1
|
Carter BA, Taylor OA, Prendergast DR, Zimmerman TL, Von Furstenberg R, Moore DD, Karpen SJ. Stigmasterol, a soy lipid-derived phytosterol, is an antagonist of the bile acid nuclear receptor FXR. Pediatr Res 2007; 62:301-6. [PMID: 17622954 DOI: 10.1203/pdr.0b013e3181256492] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phytosterols, components of soy-derived lipids, are among the proposed exacerbants of parenteral nutrition-associated cholestasis (PNAC). We investigated whether phytosterols contribute to bile acid (BA)-induced hepatocyte damage by antagonizing a nuclear receptor (NR) critically involved in hepatoprotection from cholestasis, FXR (farnesoid X receptor, NR1H4). In HepG2 cells, stigmasterol acetate (StigAc), a water-soluble Stig derivative, suppressed ligand-activated expression of FXR target genes involved in adaptation to cholestasis (i.e. BSEP, FGF-19, OSTalpha/beta). Furthermore, StigAc antagonized BA-activated, FXR target genes SHP and BSEP in FXR+/+, but not in FXR-/- mouse hepatocytes. Both Stig and StigAc inhibited BA-activated, FXR-dependent reporter gene expression in transfected HepG2 cells, whereas the most prevalent phytosterol in lipids, beta-sitosterol, had no inhibitory effect. Finally, among six ligand-activated NR-ligand binding domains (LBDs) tested, antagonism by StigAc was specific to only two (FXR and PXR, pregnane X receptor, NR1I2). We demonstrate that Stig, a phytosterol prevalent in soy-derived PN lipid solutions, is a potent in vitro antagonist of the NR for bile acids FXR.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
209 |
2
|
Panda S, Jafri M, Kar A, Meheta BK. Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma. Fitoterapia 2008; 80:123-6. [PMID: 19105977 DOI: 10.1016/j.fitote.2008.12.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/28/2008] [Accepted: 12/02/2008] [Indexed: 11/19/2022]
Abstract
Stigmasterol, isolated from the bark of Butea monosperma was evaluated for its thyroid hormone and glucose regulatory efficacy in mice. Its administration at 2.6 mg/kg/d for 20 days reduced serum triiodothyronine (T(3)), thyroxin (T(4)) and glucose concentrations as well as the activity of hepatic glucose-6-phophatase (G-6-Pase) with a concomitant increase in insulin indicating its thyroid inhibiting and hypoglycemic properties. A decrease in the hepatic lipid peroxidation (LPO) and an increase in the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH) suggested its antioxidative potential. The highest concentration tested (5.2 mg/kg) evoked pro-oxidative activity.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
112 |
3
|
Lee S, Lee YS, Jung SH, Kang SS, Shin KH. Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa. Arch Pharm Res 2004; 26:719-22. [PMID: 14560919 DOI: 10.1007/bf02976680] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The anti-oxidant activities of fucosterol isolated from the marine algae Pelvetia siliquosa were investigated. Fucosterol exhibited a significant decrease in serum transaminase activities elevated by hepatic damage induced by CCl4-intoxication in rats. Fucosterol inhibited the sGOT and sGPT activities by 25.57 and 63.16%, respectively. Fucosterol showed the increase in the anti-oxidant enzymes such as hepatic cytosolic superoxide dismutase (SOD), catalase and glutathione peroxidase (GSH-px) activities by 33.89, 21.56 and 39.24%, respectively, in CCl4-intoxicated rats. These results suggest that fucosterol possess not only the anti-oxidant, but also the hepatoprotective activities in rats.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
99 |
4
|
Abdul QA, Choi RJ, Jung HA, Choi JS. Health benefit of fucosterol from marine algae: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1856-1866. [PMID: 26455344 DOI: 10.1002/jsfa.7489] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Seaweeds belong to a group of marine plants known as algae, which are consumed as sea vegetables in several Asian countries. Recent studies have focused on the biological and pharmacological activities of seaweeds and their highly bioactive secondary metabolites because of their potential in the development of new pharmaceutical agents. Although several varieties of bioactive novel compounds such as phlorotannins, diterpenes and polysaccharides from seaweeds have already been well scrutinized, fucosterol as a phytosterol still needs to reinvent itself. Fucosterol (24-ethylidene cholesterol) is a sterol that can be isolated from algae, seaweed and diatoms. Fucosterol exhibits various biological therapeutics, including anticancer, antidiabetic, antioxidant, hepatoprotective, antihyperlipidemic, antifungal, antihistaminic, anticholinergic, antiadipogenic, antiphotodamaging, anti-osteoporotic, blood cholesterol reducing, blood vessel thrombosis preventive and butyrylcholinesterase inhibitory activities. In this review, we address some potential approaches for arbitrating novel fucosterol biologics in the medical field, focusing on the selection of personalized drug candidates and highlighting the challenges and opportunities regarding medical breakthroughs. We also highlight recent advances made in the design of this novel compound, as the significant health benefits from using these optimized applications apply to the nutraceutical and pharmaceutical fields.
