1
|
Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zügel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311:1770-3. [PMID: 16497887 DOI: 10.1126/science.1123933] [Citation(s) in RCA: 2694] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In innate immune responses, activation of Toll-like receptors (TLRs) triggers direct antimicrobial activity against intracellular bacteria, which in murine, but not human, monocytes and macrophages is mediated principally by nitric oxide. We report here that TLR activation of human macrophages up-regulated expression of the vitamin D receptor and the vitamin D-1-hydroxylase genes, leading to induction of the antimicrobial peptide cathelicidin and killing of intracellular Mycobacterium tuberculosis. We also observed that sera from African-American individuals, known to have increased susceptibility to tuberculosis, had low 25-hydroxyvitamin D and were inefficient in supporting cathelicidin messenger RNA induction. These data support a link between TLRs and vitamin D-mediated innate immunity and suggest that differences in ability of human populations to produce vitamin D may contribute to susceptibility to microbial infection.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
2694 |
2
|
Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, Yu RT, Shelton JM, Richardson JA, Repa JJ, Mangelsdorf DJ, Kliewer SA. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 2006; 103:3920-5. [PMID: 16473946 PMCID: PMC1450165 DOI: 10.1073/pnas.0509592103] [Citation(s) in RCA: 883] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
883 |
3
|
Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353:717-9. [PMID: 10073515 DOI: 10.1016/s0140-6736(98)04474-2] [Citation(s) in RCA: 824] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The cytochrome P450 CYP2C9 is responsible for the metabolism of S-warfarin. Two known allelic variants CYP2C9*2 and CYP2C9*3 differ from the wild type CYP2C9*1 by a single aminoacid substitution in each case. The allelic variants are associated with impaired hydroxylation of S-warfarin in in-vitro expression systems. We have studied the effect of CYP2C9 polymorphism on the in-vivo warfarin dose requirement. METHODS Patients with a daily warfarin dose requirement of 1.5 mg or less (low-dose group, n=36), randomly selected patients with a wide range of dose requirements from an anticoagulant clinic in north-east England (clinic control group, n=52), and 100 healthy controls from the community in the same region were studied. Genotyping for the CYP2C9*2 and CYP2C9*3 alleles was done by PCR analysis. Case notes were reviewed to assess the difficulties encountered during the induction of warfarin therapy and bleeding complications in the low-dose and clinic control groups. FINDINGS The odds ratio for individuals with a low warfarin dose requirement having one or more CYP2C9 variant alleles compared with the normal population was 6.21 (95% CI 2.48-15.6). Patients in the low-dose group were more likely to have difficulties at the time of induction of warfarin therapy (5.97 [2.26-15.82]) and have increased risk of major bleeding complications (rate ratio 3.68 [1.43-9.50]) when compared with randomly selected clinic controls. INTERPRETATION We have shown that there is a strong association between CYP2C9 variant alleles and low warfarin dose requirement. CYP2C9 genotyping may identify a subgroup of patients who have difficulty at induction of warfarin therapy and are potentially at a higher risk of bleeding complications.
Collapse
|
Comparative Study |
26 |
824 |
4
|
Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. THE JOURNAL OF IMMUNOLOGY 2007; 179:1634-47. [PMID: 17641030 DOI: 10.4049/jimmunol.179.3.1634] [Citation(s) in RCA: 779] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) can modulate immune responses, but whether it directly affects B cell function is unknown. Patients with systemic lupus erythematosus, especially those with antinuclear Abs and increased disease activity, had decreased 1,25(OH)(2)D(3) levels, suggesting that vitamin D might play a role in regulating autoantibody production. To address this, we examined the effects of 1,25(OH)(2)D(3) on B cell responses and found that it inhibited the ongoing proliferation of activated B cells and induced their apoptosis, whereas initial cell division was unimpeded. The generation of plasma cells and postswitch memory B cells was significantly inhibited by 1,25(OH)(2)D(3), although the up-regulation of genetic programs involved in B cell differentiation was only modestly affected. B cells expressed mRNAs for proteins involved in vitamin D activity, including 1 alpha-hydroxylase, 24-hydroxylase, and the vitamin D receptor, each of which was regulated by 1,25(OH)(2)D(3) and/or activation. Importantly, 1,25(OH)(2)D(3) up-regulated the expression of p27, but not of p18 and p21, which may be important in regulating the proliferation of activated B cells and their subsequent differentiation. These results indicate that 1,25(OH)(2)D(3) may play an important role in the maintenance of B cell homeostasis and that the correction of vitamin D deficiency may be useful in the treatment of B cell-mediated autoimmune disorders.
