1
|
Lohr M, Schwender J, Polle JEW. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:9-22. [PMID: 22325862 DOI: 10.1016/j.plantsci.2011.07.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/25/2011] [Accepted: 07/29/2011] [Indexed: 05/04/2023]
Abstract
Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.
Collapse
|
Review |
13 |
129 |
2
|
Gao Y, Wang W, Zhang T, Gong Z, Zhao H, Han GZ. Out of Water: The Origin and Early Diversification of Plant R-Genes. PLANT PHYSIOLOGY 2018; 177:82-89. [PMID: 29563207 PMCID: PMC5933115 DOI: 10.1104/pp.18.00185] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/13/2018] [Indexed: 05/18/2023]
Abstract
During plant-pathogen interactions, plants use intracellular proteins with nucleotide-binding site and Leu-rich repeat (NBS-LRR) domains to detect pathogens. NBS-LRR proteins represent a major class of plant disease resistance genes (R-genes). Whereas R-genes have been well characterized in angiosperms, little is known about their origin and early diversification. Here, we perform comprehensive evolutionary analyses of R-genes in plants and report the identification of R-genes in basal-branching streptophytes, including charophytes, liverworts, and mosses. Phylogenetic analyses suggest that plant R-genes originated in charophytes and R-proteins diversified into TIR-NBS-LRR proteins and non-TIR-NBS-LRR proteins in charophytes. Moreover, we show that plant R-proteins evolved in a modular fashion through frequent gain or loss of protein domains. Most of the R-genes in basal-branching streptophytes underwent adaptive evolution, indicating an ancient involvement of R-genes in plant-pathogen interactions. Our findings provide novel insights into the origin and evolution of R-genes and the mechanisms underlying colonization of terrestrial environments by plants.
Collapse
|
research-article |
7 |
99 |
3
|
Viaene T, Delwiche CF, Rensing SA, Friml J. Origin and evolution of PIN auxin transporters in the green lineage. TRENDS IN PLANT SCIENCE 2013; 18:5-10. [PMID: 22981345 DOI: 10.1016/j.tplants.2012.08.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/09/2012] [Accepted: 08/22/2012] [Indexed: 05/04/2023]
Abstract
Polarized auxin transport is crucial for many developmental processes in flowering plants and requires the PIN-FORMED (PIN) family of auxin efflux carriers. However, the impact of polar auxin transport and PIN proteins on the development of non-seed plant species and green algal lineages is largely unknown. Using recently available sequence information from streptophyte algae and other non-seed plant species, we have constructed a preliminary phylogenetic framework and present several hypotheses for PIN protein evolution. We postulate that PIN proteins originated in streptophyte algae at the endoplasmic reticulum (ER) and that plasma membrane localization was acquired during land plant evolution. We also suggest that PIN proteins are evolutionarily distinct from another family of auxin transporters at the ER, the PIN-LIKES (PILS) proteins.
Collapse
|
|
12 |
81 |
4
|
de Vries S, Fürst-Jansen JMR, Irisarri I, Dhabalia Ashok A, Ischebeck T, Feussner K, Abreu IN, Petersen M, Feussner I, de Vries J. The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:975-1002. [PMID: 34165823 DOI: 10.1111/tpj.15387] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 05/20/2023]
Abstract
Land plants constantly respond to fluctuations in their environment. Part of their response is the production of a diverse repertoire of specialized metabolites. One of the foremost sources for metabolites relevant to environmental responses is the phenylpropanoid pathway, which was long thought to be a land-plant-specific adaptation shaped by selective forces in the terrestrial habitat. Recent data have, however, revealed that streptophyte algae, the algal relatives of land plants, have candidates for the genetic toolkit for phenylpropanoid biosynthesis and produce phenylpropanoid-derived metabolites. Using phylogenetic and sequence analyses, we here show that the enzyme families that orchestrate pivotal steps in phenylpropanoid biosynthesis have independently undergone pronounced radiations and divergence in multiple lineages of major groups of land plants; sister to many of these radiated gene families are streptophyte algal candidates for these enzymes. These radiations suggest a high evolutionary versatility in the enzyme families involved in the phenylpropanoid-derived metabolism across embryophytes. We suggest that this versatility likely translates into functional divergence, and may explain the key to one of the defining traits of embryophytes: a rich specialized metabolism.