Collapse
|
Review |
9 |
92 |
5
|
Suttiarporn P, Chumpolsri W, Mahatheeranont S, Luangkamin S, Teepsawang S, Leardkamolkarn V. Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients 2015; 7:1672-1687. [PMID: 25756784 PMCID: PMC4377873 DOI: 10.3390/nu7031672] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/13/2015] [Accepted: 02/25/2015] [Indexed: 12/11/2022] Open
Abstract
Structures of some bioactive phytochemicals in bran extract of the black rice cv. Riceberry that had demonstrated anti-cancer activity in leukemic cell line were investigated. After saponification with potassium hydroxide, separation of the unsaponified fraction by reversed-phase high performance liquid chromatography (HPLC) resulted in four sub-fractions that had a certain degree of anti-proliferation against a mouse leukemic cell line (WEHI-3 cell), this being IC50 at 24 h ranging between 2.80-467.11 μg/mL. Further purification of the bioactive substances contained in these four sub-fractions was performed by normal-phase HPLC. Structural characterization by gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) resulted in, overall, the structures of seven phytosterols and four triterpenoids. Four phytosterols, 24-methylene-ergosta-5-en-3β-ol, 24-methylene-ergosta-7-en-3β-ol, fucosterol, and gramisterol, along with three triterpenoids, cycloeucalenol, lupenone, and lupeol, were found in the two sub-fractions that showed strong anti-leukemic cell proliferation (IC50 = 2.80 and 32.89 μg/mL). The other sterols and triterpenoids were campesterol, stigmasterol, β-sitosterol and 24-methylenecycloartanol. Together with the data from in vitro biological analysis, we suggest that gramisterol is a significant anti-cancer lead compound in Riceberry bran extract.
Collapse
|
research-article |
10 |
90 |
6
|
Soupas L, Juntunen L, Lampi AM, Piironen V. Effects of sterol structure, temperature, and lipid medium on phytosterol oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:6485-6491. [PMID: 15479011 DOI: 10.1021/jf049168k] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Factors contributing to the oxidative stability of phytosterols were studied. Unsaturated stigmasterol and saturated sitostanol were used as model compounds and were heated at different temperatures in different lipid matrices for various periods of time. Accumulations of the major secondary oxidation products were used as a marker of the stability of heated compounds, and the products were analyzed by gas chromatography-mass spectrometry. The results showed that both temperature and heating time, as well as sterol structure and lipid matrix composition, affected phytosterol oxidation. In particular, the interactions between different lipid matrices and temperatures had drastic effects on the total contents of the phytosterol oxides formed and also on the reaction pathways of oxidation. During heating at high temperatures for prolonged periods, >20% of stigmasterol was oxidized. At moderate temperatures the oxidation of stigmasterol was rather slow. Sitostanol oxide contents were low under all heating conditions studied.