Collapse
|
Journal Article |
18 |
779 |
5
|
Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992; 355:262-5. [PMID: 1731223 DOI: 10.1038/355262a0] [Citation(s) in RCA: 747] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucocorticoid-remediable aldosteronism (GRA), an autosomal dominant disorder, is characterized by hypertension with variable hyperaldosteronism and by high levels of the abnormal adrenal steroids 18-oxocortisol and 18-hydroxycortisol, which are all under control of adrenocorticotropic hormone and suppressible by glucocorticoids. These abnormalities could result from ectopic expression of aldosterone synthase, which is normally expressed only in adrenal glomerulosa, in the adrenal fasciculata. Genes encoding aldosterone synthase and steroid 11 beta-hydroxylase (expressed in both adrenal fasciculata and glomerulosa), which are 95% identical and lie on chromosome 8q (refs 7, 10), are therefore candidate genes for GRA. Here we demonstrate complete linkage of GRA in a large kindred to a gene duplication arising from unequal crossing over, fusing the 5' regulatory region of 11 beta-hydroxylase to the coding sequences of aldosterone synthase (maximum lod score 5.23 for complete linkage, odds ratio of 170,000:1). This mutation can account for all the physiological abnormalities of GRA. Our result represents the demonstration of a mutation causing hypertension in otherwise phenotypically normal animals or humans.
Collapse
|
|
33 |
747 |
6
|
Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, Rettie AE. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002; 287:1690-8. [PMID: 11926893 DOI: 10.1001/jama.287.13.1690] [Citation(s) in RCA: 713] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Warfarin is a commonly used anticoagulant that requires careful clinical management to balance the risks of overanticoagulation and bleeding with those of underanticoagulation and clotting. The principal enzyme involved in warfarin metabolism is CYP2C9, and 2 relatively common variant forms with reduced activity have been identified, CYP2C9*2 and CYP2C9*3. Patients with these genetic variants have been shown to require lower maintenance doses of warfarin, but a direct association between CYP2C9 genotype and anticoagulation status or bleeding risk has not been established. OBJECTIVE To determine if CYP2C9*2 and CYP2C9*3 variants are associated with overanticoagulation and bleeding events during warfarin therapy. DESIGN AND SETTING Retrospective cohort study conducted at 2 anticoagulation clinics based in Seattle, Wash. PARTICIPANTS Two hundred patients receiving long-term warfarin therapy for various indications during April 3, 1990, to May 31, 2001. Only patients with a complete history of warfarin exposure were included. MAIN OUTCOME MEASURES Anticoagulation status, measured by time to therapeutic international normalized ratio (INR), rate of above-range INRs, and time to stable warfarin dosing; and time to serious or life-threatening bleeding events. RESULTS Among 185 patients with analyzable data, 58 (31.4%) had at least 1 variant CYP2C9 allele and 127 (68.6%) had the wild-type (*1/*1) genotype. Mean maintenance dose varied significantly among the 6 genotype groups (*1/*1 [n = 127], *1/*2 [n = 28], *1/*3 [n = 18], *2/*2 [n = 4], *2/*3 [n = 3], *3/*3 [n = 5]) (by Kruskall-Wallis test, chi(2)(5) = 37.348; P<.001). Compared with patients with the wild-type genotype, patients with at least 1 variant allele had an increased risk of above-range INRs (hazard ratio [HR], 1.40; 95% confidence interval [CI], 1.03-1.90). The variant group also required more time to achieve stable dosing (HR, 0.65; 95% CI, 0.45-0.94), with a median difference of 95 days (P =.004). In addition, although numbers were small for some genotypes, representing potentially unstable estimates, patients with a variant genotype had a significantly increased risk of a serious or life-threatening bleeding event (HR, 2.39; 95% CI, 1.18-4.86). CONCLUSIONS The results of our study suggest that the CYP2C9*2 and CYP2C9*3 polymorphisms are associated with an increased risk of overanticoagulation and of bleeding events among patients in a warfarin anticoagulation clinic setting, although small numbers in some cases would suggest the need for caution in interpretation. Screening for CYP2C9 variants may allow clinicians to develop dosing protocols and surveillance techniques to reduce the risk of adverse drug reactions in patients receiving warfarin.
Collapse
|
|
23 |
713 |
7
|
Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 2001; 7:584-90. [PMID: 11329060 DOI: 10.1038/87912] [Citation(s) in RCA: 615] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 3A4 is an important mediator of drug catabolism that can be regulated by the steroid and xenobiotic receptor (SXR). We show here that SXR also regulates drug efflux by activating expression of the gene MDR1, which encodes the protein P-glycoprotein (ABCB1). Paclitaxel (Taxol), a commonly used chemotherapeutic agent, activated SXR and enhanced P-glycoprotein-mediated drug clearance. In contrast, docetaxel (Taxotere), a closely related antineoplastic agent, did not activate SXR and displayed superior pharmacokinetic properties. Docetaxel's silent properties reflect its inability to displace transcriptional corepressors from SXR. We also found that ET-743, a potent antineoplastic agent, suppressed MDR1 transcription by acting as an inhibitor of SXR. These findings demonstrate how the molecular activities of SXR can be manipulated to control drug clearance.