Collapse
|
|
4 |
75 |
5
|
Holzinger A, Kaplan F, Blaas K, Zechmann B, Komsic-Buchmann K, Becker B. Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLoS One 2014; 9:e110630. [PMID: 25340847 PMCID: PMC4207709 DOI: 10.1371/journal.pone.0110630] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Water loss has significant effects on physiological performance and survival rates of algae. However, despite the prominent presence of aeroterrestrial algae in terrestrial habitats, hardly anything is known about the molecular events that allow aeroterrestrial algae to survive harsh environmental conditions. We analyzed the transcriptome and physiology of a strain of the alpine aeroterrestrial alga Klebsormidium crenulatum under control and strong desiccation-stress conditions. PRINCIPAL FINDINGS For comparison we first established a reference transcriptome. The high-coverage reference transcriptome includes about 24,183 sequences (1.5 million reads, 636 million bases). The reference transcriptome encodes for all major pathways (energy, carbohydrates, lipids, amino acids, sugars), nearly all deduced pathways are complete or missing only a few transcripts. Upon strong desiccation, more than 7000 transcripts showed changes in their expression levels. Most of the highest up-regulated transcripts do not show similarity to known viridiplant proteins, suggesting the existence of some genus- or species-specific responses to desiccation. In addition, we observed the up-regulation of many transcripts involved in desiccation tolerance in plants (e.g. proteins similar to those that are abundant in late embryogenesis (LEA), or proteins involved in early response to desiccation ERD), and enzymes involved in the biosynthesis of the raffinose family of oligosaccharides (RFO) known to act as osmolytes). Major physiological shifts are the up-regulation of transcripts for photosynthesis, energy production, and reactive oxygen species (ROS) metabolism, which is supported by elevated cellular glutathione content as revealed by immunoelectron microscopy as well as an increase in total antiradical power. However, the effective quantum yield of Photosystem II and CO2 fixation decreased sharply under the applied desiccation stress. In contrast, transcripts for cell integrative functions such as cell division, DNA replication, cofactor biosynthesis, and amino acid biosynthesis were down-regulated. SIGNIFICANCE This is the first study investigating the desiccation transcriptome of a streptophyte green alga. Our results indicate that the cellular response is similar to embryophytes, suggesting that embryophytes inherited a basic cellular desiccation tolerance from their streptophyte predecessors.
Collapse
|
research-article |
11 |
74 |
6
|
Buschmann H, Zachgo S. The Evolution of Cell Division: From Streptophyte Algae to Land Plants. TRENDS IN PLANT SCIENCE 2016; 21:872-883. [PMID: 27477927 DOI: 10.1016/j.tplants.2016.07.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 05/21/2023]
Abstract
The mechanism of cell division has undergone significant alterations during the evolution from aquatic streptophyte algae to land plants. Two new structures evolved, the cytokinetic phragmoplast and the preprophase band (PPB) of microtubules, whereas the ancestral mechanism of cleavage and the centrosomes disappeared. We map cell biological data onto the recently emerged phylogenetic tree of streptophytes. The tree suggests that, after the establishment of the phragmoplast mechanism, several groups independently lost their centrosomes. Surprisingly, the phragmoplast shows reductions in the Zygnematophyceae (the sister to land plants), many of which returned to cleavage. The PPB by contrast evolved stepwise and, most likely, originated in the algae. The phragmoplast/PPB mechanism established in this way served as a basis for the 3D development of land plants.