Collapse
|
|
21 |
86 |
7
|
Misra L, Mishra P, Pandey A, Sangwan RS, Sangwan NS, Tuli R. Withanolides from Withania somnifera roots. PHYTOCHEMISTRY 2008; 69:1000-4. [PMID: 18061221 DOI: 10.1016/j.phytochem.2007.10.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/16/2007] [Accepted: 10/19/2007] [Indexed: 05/20/2023]
Abstract
Two new and seven known withanolides along with beta-sitosterol, stigmasterol, beta-sitosterol glucoside, stigmasterol glucoside, alpha+beta glucose were isolated from the roots of Withania somnifera. Among the known compounds, Viscosa lactone B, stigmasterol, stigmasterol glucoside and alpha+beta glucose are being reported from the roots of W. somnifera for the first time. One of the new compounds contained the rare 16beta-acetoxy-17(20)-ene the other contained unusual 6alpha-hydroxy-5,7alpha-epoxy functional groups in the withasteroid skeleton. The structures were elucidated by spectroscopic methods and chemical transformations.
Collapse
|
|
17 |
86 |
8
|
Lee YS, Shin KH, Kim BK, Lee S. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch Pharm Res 2004; 27:1120-2. [PMID: 15595413 DOI: 10.1007/bf02975115] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fucosterol isolated from Pelvetia siliquosa was tested for its anti-diabetic activity in vivo. Fucosterol, when administered orally at 30 mg/kg in streptozotocin-induced diabetic rats, was caused a significant decrease in serum glucose concentrations, and exhibited an inhibition of sorbitol accumulations in the lenses. Fucosterol, when administered orally at 300 mg/kg in epinephrine-induced diabetic rats, was also caused an inhibition of blood glucose level and glycogen degradation. These results demonstrated that fucosterol is a main anti-diabetic principle from the marine algae P. siliquosa.
Collapse
|
Comparative Study |
21 |
83 |
9
|
Khabazian I, Bains JS, Williams DE, Cheung J, Wilson JMB, Pasqualotto BA, Pelech SL, Andersen RJ, Wang YT, Liu L, Nagai A, Kim SU, Craig UK, Shaw CA. Isolation of various forms of sterol beta-D-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS-parkinsonism dementia complex. J Neurochem 2002; 82:516-28. [PMID: 12153476 DOI: 10.1046/j.1471-4159.2002.00976.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The factors responsible for ALS-parkinsonism dementia complex (ALS-PDC), the unique neurological disorder of Guam, remain unresolved, but identification of causal factors could lead to clues for related neurodegenerative disorders elsewhere. Earlier studies focused on the consumption and toxicity of the seed of Cycas circinalis, a traditional staple of the indigenous diet, but found no convincing evidence for toxin-linked neurodegeneration. We have reassessed the issue in a series of in vitro bioassays designed to isolate non-water soluble compounds from washed cycad flour and have identified three sterol beta-d-glucosides as potential neurotoxins. These compounds give depolarizing field potentials in cortical slices, induce alterations in the activity of specific protein kinases, and cause release of glutamate. They are also highly toxic, leading to release of lactate dehydrogenase (LDH). Theaglycone form, however, is non-toxic. NMDA receptor antagonists block the actions of the sterol glucosides, but do not compete for binding to the NMDA receptor. The most probable mechanism leading to cell death may involve glutamate neuro/excitotoxicity. Mice fed cycad seed flour containing the isolated sterol glucosides show behavioral and neuropathological outcomes, including increased TdT-mediated biotin-dUTP nick-end labelling (TUNEL) positivity in various CNS regions. Astrocytes in culture showed increased caspase-3 labeling after exposure to sterol glucosides. The present results support the hypothesis that cycad consumption may be an important factor in the etiology of ALS-PDC and further suggest that some sterol glucosides may be involved in other neurodegenerative disorders.
Collapse
|
|
23 |
80 |
10
|
De-Eknamkul W, Potduang B. Biosynthesis of beta-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. PHYTOCHEMISTRY 2003; 62:389-398. [PMID: 12620352 DOI: 10.1016/s0031-9422(02)00555-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A green callus culture of Croton sublyratus Kurz established from the leaf explants appeared to actively synthesize two well-known phytosterols, beta-sitosterol and stigmasterol. The phytosterol biosynthesis was highly active during the linear phase of the culture. Feeding of [1-13C]glucose into the callus culture at this growth phase showed that the label from glucose was highly incorporated into both phytosterols. Isolation of the labeled products followed by 13C NMR analysis revealed that the phytosterols had their 13C-labeling patterns consistent with the acquisition of isoprene units via both the mevalonate pathway and the deoxyxylulose pathway with relatively equal contribution. Since the biosynthesis of phytosterol has so far been reported to be mainly from the classical mevalonate pathway, this study provides a new evidence on the biosynthesis of phytosterols via the novel deoxyxylulose pathway.