Collapse
|
|
24 |
615 |
8
|
Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 1996; 85:171-82. [PMID: 8612270 DOI: 10.1016/s0092-8674(00)81094-6] [Citation(s) in RCA: 613] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cpd mutation localized by T-DNA tagging on Arabidopsis chromosome 5-14.3 inhibits cell elongation controlled by the ecdysone-like brassinosteroid hormone brassinolide. The cpd mutant displays de-etiolation and derepression of light-induced genes in the dark, as well as dwarfism, male sterility, and activation of stress-regulated genes in the light. The CPD gene encodes a cytochrome P450 (CYP90) sharing homologous domains with steroid hydroxylases. The phenotype of the cpd mutant is restored to wild type both by feeding with C23-hydroxylated brassinolide precursors and by ectopic overexpression of the CPD cDNA. Brassinosteroids also compensate for different cell elongation defects of Arabidopsis det, cop, fus, and axr2 mutants, indicating that these steroids play an essential role in the regulation of plant development.
Collapse
|
|
29 |
613 |
9
|
Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45:525-38. [PMID: 9663807 PMCID: PMC1873650 DOI: 10.1046/j.1365-2125.1998.00721.x] [Citation(s) in RCA: 578] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1998] [Accepted: 01/07/1998] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence indicates that CYP2C9 ranks amongst the most important drug metabolizing enzymes in humans. Substrates for CYP2C9 include fluoxetine, losartan, phenytoin, tolbutamide, torsemide, S-warfarin, and numerous NSAIDs. CYP2C9 activity in vivo is inducible by rifampicin. Evidence suggests that CYP2C9 substrates may also be induced variably by carbamazepine, ethanol and phenobarbitone. Apart from the mutual competitive inhibition which may occur between alternate substrates, numerous other drugs have been shown to inhibit CYP2C9 activity in vivo and/or in vitro. Clinically significant inhibition may occur with coadministration of amiodarone, fluconazole, phenylbutazone, sulphinpyrazone, sulphaphenazole and certain other sulphonamides. Polymorphisms in the coding region of the CYP2C9 gene produce variants at amino acid residues 144 (Arg144Cys) and 359 (Ile359Leu) of the CYP2C9 protein. Individuals homozygous for Leu359 have markedly diminished metabolic capacities for most CYP2C9 substrates, although the frequency of this allele is relatively low. Consistent with the modulation of enzyme activity by genetic and other factors, wide interindividual variability occurs in the elimination and/or dosage requirements of prototypic CYP2C9 substrates. Individualisation of dose is essential for those CYP2C9 substrates with a narrow therapeutic index.
Collapse
|
Review |
27 |
578 |
10
|
Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kliewer SA. Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol 2002; 62:638-46. [PMID: 12181440 DOI: 10.1124/mol.62.3.638] [Citation(s) in RCA: 517] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear pregnane X receptor (PXR) and constitutive androstane receptor (CAR) play central roles in protecting the body against environmental chemicals (xenobiotics). PXR and CAR are activated by a wide range of xenobiotics and regulate cytochrome P450 and other genes whose products are involved in the detoxification of these chemicals. In this report, we have used receptor-selective agonists together with receptor-null mice to identify PXR and CAR target genes in the liver and small intestine. Our results demonstrate that PXR and CAR regulate overlapping but distinct sets of genes involved in all phases of xenobiotic metabolism, including oxidative metabolism, conjugation, and transport. Among the murine genes regulated by PXR were those encoding PXR and CAR. We provide evidence that PXR regulates a similar program of genes involved in xenobiotic metabolism in human liver. Among the genes regulated by PXR in primary human hepatocytes were the aryl hydrocarbon receptor and its target genes CYP1A1 and CYP1A2. These findings underscore the importance of these two nuclear receptors in defending the body against a broad array of potentially harmful xenobiotics.