Collapse
|
Review |
9 |
69 |
7
|
Leliaert F, Verbruggen H, Zechman FW. Into the deep: New discoveries at the base of the green plant phylogeny. Bioessays 2011; 33:683-92. [PMID: 21744372 DOI: 10.1002/bies.201100035] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
|
14 |
65 |
8
|
Becker B. Snow ball earth and the split of Streptophyta and Chlorophyta. TRENDS IN PLANT SCIENCE 2013; 18:180-3. [PMID: 23102566 DOI: 10.1016/j.tplants.2012.09.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/25/2012] [Accepted: 09/29/2012] [Indexed: 05/22/2023]
Abstract
About 700 million years ago (Mya), the ancestor of all green plants evolved into two major groups: the Chlorophyta (many green algae) and the Streptophyta (some green algae and land plants = embryophytes). Both groups are separated by several morphological, physiological, and molecular characteristics, including different photorespiration pathways. The Chloropyhta/Streptophyta split was probably very important for the colonization of the terrestrial habitat because embryophytes, the descendants of streptophyte algae, today completely dominate the macrophyte flora of the terrestrial habitats. By contrast, in aquatic ecosystems macrophytes from brown, red, and green algae compete with embryophytes. In this opinion article, I argue that the Chlorophyta/Streptophyta split is related to glaciation events (snow ball earth states) in the Neoproterozoic and provide an explanation for the different photorespiration pathways.
Collapse
|
|
12 |
55 |
9
|
Wicke S, Costa A, Muñoz J, Quandt D. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol Phylogenet Evol 2011; 61:321-32. [PMID: 21757016 DOI: 10.1016/j.ympev.2011.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 01/16/2023]
Abstract
Among eukaryotes two types of nuclear ribosomal DNA (nrDNA) organization have been observed. Either all components, i.e. the small ribosomal subunit, 5.8S, large ribosomal subunit, and 5S occur tandemly arranged or the 5S rDNA forms a separate cluster of its own. Generalizations based on data derived from just a few model organisms have led to a superimposition of structural and evolutionary traits to the entire plant kingdom asserting that plants generally possess separate arrays. This study reveals that plant nrDNA organization into separate arrays is not a distinctive feature, but rather assignable almost solely to seed plants. We show that early diverging land plants and presumably streptophyte algae share a co-localization of all rRNA genes within one repeat unit. This raises the possibility that the state of rDNA gene co-localization had occurred in their common ancestor. Separate rDNA arrays were identified for all basal seed plants and water ferns, implying at least two independent 5S rDNA transposition events during land plant evolution. Screening for 5S derived Cassandra transposable elements which might have played a role during the transposition events, indicated that this retrotransposon is absent in early diverging vascular plants including early fern lineages. Thus, Cassandra can be rejected as a primary mechanism for 5S rDNA transposition in water ferns. However, the evolution of Cassandra and other eukaryotic 5S derived elements might have been a side effect of the 5S rDNA cluster formation. Structural analysis of the intergenic spacers of the ribosomal clusters revealed that transposition events partially affect spacer regions and suggests a slightly different transcription regulation of 5S rDNA in early land plants. 5S rDNA upstream regulatory elements are highly divergent or absent from the LSU-5S spacers of most early divergent land plant lineages. Several putative scenarios and mechanisms involved in the concerted relocation of hundreds of 5S rRNA gene copies are discussed.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
49 |
10
|
Herburger K, Lewis LA, Holzinger A. Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. PROTOPLASMA 2015; 252:571-89. [PMID: 25269628 PMCID: PMC4335129 DOI: 10.1007/s00709-014-0703-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/12/2014] [Indexed: 05/20/2023]