Collapse
|
Comparative Study |
22 |
74 |
11
|
Chen Z, Liu J, Fu Z, Ye C, Zhang R, Song Y, Zhang Y, Li H, Ying H, Liu H. 24(S)-Saringosterol from edible marine seaweed Sargassum fusiforme is a novel selective LXRβ agonist. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6130-7. [PMID: 24927286 DOI: 10.1021/jf500083r] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Dietary phytosterols have been successfully used for lowering cholesterol levels, which correlates with the fact that some phytosterols are able to act as liver X receptor (LXR) agonists. Sargassum fusiforme is an edible marine seaweed well-known for its antiatherosclerotic function in traditional Chinese medicine. In this study, seven phytosterols including fucosterol (1), saringosterol (2), 24-hydroperoxy-24-vinyl-cholesterol (3), 29-hydroperoxy-stigmasta-5,24(28)-dien-3β-ol (4), 24-methylene-cholesterol (5), 24-keto-cholesterol (6), and 5α,8α-epidioxyergosta-6,22-dien-3β-ol (7) were purified and evaluated for their actions on LXR-mediated transcription using a reporter assay. Among these phytosterols, 2 was the most potent compound in stimulating the transcriptional activities of LXRα by (3.81±0.15)-fold and LXRβ by (14.40±1.10)-fold, respectively. Two epimers of 2, 24(S)-saringosterol (2a) and 24(R)-saringosterol (2b), were subsequently separated by semipreparative high-performance liquid chromatography. Interestingly, 2a was more potent than 2b in LXRβ-mediated transactivation ((3.50±0.17)-fold vs (1.63±0.12)-fold) compared with control. Consistently, 2a induced higher expression levels of LXR target genes including key players in reverse cholesterol transport in six cell lines. These data along with molecular modeling suggested that 2a acts as a selective LXRβ agonist and is a potent natural cholesterol-lowering agent. This study also demonstrated that phytosterols in S. fusiforme contributed to the well-known antiatherosclerotic function.
Collapse
|
Comparative Study |
11 |
73 |
12
|
Rapaport H, Kuzmenko I, Lafont S, Kjaer K, Howes PB, Als-Nielsen J, Lahav M, Leiserowitz L. Cholesterol monohydrate nucleation in ultrathin films on water. Biophys J 2001; 81:2729-36. [PMID: 11606285 PMCID: PMC1301739 DOI: 10.1016/s0006-3495(01)75915-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The growth of a cholesterol crystalline phase, three molecular layers thick at the air-water interface, was monitored by grazing incidence x-ray diffraction and x-ray reflectivity. Upon compression, a cholesterol film transforms from a monolayer of trigonal symmetry and low crystallinity to a trilayer, composed of a highly crystalline bilayer in a rectangular lattice and a disordered top cholesterol layer. This system undergoes a phase transition into a crystalline trilayer incorporating ordered water between the hydroxyl groups of the top and middle sterol layers in an arrangement akin to the triclinic 3-D crystal structure of cholesterol x H(2)O. By comparison, the cholesterol derivative stigmasterol transforms, upon compression, directly into a crystalline trilayer in the rectangular lattice. These results may contribute to an understanding of the onset of cholesterol crystallization in pathological lipid deposits.