Collapse
|
|
23 |
517 |
11
|
Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A 1999; 96:7238-43. [PMID: 10377398 PMCID: PMC22064 DOI: 10.1073/pnas.96.13.7238] [Citation(s) in RCA: 503] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The turnover of cholesterol in the brain is thought to occur via conversion of excess cholesterol into 24S-hydroxycholesterol, an oxysterol that is readily secreted from the central nervous system into the plasma. To gain molecular insight into this pathway of cholesterol metabolism, we used expression cloning to isolate cDNAs that encode murine and human cholesterol 24-hydroxylases. DNA sequence analysis indicates that both proteins are localized to the endoplasmic reticulum, share 95% identity, and represent a new cytochrome P450 subfamily (CYP46). When transfected into cultured cells, the cDNAs produce an enzymatic activity that converts cholesterol into 24S-hydroxycholesterol, and to a lesser extent, 25-hydroxycholesterol. The cholesterol 24-hydroxylase gene contains 15 exons and is located on human chromosome 14q32.1. Cholesterol 24-hydroxylase is expressed predominantly in the brain as judged by RNA and protein blotting. In situ mRNA hybridization and immunohistochemistry localize the expression of this P450 to neurons in multiple subregions of the brain. The concentrations of 24S-hydroxycholesterol in serum are low in newborn mice, reach a peak between postnatal days 12 and 15, and thereafter decline to baseline levels. In contrast, cholesterol 24-hydroxylase protein is first detected in the brain of mice at birth and continues to accumulate with age. We conclude that the cloned cDNAs encode cholesterol 24-hydroxylases that synthesize oxysterols in neurons of the brain and that secretion of 24S-hydroxycholesterol from this tissue in the mouse is developmentally regulated.
Collapse
|
research-article |
26 |
503 |
12
|
Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A 2004; 101:7711-5. [PMID: 15128933 PMCID: PMC419671 DOI: 10.1073/pnas.0402490101] [Citation(s) in RCA: 486] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Indexed: 01/28/2023] Open
Abstract
The synthesis of bioactive vitamin D requires hydroxylation at the 1 alpha and 25 positions by cytochrome P450 enzymes in the kidney and liver, respectively. The mitochondrial enzyme CYP27B1 catalyzes 1 alpha-hydroxylation in the kidney but the identity of the hepatic 25-hydroxylase has remained unclear for >30 years. We previously identified the microsomal CYP2R1 protein as a potential candidate for the liver vitamin D 25-hydroxylase based on the enzyme's biochemical properties, conservation, and expression pattern. Here, we report a molecular analysis of a patient with low circulating levels of 25-hydroxyvitamin D and classic symptoms of vitamin D deficiency. This individual was found to be homozygous for a transition mutation in exon 2 of the CYP2R1 gene on chromosome 11p15.2. The inherited mutation caused the substitution of a proline for an evolutionarily conserved leucine at amino acid 99 in the CYP2R1 protein and eliminated vitamin D 25-hydroxylase enzyme activity. These data identify CYP2R1 as a biologically relevant vitamin D 25-hydroxylase and reveal the molecular basis of a human genetic disease, selective 25-hydroxyvitamin D deficiency.
Collapse
|
research-article |
21 |
486 |
13
|
Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. PHARMACOGENETICS 2002; 12:251-63. [PMID: 11927841 DOI: 10.1097/00008571-200204000-00010] [Citation(s) in RCA: 455] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The discovery of six distinct polymorphisms in the genetic sequence encoding for the cytochrome P450 2C9 (CYP2C9) protein has stimulated numerous investigations in an attempt to characterize their population distribution and metabolic activity. Since the CYP2C9*1, *2 and *3 alleles were discovered first, they have undergone more thorough investigation than the recently identified *4, *5 and *6 alleles. Population distribution data suggest that the variant *2 and *3 alleles are present in approximately 35% of Caucasian individuals; however, these alleles are significantly less prevalent in African-American and Asian populations. In-vitro data have consistently demonstrated that the CYP2C9*2 and *3 alleles are associated with significant reductions in intrinsic clearance of a variety of 2C9 substrates compared with CYP2C9*1; however, the degree of these reductions appear to be highly substrate-dependent. In addition, multiple in-vivo investigations and clinical case reports have associated genotypes expressing the CYP2C9*2 and *3 alleles with significant reductions in both the metabolism and daily dose requirements of selected CYP2C9 substrates. Individuals expressing these variant genotypes also appear to be significantly more susceptible to adverse events with the narrow therapeutic index agents warfarin and phenytoin, particularly during the initiation of therapy. These findings have subsequently raised numerous questions regarding the potential clinical utility of genotyping for CYP2C9 prior to initiation of therapy with these agents. However, further clinical investigations evaluating the metabolic consequences in individuals expressing the CYP2C9*2, *3, *4, *5, or *6 alleles are required before large-scale clinical genotyping can be recommended.