Abstract
Two newly isolated strains of green algae from alpine regions were compared physiologically at different culture ages (1, 6, 9 and 15 months). The strains of Zygnema sp. were from different altitudes ('Saalach' (S), 440 m above sea level (a.s.l.), SAG 2419 and 'Elmau-Alm' (E-A), 1,500 m a.s.l., SAG 2418). Phylogenetic analysis of rbcL sequences grouped the strains into different major subclades of the genus. The mean diameters of the cells were 23.2 μm (Zygnema S) and 18.7 μm (Zygnema E-A) but were reduced significantly with culture age. The photophysiological response between the strains differed significantly; Zygnema S had a maximal relative electron transport rate (rETR max) of 103.4 μmol electrons m(-2) s(-1), Zygnema E-A only 61.7 μmol electrons m(-2) s(-1), and decreased significantly with culture age. Both strains showed a low-light adaption and the absence of strong photoinhibition up to 2,000 μmol photons m(-2) s(-1). Photosynthetic oxygen production showed similar results (P max Zygnema S, 527.2 μmol O2 h(-1) mg(-1) chlorophyll (chl.) a, Zygnema E-A, 390.7 μmol O2 h(-1) mg(-1) chl. a); the temperature optimum was at 35 °C for Zygnema S and 30 °C for Zygnema E-A. Increasing culture age moreover leads to the formation of pre-akinetes, which accumulate storage products as revealed by light and transmission electron microscopy. Desiccation at 84 % relative air humidity (RH) lead to a reduction of the effective quantum yield of photosystem II (PSII) (ΔFv/Fm') to zero between 90 to 120 min (Zygnema S) and between 30 to 60 min (Zygnema E-A), depending on the culture age. A partial recovery of ΔFv/Fm' was only observed in older cultures. We conclude that pre-akinetes are crucial for the aeroterrestrial lifestyle of Zygnema.
Collapse
|
research-article |
10 |
48 |
11
|
Hagemann M, Fernie AR, Espie GS, Kern R, Eisenhut M, Reumann S, Bauwe H, Weber APM. Evolution of the biochemistry of the photorespiratory C2 cycle. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:639-647. [PMID: 23198988 DOI: 10.1111/j.1438-8677.2012.00677.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/23/2012] [Indexed: 05/23/2023]
Abstract
Oxygenic photosynthesis would not be possible without photorespiration in the present day O2 -rich atmosphere. It is now generally accepted that cyanobacteria-like prokaryotes first evolved oxygenic photosynthesis, which was later conveyed via endosymbiosis into a eukaryotic host, which then gave rise to the different groups of algae and streptophytes. For photosynthetic CO2 fixation, all these organisms use RubisCO, which catalyses both the carboxylation and the oxygenation of ribulose 1,5-bisphosphate. One of the reaction products of the oxygenase reaction, 2-phosphoglycolate (2PG), represents the starting point of the photorespiratory C2 cycle, which is considered largely responsible for recapturing organic carbon via conversion to the Calvin-Benson cycle (CBC) intermediate 3-phosphoglycerate, thereby detoxifying critical intermediates. Here we discuss possible scenarios for the evolution of this process toward the well-defined 2PG metabolism in extant plants. While the origin of the C2 cycle core enzymes can be clearly dated back towards the different endosymbiotic events, the evolutionary scenario that allowed the compartmentalised high flux photorespiratory cycle is uncertain, but probably occurred early during the algal radiation. The change in atmospheric CO2 /O2 ratios promoting the acquisition of different modes for inorganic carbon concentration mechanisms, as well as the evolutionary specialisation of peroxisomes, clearly had a dramatic impact on further aspects of land plant photorespiration.
Collapse
|
Review |
12 |
35 |
12
|
Zalewski CS, Floyd SK, Furumizu C, Sakakibara K, Stevenson DW, Bowman JL. Evolution of the class IV HD-zip gene family in streptophytes. Mol Biol Evol 2013; 30:2347-65. [PMID: 23894141 PMCID: PMC3773374 DOI: 10.1093/molbev/mst132] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters.