Collapse
|
research-article |
24 |
68 |
13
|
Jung HA, Ali MY, Choi RJ, Jeong HO, Chung HY, Choi JS. Kinetics and molecular docking studies of fucosterol and fucoxanthin, BACE1 inhibitors from brown algae Undaria pinnatifida and Ecklonia stolonifera. Food Chem Toxicol 2016; 89:104-11. [PMID: 26825629 DOI: 10.1016/j.fct.2016.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/11/2015] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
Since the action of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is strongly correlated with the onset of Alzheimer's disease (AD), the development of BACE1 inhibitors as therapeutic agents is being vigorously pursued. In our ongoing research aimed at identifying anti-AD remedies derived from maritime plants, we evaluated the BACE1 inhibitory activities of fucosterol and fucoxanthin from Ecklonia stolonifera and Undaria pinnatifida. In vitro anti-AD activities were performed via BACE1 inhibition assays, as well as enzyme kinetic and molecular docking predictions. Based on enzyme-based assays, fucosterol and fucoxanthin showed noncompetitive and mixed-type inhibition, respectively, against BACE1. In addition, docking simulation results demonstrated that the Lys224 residue of BACE1 interacted with one hydroxyl group of fucosterol, while two additional BACE1 residues (Gly11 and Ala127) interacted with two hydroxyl groups of fucoxanthin. Moreover, the binding energy of fucosterol and fucoxanthin was negative (-10.1 and -7.0 kcal/mol), indicating that hydrogen bonding may stabilize the open form of the enzyme and potentiate tight binding of the active site of BACE1, resulting in more effective BACE1 inhibition. The results suggest that fucosterol and fucoxanthin may be used beneficially in the treatment of AD and provide potential guidelines for the design of new BACE1 inhibitors.
Collapse
|
|
9 |
66 |
14
|
Forgo P, Kövér KE. Gradient enhanced selective experiments in the 1H NMR chemical shift assignment of the skeleton and side-chain resonances of stigmasterol, a phytosterol derivative. Steroids 2004; 69:43-50. [PMID: 14715376 DOI: 10.1016/j.steroids.2003.09.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The applicability of homonuclear gradient enhanced NMR experiments is demonstrated in the structure determination of steroid derivatives using stigmasterol as a model compound. High resolution 1H NMR spectra of steroids very often display well resolved multiplets usually in the low-field region, and these signals can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180 degrees Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY, DPFGSE-relay-COSY and DPFGSE-TOCSY experiments, while DPFGSE-NOESY was used to monitor spatial environment of the selectively excited proton. These methods provided unambiguous assignments for signals of the main skeleton and the side-chain of the steroid molecule. In addition, they allowed determination of the conformationally important homonuclear proton-proton coupling constants (J).
Collapse
|
|
21 |
59 |
15
|
Miras-Moreno B, Sabater-Jara AB, Pedreño MA, Almagro L. Bioactivity of Phytosterols and Their Production in Plant in Vitro Cultures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7049-58. [PMID: 27615454 DOI: 10.1021/acs.jafc.6b02345] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phytosterols are a kind of plant metabolite belonging to the triterpene family. These compounds are essential biomolecules for human health, and so they must be taken from foods. β-Sitosterol, campesterol, and stigmasterol are the main phytosterols found in plants. Phytosterols have beneficial effects on human health since they are able to reduce plasma cholesterol levels and have antiinflammatory, antidiabetic, and anticancer activities. However, there are many difficulties in obtaining them, since the levels of these compounds produced from plant raw materials are low and their chemical synthesis is not economically profitable for commercial exploitation. A biotechnological alternative for their production is the use of plant cell and hairy root cultures. This review is focused on the biosynthesis of phytosterols and their function in both plants and humans as well as the different biotechnological strategies to increase phytosterol biosynthesis. Special attention is given to describing new methodologies based on the use of recombinant DNA technology to increase the levels of phytosterols.
Collapse
|
Review |
9 |
58 |
16
|
Adam KP, Thiel R, Zapp J, Becker H. Involvement of the mevalonic acid pathway and the glyceraldehyde-pyruvate pathway in terpenoid biosynthesis of the liverworts Ricciocarpos natans and Conocephalum conicum. Arch Biochem Biophys 1998; 354:181-7. [PMID: 9633614 DOI: 10.1006/abbi.1998.0666] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The incorporation of 13C-labeled glucose into borneol, bornyl acetate, the sesquiterpenes cubebanol and ricciocarpin A, phytol, and stigmasterol has been studied in axenic cultures of the liverworts Ricciocarpos natans and Conocephalum conicum. Quantitative 13C NMR spectroscopic analysis of the resulting labeling patterns showed that the isoprene building blocks of the sesquiterpenes and stigmasterol are built up via the mevalonic acid pathway, whereas the isoprene units of the monoterpenes and the diterpene phytol are exclusively derived from the glyceraldehyde-pyruvate pathway. These results indicate the involvement of both isopentenyl diphosphate biosynthetic pathways in different cellular compartments.