Collapse
|
Review |
23 |
455 |
14
|
Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, Miners JO, Birkett DJ, Goldstein JA. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. PHARMACOGENETICS 1996; 6:341-9. [PMID: 8873220 DOI: 10.1097/00008571-199608000-00007] [Citation(s) in RCA: 411] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tolbutamide undergoes hydroxylation in humans via a cytochrome P450-mediated pathway. The primary P450 isozyme responsible for this metabolism is thought to be CYP2C9. Population studies have indicated the existence of slow metabolizers of tolbutamide (approximately 1 in 500) suggesting a rare polymorphism associated with 2C9. Several allelic variants of 2C9 have been identified; however, the effect of these allelic variations on metabolism in vivo is not established. In the present study, the coding regions, intron-exon junctions, and upstream region of CYP2C9 were amplified by PCR and sequenced in two slow metabolizers. One individual was homozygous for Leu359/Leu359 and the other individual was heterozygous for Arg144/Cys144 and for Ile359/Leu359. No other genetic variations in 2C9 were detected in these individuals. PCR-RFLP tests showed that Arg144 Tyr358 Ile359 Gly417 is the principle CYP2C9 allele. Frequencies of the rarer Leu359 and Cys144 alleles were 0.06 and 0.08, respectively, in a Caucasian-American population and 0.005 and 0.01 respectively in African-Americans. The frequency of the Leu359 allele was 0.026 in Chinese-Taiwanese, but the Cys144 allele was not detected in this population. Studies in a recombinant yeast expression system showed that the Leu359 variant had the highest Km and the lowest Vmac for hydroxylation of tolbutamide of all the CYP2C9 allelic variants. This allelic variant also had the highest Km for the 7-hydroxylation of S-warfarin. The present data suggest that the incidence of the Leu359 allelic variant of CYP2C9 may account for the occurrence of poor metabolizers of tolbutamide.
Collapse
|
|
29 |
411 |
15
|
Albertson DG, Ylstra B, Segraves R, Collins C, Dairkee SH, Kowbel D, Kuo WL, Gray JW, Pinkel D. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet 2000; 25:144-6. [PMID: 10835626 DOI: 10.1038/75985] [Citation(s) in RCA: 410] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We show here that quantitative measurement of DNA copy number across amplified regions using array comparative genomic hybridization (CGH) may facilitate oncogene identification by providing precise information on the locations of both amplicon boundaries and amplification maxima. Using this analytical capability, we resolved two regions of amplification within an approximately 2-Mb region of recurrent aberration at 20q13.2 in breast cancer. The putative oncogene ZNF217 (ref. 5) mapped to one peak, and CYP24 (encoding vitamin D 24 hydroxylase), whose overexpression is likely to lead to abrogation of growth control mediated by vitamin D, mapped to the other.
Collapse
|
Comparative Study |
25 |
410 |
16
|
Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C, John U, Misselwitz J, Klaus G, Kuwertz-Bröking E, Fehrenbach H, Wingen AM, Güran T, Hoenderop JG, Bindels RJ, Prosser DE, Jones G, Konrad M. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 2011; 365:410-21. [PMID: 21675912 DOI: 10.1056/nejmoa1103864] [Citation(s) in RCA: 406] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Vitamin D supplementation for the prevention of rickets is one of the oldest and most effective prophylactic measures in medicine, having virtually eradicated rickets in North America. Given the potentially toxic effects of vitamin D, the recommendations for the optimal dose are still debated, in part owing to the increased incidence of idiopathic infantile hypercalcemia in Britain in the 1950s during a period of high vitamin D supplementation in fortified milk products. We investigated the molecular basis of idiopathic infantile hypercalcemia, which is characterized by severe hypercalcemia, failure to thrive, vomiting, dehydration, and nephrocalcinosis. METHODS We used a candidate-gene approach in a cohort of familial cases of typical idiopathic infantile hypercalcemia with suspected autosomal recessive inheritance. Identified mutations in the vitamin D-metabolizing enzyme CYP24A1 were evaluated with the use of a mammalian expression system. RESULTS Sequence analysis of CYP24A1, which encodes 25-hydroxyvitamin D 24-hydroxylase, the key enzyme of 1,25-dihydroxyvitamin D(3) degradation, revealed recessive mutations in six affected children. In addition, CYP24A1 mutations were identified in a second cohort of infants in whom severe hypercalcemia had developed after bolus prophylaxis with vitamin D. Functional characterization revealed a complete loss of function in all CYP24A1 mutations. CONCLUSIONS The presence of CYP24A1 mutations explains the increased sensitivity to vitamin D in patients with idiopathic infantile hypercalcemia and is a genetic risk factor for the development of symptomatic hypercalcemia that may be triggered by vitamin D prophylaxis in otherwise apparently healthy infants.