Collapse
|
research-article |
12 |
29 |
13
|
Romani F, Reinheimer R, Florent SN, Bowman JL, Moreno JE. Evolutionary history of HOMEODOMAIN LEUCINE ZIPPER transcription factors during plant transition to land. THE NEW PHYTOLOGIST 2018; 219:408-421. [PMID: 29635737 DOI: 10.1111/nph.15133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/26/2018] [Indexed: 05/15/2023]
Abstract
Plant transition to land required several regulatory adaptations. The mechanisms behind these changes remain unknown. Since the evolution of transcription factors (TFs) families accompanied this transition, we studied the HOMEODOMAIN LEUCINE ZIPPER (HDZ) TF family known to control key developmental and environmental responses. We performed a phylogenetic and bioinformatics analysis of HDZ genes using transcriptomic and genomic datasets from a wide range of Viridiplantae species. We found evidence for the existence of HDZ genes in chlorophytes and early-divergent charophytes identifying several HDZ members belonging to the four known classes (I-IV). Furthermore, we inferred a progressive incorporation of auxiliary motifs. Interestingly, most of the structural features were already present in ancient lineages. Our phylogenetic analysis inferred that the origin of classes I, III, and IV is monophyletic in land plants in respect to charophytes. However, class IIHDZ genes have two conserved lineages in charophytes and mosses that differ in the CPSCE motif. Our results indicate that the HDZ family was already present in green algae. Later, the HDZ family expanded accompanying critical plant traits. Once on land, the HDZ family experienced multiple duplication events that promoted fundamental neo- and subfunctionalizations for terrestrial life.
Collapse
|
|
7 |
24 |
14
|
Kitzing C, Pröschold T, Karsten U. UV-induced effects on growth, photosynthetic performance and sunscreen contents in different populations of the green alga Klebsormidium fluitans (Streptophyta) from alpine soil crusts. MICROBIAL ECOLOGY 2014; 67:327-40. [PMID: 24233286 DOI: 10.1007/s00248-013-0317-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 10/16/2013] [Indexed: 05/22/2023]
Abstract
Members of the green algal genus Klebsormidium (Klebsormidiales, Streptophyta) are typical components of biological soil crust communities worldwide, which exert important ecological functions. Klebsormidium fluitans (F. Gay) Lokhorst was isolated from an aeroterrestrial biofilm as well as from four different biological soil crusts along an elevational gradient between 600 and 2350 m in the Tyrolean and South Tyrolean Alps (Austria, Italy), which are characterised by seasonally high solar radiation. Since the UVtolerance of Klebsormidium has not been studied in detail, an ecophysiological and biochemical study was applied. The effects of controlled artificial ultraviolet radiation (UVR; <9 W m(-2) UV-A, <0.5 W m(-2) UV-B) on growth, photosynthetic performance and the capability to synthesise mycosporine-like amino acids (MAAs) as potential sunscreen compounds were comparatively investigated to evaluate physiological plasticity and possible ecotypic differentiation within this Klebsormidium species. Already under control conditions, the isolates showed significantly different growth rates ranging from 0.42 to 0.74 μm day(-1). The UVR effects on growth were isolate specific, with only two strains affected by the UV treatments. Although all photosynthetic and respiratory data indicated strain-specific differences under control conditions, UV-A and UV-B treatment led only to rather minor effects. All physiological results clearly point to a high UV tolerance in the K. fluitans strains studied, which can be explained by their biochemical capability to synthesize and accumulate a putative MAA after exposure to UV-A and UV-B. Using HPLC, a UV-absorbing compound with an absorption maximum at 324 nm could be identified in all strains. The steady-state concentrations of this Klebsormidium MAA under control conditions ranged from 0.09 to 0.93 mg g(-1) dry weight (DW). While UV-A led to a slight stimulation of MAA accumulation, exposure to UV-B was accompanied by a strong but strain-specific increase of this compound (5.34-12.02 mg(-1) DW), thus supporting its function as UV sunscreen. Although ecotypic differences in the UVR response patterns of the five K. fluitans strains occurred, this did not correlate with the altitude of the respective sampling location. All data indicate a generally high UV tolerance which surely contributes to the aeroterrestrial lifestyle of K. fluitans in soil crusts of the alpine regions of the European Alps.