Collapse
|
|
27 |
55 |
17
|
Hishiya T, Asanuma H, Komiyama M. Spectroscopic anatomy of molecular-imprinting of cyclodextrin. Evidence for preferential formation of ordered cyclodextrin assemblies. J Am Chem Soc 2002; 124:570-5. [PMID: 11804486 DOI: 10.1021/ja011305w] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The processes of molecular-imprinting of beta-cyclodextrin (beta-CyD) with cholesterol and stigmasterol (cross-linking agent = diisocyanate) have been analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. These templates enormously promote the formation of dimers and trimers of beta-CyD, which are only inefficiently formed in their absence. These ordered assemblies are the guest-binding sites, in which two or three beta-CyD molecules cooperate to bind large steroids. Ordered assemblies are also formed when 2,6-di-O-methyl-beta-cyclodextrin is used in place of beta-CyD. Direct spectroscopic evidence for molecular-imprinting effect has been obtained. Molecular imprinting of CyDs is potent for tailor-made preparation of synthetic receptors for nanometer-scaled guests.
Collapse
|
|
23 |
54 |
18
|
Kamal-Eldin A, Määttä K, Toivo J, Lampi AM, Piironen V. Acid-catalyzed isomerization of fucosterol and delta5-avenasterol. Lipids 1998; 33:1073-7. [PMID: 9870901 DOI: 10.1007/s11745-998-0307-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work shows that fucosterol, delta5-avenasterol, and similar ethylidene-side chain sterols can undergo acid-catalyzed isomerization to give a mixture of five isomers. Four isomers formed from fucosterol were analyzed, using gas chromatography-mass spectrometry, and were characterized as delta5-avenasterol, two delta5,23-stigmastadienols, and delta5,24(25)-stigmastadienol. When the unsaponifiables fraction from oat oil was subjected to acid hydrolysis, the two delta5,23-stigmastadienol isomers and delta5,24(25)-stigmastadienol were detected while fucosterol coeluted with sitosterol. Interisomerization of ethylidene-side chain sterols represents a limitation to the use of the acid hydrolysis method in the determination of sterols in food and other plant materials rich in these sterols, e.g., oat lipids.
Collapse
|
|
27 |
52 |
19
|
Topcu G, Aydogmus Z, Imre S, Gören AC, Pezzuto JM, Clement JA, Kingston DGI. Brominated sesquiterpenes from the red alga Laurencia obtusa. JOURNAL OF NATURAL PRODUCTS 2003; 66:1505-1508. [PMID: 14640529 DOI: 10.1021/np030176p] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Four new sesquiterpenes, (8R)-8-bromo-10-epi-beta-snyderol (1), (8S)-8-bromo-beta-snyderol (2), 5-bromo-3-(3'-hydroxy-3'-methylpent-4'-enylidene)-2,4,4-trimethylcyclohexanone (3), and the epoxide 4, have been isolated from the chloroform-methanol extract of Laurencia obtusa, together with the three known compounds alpha-snyderol (5), alpha-snyderol acetate (6), and stigmasterol. The structures of the isolated compounds were elucidated through spectroscopic analyses. Compound 1 showed antimalarial activity, with IC(50) values of 2700 and 4000 ng/mL against the D6 and W2 clones of Plasmodium falciparum, respectively.