Collapse
|
|
14 |
406 |
17
|
Abstract
We have determined the structure of cDNA and two genomic genes encoding steroid 21-hydroxylase [21-OHase; steroid 21-monooxygenase; steroid, hydrogen-donor:oxygen oxidoreductase (21-hydroxylating); EC 1.14.99.10]. If this cytochrome P-450 enzyme is defective, cortisol cannot be synthesized, resulting in congenital adrenal hyperplasia. The cDNA encoding this enzyme is 2.0 kilobases long, and the encoded protein is predicted to contain 494 amino acid residues with a molecular weight of 55,000. This enzyme is at most 28% homologous to other P-450 enzymes that have been studied. The 21-OHase genomic genes, which are located in the HLA major histocompatibility complex on chromosome 6, each contain 10 exons. This structure is distinct from other characterized P-450 genes, which contain 7 or 9 exons. Studies of individuals with homozygous deletions of the 21-OHase A or B genes suggest that only the B gene encodes an active enzyme. This is confirmed by the finding that the A gene has an 8-base deletion within codons 110-112, resulting in a frameshift that brings a stop codon into the reading frame at codon 130. A second frameshift and a nonsense mutation occur downstream. In contrast, the sequence of the exons of the B gene is identical to the cDNA sequence. The 21-OHase A gene is, therefore, a pseudogene.
Collapse
|
research-article |
39 |
392 |
18
|
Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 2006; 4:25-36. [PMID: 16814730 DOI: 10.1016/j.cmet.2006.04.015] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/21/2006] [Accepted: 04/27/2006] [Indexed: 10/24/2022]
Abstract
The PAR-domain basic leucine zipper (PAR bZip) transcription factors DBP, TEF, and HLF accumulate in a highly circadian manner in several peripheral tissues, including liver and kidney. Mice devoid of all three of these proteins are born at expected Mendelian ratios, but are epilepsy prone, age at an accelerated rate, and die prematurely. In the hope of identifying PAR bZip target genes whose altered expression might contribute to the high morbidity and mortality of PAR bZip triple knockout mice, we compared the liver and kidney transcriptomes of these animals to those of wild-type or heterozygous mutant mice. These experiments revealed that PAR bZip proteins control the expression of many enzymes and regulators involved in detoxification and drug metabolism, such as cytochrome P450 enzymes, carboxylesterases, and constitutive androstane receptor (CAR). Indeed, PAR bZip triple knockout mice are hypersensitive to xenobiotic compounds, and the deficiency in detoxification may contribute to their early aging.
Collapse
|
Comparative Study |
19 |
387 |
19
|
Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI, Goldstein JA. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. PHARMACOGENETICS 2001; 11:597-607. [PMID: 11668219 DOI: 10.1097/00008571-200110000-00006] [Citation(s) in RCA: 365] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cytochrome P450 (CYP) 2C8 is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (Taxol). It is also the predominant P450 responsible for the metabolism of arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs) in human liver and kidney. In this study, we describe two new CYP2C8 alleles containing coding changes: CYP2C8*2 has an Ile269Phe substitution in exon 5 and CYP2C8*3 includes both Arg139Lys and Lys399Arg amino acid substitutions in exons 3 and 8. CYP2C8*2 was found only in African-Americans, while CYP2C8*3 occurred primarily in Caucasians. Neither occurred in Asians. The frequency of the CYP2C8*2 allele was 0.18 in African-Americans, and that of CYP2C8*3 was 0.13 in Caucasians. CYP2C8*1 (wild-type), CYP2C8*2 and CYP2C8*3 cDNAs were expressed in Escherichia coli, and the ability of these enzymes to metabolize both paclitaxel and arachidonic acid was assessed. Recombinant CYP2C8*3 was defective in the metabolism of both substrates. The turnover number of CYP2C8*3 for paclitaxel was 15% of CYP2C8*1. CYP2C8*2 had a two-fold higher Km and two-fold lower intrinsic clearance for paclitaxel than CYP2C8*1. CYP2C8*3 was also markedly defective in the metabolism of arachidonic acid to 11,12- and 14,15-EET (turnover numbers 35-40% that of CYP2C8*1). Thus, CYP2C8*3 is defective in the metabolism of two important CYP2C8 substrates: the anticancer drug paclitaxel and the physiologically important compound arachidonic acid. This polymorphism has important clinical and physiological implications in individuals homozygous for this allele.