Collapse
|
|
11 |
24 |
15
|
Rippin M, Pichrtová M, Arc E, Kranner I, Becker B, Holzinger A. Metatranscriptomic and metabolite profiling reveals vertical heterogeneity within a Zygnema green algal mat from Svalbard (High Arctic). Environ Microbiol 2019; 21:4283-4299. [PMID: 31454446 PMCID: PMC6899726 DOI: 10.1111/1462-2920.14788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/22/2019] [Indexed: 02/02/2023]
Abstract
Within streptophyte green algae Zygnematophyceae are the sister group to the land plants that inherited several traits conferring stress protection. Zygnema sp., a mat-forming alga thriving in extreme habitats, was collected from a field site in Svalbard, where the bottom layers are protected by the top layers. The two layers were investigated by a metatranscriptomic approach and GC-MS-based metabolite profiling. In the top layer, 6569 genes were significantly upregulated and 149 were downregulated. Upregulated genes coded for components of the photosynthetic apparatus, chlorophyll synthesis, early light-inducible proteins, cell wall and carbohydrate metabolism, including starch-degrading enzymes. An increase in maltose in the top layer and degraded starch grains at the ultrastructural levels corroborated these findings. Genes involved in amino acid, redox metabolism and DNA repair were upregulated. A total of 29 differentially accumulated metabolites (out of 173 identified ones) confirmed higher metabolic turnover in the top layer. For several of these metabolites, differential accumulation matched the transcriptional changes of enzymes involved in associated pathways. In summary, the findings support the hypothesis that in a Zygnema mat the top layer shields the bottom layers from abiotic stress factors such as excessive irradiation.
Collapse
|
research-article |
6 |
23 |
16
|
Moyroud E, Monniaux M, Thévenon E, Dumas R, Scutt CP, Frohlich MW, Parcy F. A link between LEAFY and B-gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development. THE NEW PHYTOLOGIST 2017; 216:469-481. [PMID: 28233912 DOI: 10.1111/nph.14483] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/05/2017] [Indexed: 05/26/2023]
Abstract
Flowering plants evolved from an unidentified gymnosperm ancestor. Comparison of the mechanisms controlling development in angiosperm flowers and gymnosperm cones may help to elucidate the mysterious origin of the flower. We combined gene expression studies with protein behaviour characterization in Welwitschia mirabilis to test whether the known regulatory links between LEAFY and its MADS-box gene targets, central to flower development, might also contribute to gymnosperm reproductive development. We found that WelLFY, one of two LEAFY-like genes in Welwitschia, could be an upstream regulator of the MADS-box genes APETALA3/PISTILLATA-like (B-genes). We demonstrated that, even though their DNA-binding domains are extremely similar, WelLFY and its paralogue WelNDLY exhibit distinct DNA-binding specificities, and that, unlike WelNDLY, WelLFY shares with its angiosperm orthologue the capacity to bind promoters of Welwitschia B-genes. Finally, we identified several cis-elements mediating these interactions in Welwitschia and obtained evidence that the link between LFY homologues and B-genes is also conserved in two other gymnosperms, Pinus and Picea. Although functional approaches to investigate cone development in gymnosperms are limited, our state-of-the-art biophysical techniques, coupled with expression studies, provide evidence that crucial links, central to the control of floral development, may already have existed before the appearance of flowers.