Collapse
|
|
22 |
50 |
20
|
Koç İ, Baydemir G, Bayram E, Yavuz H, Denizli A. Selective removal of 17β-estradiol with molecularly imprinted particle-embedded cryogel systems. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:1819-1826. [PMID: 21813236 DOI: 10.1016/j.jhazmat.2011.07.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/01/2011] [Accepted: 07/04/2011] [Indexed: 05/31/2023]
Abstract
The selective removal of 17β-estradiol (E2) was investigated by using molecularly E2 imprinted (MIP) particle embedded poly(hydroxyethyl methacrylate) (PHEMA) cryogel. PHEMA/MIP composite cryogel was characterized by FTIR, SEM, swelling studies, and surface area measurements. E2 adsorption studies were performed by using aqueous solutions which contain various amounts of E2. The specificity of PHEMA/MIP cryogel to recognition of E2 was performed by using cholesterol and stigmasterol. PHEMA/MIP cryogel exhibited a high binding capacity (5.32 mg/gpolymer) and high selectivity for E2 in the presence of competitive molecules, cholesterol (k(E2/cholesterol) = 7.6) and stigmasterol (k(E2/Stigmasterol) = 85.8). There is no significant decrease in adsorption capacity after several adsorption-desorption cycles.
Collapse
|
|
14 |
47 |
21
|
Sheu JH, Wang GH, Sung PJ, Duh CY. New cytotoxic oxygenated fucosterols from the brown alga Turbinaria conoides. JOURNAL OF NATURAL PRODUCTS 1999; 62:224-7. [PMID: 10075746 DOI: 10.1021/np980233s] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fucosterol (1), 24xi-hydroperoxy-24-vinylcholesterol (2), 29-hydroperoxystigmasta-5,24(28)-dien-3beta-ol (3), 24-ethylcholesta-4,24(28)-dien-3-one (4), 24xi-hydroperoxy-24-ethylcholesta-4,28(29)-dien-3-one (5), 24-ethylcholesta-4,24(28)-dien-3,6-dione (6), 24xi-hydroperoxy-24-ethylcholesta-4,28(29)-dien-3,6-di one (7), 6beta-hydroxy-24-ethylcholesta-4,24(28)-dien-3-one (8), and 24xi-hydroperoxy-6beta-hydroxy-24-ethylcholesta-4,28(2 9)-dien-3-one (9) were isolated from the marine brown alga Turbinaria conoides. The structures of these compounds were established by spectral analysis. Isolated for the first time from a natural source, the oxygenated fucosterols 4-9 exhibit cytotoxicity against various cancer cell lines.
Collapse
|
|
26 |
46 |
22
|
Jung HA, Islam MN, Lee CM, Oh SH, Lee S, Jung JH, Choi JS. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera. Chem Biol Interact 2013; 206:55-62. [PMID: 23994501 DOI: 10.1016/j.cbi.2013.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/13/2013] [Accepted: 08/22/2013] [Indexed: 01/15/2023]
Abstract
In the present study, we investigated the anti-diabetic potential of fucosterol by evaluating the ability of this compound to inhibit rat lens aldose reductase (RLAR), human recombinant aldose reductase (HRAR), protein tyrosine phosphatase 1B (PTP1B), and α-glucosidase. Fucosterol displayed moderate inhibitory activity against RLAR, HRAR, and PTP1B. However, it showed weak or no activity against AGE formation and α-glucosidase. In addition, our kinetic study revealed that fucosterol showed a mixed type inhibition against RLAR and HRAR, while it noncompetitively inhibited PTP1B. Since fucosterol inhibited aldose reductase (AR), it holds great promise for use in the treatment of diabetic complications. Therefore, we predicted the 3D structure of AR in rat and human using the Autodock program to simulate binding between AR and fucosterol and evaluate the binding site-directed inhibition of AR by fucosterol. Results of the docking simulations of fucosterol demonstrated negative binding energies (-8.2 kcal/mol for RLAR and -8.5 kcal/mol for HRAR), which indicated a higher affinity and tighter binding capacity of fucosterol for the active site of the enzyme. In particular, the hydrophobic ring system and the aliphatic side chain of fucosterol were found to be tightly bound in a specificity pocket through apolar amino acid residues on AR, while the anion binding site on AR interacts with the 3-hydroxyl group and the double bond on the side chain of fucosterol. The results of the present study clearly demonstrated the potential of using fucosterol for the management and treatment of diabetes and diabetes-associated complications.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
45 |
23
|