Collapse
|
|
24 |
365 |
20
|
Higashi Y, Yoshioka H, Yamane M, Gotoh O, Fujii-Kuriyama Y. Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene. Proc Natl Acad Sci U S A 1986; 83:2841-5. [PMID: 3486422 PMCID: PMC323402 DOI: 10.1073/pnas.83.9.2841] [Citation(s) in RCA: 357] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Two 21-hydroxylase [P-450(C21)] genes have been isolated from a human genomic library using a bovine P-450(C21) cDNA. The insert DNAs containing the P-450(C21) genes were also hybridized with the sequences of the 5' or 3' end regions of human C4 cDNA, indicating a close linkage of the P-450(C21) gene to the C4 gene. Sequence analysis has revealed that the two P-450(C21) genes are both approximately equal to 3.4 kilobases long and split into 10 exons. Comparing the two sequences, we found that the two genes are highly homologous including their introns and flanking sequences, but that three mutations render one of the two P-450(C21) genes nonfunctional--1 base insertion, an 8-base deletion, and a transition mutation--all of which may cause premature termination of the translation. Tandem arrangement of the highly homologous pseudo- and genuine genes in close proximity could account for the high incidence of P-450(C21) gene deficiency by homologous gene recombination.
Collapse
|
research-article |
39 |
357 |
21
|
Li J, Nam KH, Vafeados D, Chory J. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. PLANT PHYSIOLOGY 2001; 127:14-22. [PMID: 11553730 PMCID: PMC117958 DOI: 10.1104/pp.127.1.14] [Citation(s) in RCA: 347] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2001] [Revised: 04/16/2001] [Accepted: 06/02/2001] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) play important roles throughout plant development. Although many genes have been identified that are involved in BR biosynthesis, genetic approaches in Arabidopsis have led to the identification of only one gene, BRI1, that encodes a membrane receptor for BRs. To expand our knowledge of the molecular mechanism(s) of plant steroid signaling, we analyzed many dwarf and semidwarf mutants collected from our previous genetic screens and identified a semidwarf mutant that showed little response to exogenous BR treatments. Genetic analysis of the bin2 (BR-INSENSITIVE 2) mutant indicated that the BR-insensitive dwarf phenotype was due to a semidominant mutation in the BIN2 gene that mapped to the middle of chromosome IV between the markers CH42 and AG. A direct screening for similar semidwarf mutants resulted in the identification of a second allele of the BIN2 gene. Despite some novel phenotypes observed with the bin2/+ mutants, the homozygous bin2 mutants were almost identical to the well-characterized bri1 mutants that are defective in BR perception. In addition to the BR-insensitive dwarf phenotype, bin2 mutants exhibited BR insensitivity when assayed for root growth inhibition and feedback inhibition of CPD gene expression. Furthermore, bin2 mutants displayed an abscisic acid-hypersensitive phenotype that is shared by the bri1 and BR-deficient mutants. A gene dosage experiment using triploid plants suggested that the bin2 phenotypes were likely caused by either neomorphic or hypermorphic gain-of-function mutations in the BIN2 gene. Thus, the two bin2 mutations define a novel genetic locus whose gene product might play a role in BR signaling.
Collapse
|
research-article |
24 |
347 |
22
|
Petryk A, Warren JT, Marqués G, Jarcho MP, Gilbert LI, Kahler J, Parvy JP, Li Y, Dauphin-Villemant C, O'Connor MB. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc Natl Acad Sci U S A 2003; 100:13773-8. [PMID: 14610274 PMCID: PMC283497 DOI: 10.1073/pnas.2336088100] [Citation(s) in RCA: 343] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Indexed: 11/18/2022] Open
Abstract
The steroid 20-hydroxyecdysone (20E) is the primary regulatory hormone that mediates developmental transitions in insects and other arthropods. 20E is produced from ecdysone (E) by the action of a P450 monooxygenase that hydroxylates E at carbon 20. The gene coding for this key enzyme of ecdysteroidogenesis has not been identified definitively in any insect. We show here that the Drosophila E-20-monooxygenase (E20MO) is the product of the shade (shd) locus (cytochrome p450, CYP314a1). When shd is transfected into Drosophila S2 cells, extensive conversion of E to 20E is observed, whereas in sorted homozygous shd embryos, no E20MO activity is apparent either in vivo or in vitro. Mutations in shd lead to severe disruptions in late embryonic morphogenesis and exhibit phenotypes identical to those seen in disembodied (dib) and shadow (sad) mutants, two other genes of the Halloween class that code for P450 enzymes that catalyze the final two steps in the synthesis of E from 2,22-dideoxyecdysone. Unlike dib and sad, shd is not expressed in the ring gland but is expressed in peripheral tissues such as the epidermis, midgut, Malpighian tubules, and fat body, i.e., tissues known to be major sites of E20MO activity in a variety of insects. However, the tissue in which shd is expressed does not appear to be important for developmental function because misexpression of shd in the embryonic mesoderm instead of the epidermis, the normal embryonic tissue in which shd is expressed, rescues embryonic lethality.