Collapse
|
|
8 |
23 |
17
|
Gerotto C, Franchin C, Arrigoni G, Morosinotto T. In Vivo Identification of Photosystem II Light Harvesting Complexes Interacting with PHOTOSYSTEM II SUBUNIT S. PLANT PHYSIOLOGY 2015; 168:1747-61. [PMID: 26069151 PMCID: PMC4528743 DOI: 10.1104/pp.15.00361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/10/2015] [Indexed: 05/18/2023]
Abstract
Light is the primary energy source for photosynthetic organisms, but in excess, it can generate reactive oxygen species and lead to cell damage. Plants evolved multiple mechanisms to modulate light use efficiency depending on illumination intensity to thrive in a highly dynamic natural environment. One of the main mechanisms for protection from intense illumination is the dissipation of excess excitation energy as heat, a process called nonphotochemical quenching. In plants, nonphotochemical quenching induction depends on the generation of a pH gradient across thylakoid membranes and on the presence of a protein called PHOTOSYSTEM II SUBUNIT S (PSBS). Here, we generated Physcomitrella patens lines expressing histidine-tagged PSBS that were exploited to purify the native protein by affinity chromatography. The mild conditions used in the purification allowed copurifying PSBS with its interactors, which were identified by mass spectrometry analysis to be mainly photosystem II antenna proteins, such as LIGHT-HARVESTING COMPLEX B (LHCB). PSBS interaction with other proteins appears to be promiscuous and not exclusive, although the major proteins copurified with PSBS were components of the LHCII trimers (LHCB3 and LHCBM). These results provide evidence of a physical interaction between specific photosystem II light-harvesting complexes and PSBS in the thylakoids, suggesting that these subunits are major players in heat dissipation of excess energy.
Collapse
|
research-article |
10 |
22 |
18
|
Becker B, Feng X, Yin Y, Holzinger A. Desiccation tolerance in streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the Viridiplantae. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3270-3278. [PMID: 32107542 PMCID: PMC7289719 DOI: 10.1093/jxb/eraa105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
The present review summarizes the effects of desiccation in streptophyte green algae, as numerous experimental studies have been performed over the past decade particularly in the early branching streptophyte Klebsormidium sp. and the late branching Zygnema circumcarinatum. The latter genus gives its name to the Zygenmatophyceae, the sister group to land plants. For both organisms, transcriptomic investigations of desiccation stress are available, and illustrate a high variability in the stress response depending on the conditions and the strains used. However, overall, the responses of both organisms to desiccation stress are very similar to that of land plants. We highlight the evolution of two highly regulated protein families, the late embryogenesis abundant (LEA) proteins and the major intrinsic protein (MIP) family. Chlorophytes and streptophytes encode LEA4 and LEA5, while LEA2 have so far only been found in streptophyte algae, indicating an evolutionary origin in this group. Within the MIP family, a high transcriptomic regulation of a tonoplast intrinsic protein (TIP) has been found for the first time outside the embryophytes in Z. circumcarinatum. The MIP family became more complex on the way to terrestrialization but simplified afterwards. These observations suggest a key role for water transport proteins in desiccation tolerance of streptophytes.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
19 |
19
|
Kaplan F, Lewis LA, Wastian J, Holzinger A. Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta). PROTOPLASMA 2012; 249:789-804. [PMID: 21979310 DOI: 10.1007/s00709-011-0324-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/26/2011] [Indexed: 05/08/2023]
Abstract
The osmotic potential and effects of plasmolysis were investigated in two different Klebsormidium strains from alpine habitats by incubation in 300-2,000 (3,000) mM sorbitol. Several members of this genus were previously found to tolerate desiccation in the vegetative state yet information was lacking on the osmotic potentials of these algae. The strains were morphologically determined as Klebsormidium crenulatum and Klebsormidium nitens. These species belong to distinct clades, as verified by phylogenetic analysis of the rbcL gene. K. crenulatum is part of to the K. crenulatum/mucosum ('F' clade) and K. nitens of the 'E2' clade. Plasmolysis occurred in K. crenulatum at 800 mM sorbitol (961 mOsmol kg(-1), Ψ = -2.09 MPa) and in