 |
319 |
22
|
Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-Like Activity of Mesenchymal Stem Cells: Functional Discrimination Between Cellular Responses to Alloantigens and Recall Antigens. THE JOURNAL OF IMMUNOLOGY 2003; 171:3426-34. [PMID: 14500637 DOI: 10.4049/jimmunol.171.7.3426] [Citation(s) in RCA: 314] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Trans-differentiation of stem cells shows promise for use in tissue repair medicine. Although poorly defined, mesenchymal stem cells (MSC) appear useful for applications in repair medicine. Despite the low frequency of MSC, they are relatively easy to expand. The expression of MHC class II on MSC, however, could deter their use in repair medicine, since these molecules could stimulate an allogeneic host response. This study sought to compare the immune stimulatory and suppressive effects of MSC. Primary human MSC were cultured from bone marrow aspirates and then passaged at least three times before use in assays. Morphologically, MSC were symmetrical; were SH2(+), MHC class II(+), CD45(-), CD44(+), CD31(-), CD14(-), proly-4-hydroxylase(-); and showed normal karyotype patterns and elevated telomerase activities. MSC elicited significant stimulatory responses when cocultured with allogeneic PBMC. Despite the production of different types of growth factors, allogeneic effects of MSC could not be explained by the production of these growth factors. One-way MLR reactions were significantly blunted by third-party MSC. Similar suppression was not observed for responses to three different recall Ags. Based on these functional differences by MSC in responses to allo- and recall Ags, we examined whether MSC could exert veto-like functions. We showed that MSC could blunt the cytotoxic effects of allogeneic-induced effectors to mitogen-activated targets. The results showed that although MSC elicited allogeneic responses in a model that mimics a graft-vs-host reaction, they also exerted veto-like activity, but caused no effect on responses to recall Ags.
Collapse
|
|
22 |
314 |
23
|
Gu Y, Jin S, Gao Y, Weaver DT, Alt FW. Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc Natl Acad Sci U S A 1997; 94:8076-81. [PMID: 9223317 PMCID: PMC21559 DOI: 10.1073/pnas.94.15.8076] [Citation(s) in RCA: 310] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/1997] [Indexed: 02/04/2023] Open
Abstract
V(D)J recombination requires both lymphoid-specific and generally expressed enzymatic activities. All three known generally expressed activities involved in V(D)J recombination are also involved in DNA double-strand break repair (DSBR). Two of these are components of the DNA-dependent protein kinase (DNA-PK) and include Ku80 and DNA-PK catalytic subunit (DNA-PKcs); the third, XRCC4, is a protein of unknown function. The Ku70 protein is an additional component of DNA-PK; Ku70 forms a heterodimer with Ku80 to generate the DNA end-binding component of the enzyme. To test putative functions for Ku70, we have used gene-targeted mutation to generate a murine embryonic stem cell line which lacks Ku70 expression. We find that the Ku70(-/-) cells produce no detectable Ku70 and very little Ku80, suggesting a direct interrelationship between their levels. Correspondingly, these cells lack the nonspecific DNA end-binding activity associated with Ku. Significantly, the Ku70(-/-) embryonic stem cells have markedly increased sensitivity to gamma-irradiation relative to Ku70(+/-) or wild-type embryonic stem cells. Furthermore, the Ku70(-/-) cells lack the ability to effectively rejoin signal and coding ends liberated in transiently introduced V(D)J recombination substrates by enforced RAG-1 and RAG-2 expression. We conclude that the Ku70 gene product is involved in DSBR and V(D)J recombination and confirm that the Ku70 gene can be classified as a member of the x-ray cross-complementation group 6 (XRCC6). Potential differences between the Ku70(-/-) and Ku80(-/-) V(D)J recombination defects are discussed.
Collapse
|
research-article |
28 |
310 |
24
|
Xu Y, Baltimore D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev 1996; 10:2401-10. [PMID: 8843193 DOI: 10.1101/gad.10.19.2401] [Citation(s) in RCA: 310] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The gene mutated in ataxia-telangiectasia (AT) patients, denoted ATM, encodes a putative protein or lipid kinase. To elucidate the functions of ATM, we disrupted the mouse ATM gene through homologous recombination in mice. Consistent with cellular defects of AT patients, the ATM-/- cells are hypersensitive to gamma-irradiation and defective in cell-cycle arrest following radiation, correlating with a defective up-regulation of p53. In addition, ATM-/- mouse thymocytes are more resistant to apoptosis induced by gamma-irradiation than normal thymocytes. ATM-/- fibroblasts are inefficient in G1 to S-phase progression following serum stimulation and senesce after only a few passages in culture. They have an increased constitutive level of p21CP1/WAF1. The ATM protein is therefore critical both for cellular responses to ionizing radiation and for normal cell-cycle progression. ATM+/- fibroblasts and thymocytes showed intermediately defective responses to irradiation but no growth defect, suggesting that the increased cancer risk of AT heterozygotes could be attributable to poor checkpoint function.
Collapse
|
|
29 |
310 |
25
|
Gondi V, Tolakanahalli R, Mehta MP, Tewatia D, Rowley H, Kuo JS, Khuntia D, Tomé WA. Hippocampal-sparing whole-brain radiotherapy: a "how-to" technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2010; 78:1244-52. [PMID: 20598457 PMCID: PMC2963699 DOI: 10.1016/j.ijrobp.2010.01.039] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/21/2009] [Accepted: 01/24/2010] [Indexed: 12/12/2022]
Abstract
PURPOSE Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. METHODS AND MATERIALS Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. RESULTS On average, the hippocampal avoidance volume was 3.3 cm(3), occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy(2) using helical tomotherapy and by 81% to 0.73 Gy(2) using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. CONCLUSION Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.
Collapse
|
Clinical Trial, Phase II |
15 |
264 |