Collapse
|
research-article |
22 |
343 |
23
|
Silvestre JS, Robert V, Heymes C, Aupetit-Faisant B, Mouas C, Moalic JM, Swynghedauw B, Delcayre C. Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation. J Biol Chem 1998; 273:4883-91. [PMID: 9478930 DOI: 10.1074/jbc.273.9.4883] [Citation(s) in RCA: 328] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggests that mineralo- and glucocorticoids modulate cardiovascular homeostasis via the effects of circulating components generated within the adrenals but also through local synthesis. The aim of this study was to assess the existence of such a steroidogenic system in heart. Using the quantitative reverse transcriptase-polymerase chain reaction, the terminal enzymes of corticosterone and aldosterone synthesis (11beta-hydroxylase and aldosterone synthase, respectively) were detected in the rat heart. This pathway was shown to be physiologically active, since production of aldosterone, corticosterone, and their precursor, deoxycorticosterone, was detected in both the homogenate and perfusate of isolated rat hearts using radioimmunoassay after Celite column chromatography. Perfusion of angiotensin II or adrenocorticotropin for 3 h increased aldosterone and corticosterone production and decreased deoxycorticosterone, suggesting that aldosterone and corticosterone are formed within the isolated heart from a locally present substrate. Chronic regulation of this intracardiac system was then examined. As in adrenals cardiac 11beta-hydroxylase and aldosterone-synthase mRNAs were independently regulated by 1 week's treatment with either low sodium and high potassium diet (which increased aldosterone synthase mRNA level only), angiotensin II (which raised level of both mRNAs), or adrenocorticotropin (which stimulated the 11beta-hydroxylase gene exclusively). Changes in cardiac steroid levels during treatment were not directly related to their plasma levels suggesting independent regulating mechanisms. This study, therefore, provides the first evidence for the existence of an endocrine cardiac steroidogenic system in rat heart and emphasizes its potential physiological and pathological relevance.
Collapse
|
|
27 |
328 |
24
|
Perwad F, Azam N, Zhang MYH, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 2005; 146:5358-64. [PMID: 16123154 DOI: 10.1210/en.2005-0777] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor-23 (FGF-23) is a novel circulating peptide that regulates phosphorus (Pi) and vitamin D metabolism, but the mechanisms by which circulating FGF-23 itself is regulated are unknown. To determine whether the serum FGF-23 concentration is regulated by dietary intake of Pi, we fed wild-type (WT), Npt2a gene-ablated (Npt2a(-/-)), and Hyp mice diets containing varying Pi contents (0.02-1.65%). In WT mice, increases in dietary Pi intake from 0.02-1.65% induced a 7-fold increase in serum FGF-23 and a 3-fold increase in serum Pi concentrations. Across the range of dietary Pi, serum FGF-23 concentrations varied directly with serum Pi concentrations (r(2) = 0.72; P < 0.001). In Npt2a(-/-) mice, serum FGF-23 concentrations were significantly lower than in WT mice, and these differences could be accounted for by the lower serum Pi levels in Npt2a(-/-) mice. The serum concentrations of FGF-23 in Hyp mice were 5- to 25-fold higher than values in WT mice, and the values varied with dietary Pi intake. Fgf-23 mRNA abundance in calvaria was significantly higher in Hyp mice than in WT mice on the 1% Pi diet; in both groups of mice, fgf-23 mRNA abundance in calvarial bone was suppressed by 85% on the low (0.02%) Pi diet. In WT mice fed the low (0.02%) Pi diet, renal mitochondrial 1alpha-hydroxylase activity and renal 1alpha-hydroxylase (P450c1alpha) mRNA abundance were significantly higher than in mice fed the higher Pi diets and varied inversely with serum FGF-23 concentrations (r(2) = 0.86 and r(2) = 0.64; P < 0.001, respectively). The present data demonstrate that dietary Pi regulates the serum FGF-23 concentration in mice, and such regulation is independent of phex function. The data suggest that genotype-dependent and dietary Pi-induced changes in the serum FGF-23 concentration reflect changes in fgf-23 gene expression in bone.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
321 |
25
|
Blanc M, Hsieh W, Robertson K, Kropp K, Forster T, Shui G, Lacaze P, Watterson S, Griffiths S, Spann N, Meljon A, Talbot S, Krishnan K, Covey D, Wenk M, Craigon M, Ruzsics Z, Haas J, Angulo A, Griffiths W, Glass C, Wang Y, Ghazal P. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 2013; 38:106-18. [PMID: 23273843 PMCID: PMC3556782 DOI: 10.1016/j.immuni.2012.11.004] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/06/2012] [Indexed: 12/18/2022]
Abstract
Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
321 |