Jung HA, Jung HJ, Jeong HY, Kwon HJ, Kim MS, Choi JS. Anti-adipogenic activity of the edible brown alga Ecklonia stolonifera and its constituent fucosterol in 3T3-L1 adipocytes. Arch Pharm Res 2014; 37:713-20. [PMID: 24014306 DOI: 10.1007/s12272-013-0237-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
Fucosterol is a sterol metabolite of brown algae and regulates genes involved with cholesterol homeostasis. As a part of our continuous search for anti-obesity agents from natural marine sources, the anti-adipogenic activities of Ecklonia stolonifera and its sterol, fucosterol, were evaluated for the inhibition of adipocyte differentiation and lipid formation. Oil Red O staining was used to evaluate triglyceride contents in 3T3-L1 pre-adipocytes primed by differentiation medium (DM) I and DM II. The methanolic extract of E. stolonifera showed strong anti-adipogenic activity, and was thus fractionated with several solvents. Among the tested fractions, the dichloromethane (CH2Cl2) fraction was found to be the most active fraction, with significant inhibition (40.5 %) of intracellular lipid accumulation at a non-toxic concentration, followed by the ethyl acetate fraction (30.2 %) at the same concentration, while the n-butanol and water fractions did not show inhibitory activity within the tested concentrations. The strong anti-adipogenic CH2Cl2-soluble fraction was further purified by a repeated chromatography to yield fucosterol. Fucosterol reduced lipid contents in a concentration-dependent manner without showing any cytotoxicity. Fucosterol treatment also yielded a decrease in the expression of the adipocyte marker proteins peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) in a concentration-dependent manner. Taken together, these results suggest that fucosterol inhibits expression of PPARγ and C/EBPα, resulting in a decrease of lipid accumulation in 3T3-L1 pre-adipocytes, indicating that the potential use of E. stolonifera and its bioactive fucosterol as an anti-obesity agent.
Collapse
|
|
11 |
45 |
24
|
Zhao CC, Shao JH, Li X, Xu J, Zhang P. Antimicrobial constituents from fruits of Ailanthus altissima SWINGLE. Arch Pharm Res 2005; 28:1147-51. [PMID: 16276970 DOI: 10.1007/bf02972977] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A new naturally occurring sterol, compound 5, and six known stigmasterols were isolated from fruits of Ailanthus altissima Swingle by repeated column chromatography and RP-HPLC. Their structures were identified as, 5alpha-stigmastane-3,6-dione (1), 3beta-hydroxystigmast-5-en-7-one (2), stigmast-5-ene-3beta, 7alpha-diol (3), 6alpha-hydroxystigmast-4-en-3-one (4), 5alpha-stigmastane-3beta, 6beta-diol (5), stigmast-4-ene-3beta, 6alpha-diol (6), stigmast-5-ene-3beta, 7alpha, 20xi-triol (7) by spectral analysis and comparison with the published data. These compounds have not been reported from genus Ailanthus, whereas compound 7 was identified by NMR for the first time. In addition, the 95% ethanol extract and compounds from the fruits of Ailanthus altissima SWINGLE were assayed for in vitro antimicrobial activity. The extract was potent active against the assayed bacteria while compounds 3 and 7 exhibited moderate activity.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
45 |
25
|
Hoet S, Pieters L, Muccioli GG, Habib-Jiwan JL, Opperdoes FR, Quetin-Leclercq J. Antitrypanosomal activity of triterpenoids and sterols from the leaves of Strychnos spinosa and related compounds. JOURNAL OF NATURAL PRODUCTS 2007; 70:1360-3. [PMID: 17637068 DOI: 10.1021/np070038q] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fractionation of an antitrypanosomal lipophilic leaf extract from Strychnos spinosa led to the isolation of eight triterpenoids and sterols in this plant part for the first time. Two of these were found to possess in vitro antitrypanosomal activity, namely, saringosterol (14) and 24-hydroperoxy-24-vinylcholesterol (15), with IC(50) values of 7.8 +/- 1.2 and 3.2 +/- 1.2 microM, respectively. The latter compound was isolated from a plant source for the first time. A comparative study on the antitrypanosomal activity of the isolated triterpenoids and sterols and some related compounds has indicated that the presence of an oxygenated function at C-28 or an oxygenated side chain at C-17 seems to be important for the antitrypanosomal activity of triterpenoids and sterols, respectively.
Collapse
|
|
18 |
43 |