K. nitens at 600 mM sorbitol (720 mOsmol kg(-1), Ψ = -1.67 MPa). These are extraordinarily high osmotic values (very negative osmotic potentials) compared with values reported for other green algae. In K. crenulatum, the maximum photosynthetic rate (Pmax) in the light-saturated range was 116 μmol O(2) h(-1) mg(-1) chl a. Incubation in 1,000 mM sorbitol decreased Pmax to 74.1% of the initial value, whereas 2,000 mM sorbitol (Ψ = -5.87 MPa) lead to an almost complete loss of oxygen production. In K. nitens, Pmax was 91 μmol O(2) h(-1) mg(-1) chl a under control conditions and incubation in 800 mM sorbitol did not decrease Pmax, 2,000 mM sorbitol decreased Pmax only to about 62.6% of the initial value whereas 3,000 mM sorbitol stopped oxygen evolution. This indicated a broader amplitude for photosynthesis in the examined strain of K. nitens. Control samples and samples plasmolysed for 3 h in 800 mM sorbitol (K. nitens), 1,000 mM sorbitol (K. crenulatum), or 2,000 mM sorbitol were investigated by transmission electron microscopy after chemical or high-pressure freeze fixation. In cells undergoing plasmolysis the protoplasts were retracted from the cell wall, the cytoplasm appeared dense, vacuoles were small and fragmented, and the cytoplasm was filled with ribosomes. Thin cytoplasmic strands were connected to the cell wall; 2,000 mM sorbitol increased the effect. The content of soluble carbohydrates in these two strains was investigated by HPLC, as this is one known mechanism for cells to maintain high osmotic pressure of the cytosol. Both Klebsormidium species contained diverse soluble carbohydrates, including a dominant mixed peak of unidentified oligosaccharides, and more minor amounts of raffinose, sucrose, glucose, xylose, galactose, mannose, inositol, fructose, glycerol, mannitol, and sorbitol. The total content of soluble carbohydrates was approximately 1.2% of the dry weight, indicating that this is not a major factor contributing to the high osmotic potential in these strains of Klebsormidium.
Collapse
|
|
13 |
18 |
20
|
Groves NR, Biel A, Moser M, Mendes T, Amstutz K, Meier I. Recent advances in understanding the biological roles of the plant nuclear envelope. Nucleus 2020; 11:330-346. [PMID: 33161800 PMCID: PMC7746247 DOI: 10.1080/19491034.2020.1846836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
The functional organization of the plant nuclear envelope is gaining increasing attention through new connections made between nuclear envelope-associated proteins and important plant biological processes. Animal nuclear envelope proteins play roles in nuclear morphology, nuclear anchoring and movement, chromatin tethering and mechanical signaling. However, how these roles translate to functionality in a broader biological context is often not well understood. A surprising number of plant nuclear envelope-associated proteins are plant-unique, suggesting that separate functionalities evolved after the split of Opisthokonta and Streptophyta. Significant progress has now been made in discovering broader biological roles of plant nuclear envelope proteins, increasing the number of known plant nuclear envelope proteins, and connecting known proteins to chromatin organization, gene expression, and the regulation of nuclear calcium. The interaction of viruses with the plant nuclear envelope is another emerging theme. Here, we survey the recent developments in this still relatively new, yet rapidly advancing field.
Collapse
|
Video-Audio Media |
5 |
14 |
21
|
Katsaros CI, Varvarigos V, Gachon CMM, Brand J, Motomura T, Nagasato C, Küpper FC. Comparative immunofluorescence and ultrastructural analysis of microtubule organization in Uronema sp., Klebsormidium flaccidum, K. subtilissimum, Stichococcus bacillaris and S. chloranthus (Chlorophyta). Protist 2011; 162:315-31. [PMID: 21333593 DOI: 10.1016/j.protis.2010.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 10/24/2010] [Indexed: 11/19/2022]
Abstract
A detailed comparative examination of microtubule (MT) organization in interphase and dividing cells of Uronema sp., Klebsormidium flaccidum, K. subtilissimum, Stichococcus bacillaris and S. chloranthus was made using tubulin immunofluorescence and transmission electron microscopy (TEM). During interphase all the species bear a well-organized cortical MT system, consisting of parallel bundles with different orientations. In Uronema sp. the cortical MT bundles are longitudinally oriented, whereas in the other species they are in transverse orientation to the axis of the cells. Considerable differences in MT organization were also observed during stages of mitosis, mainly preprophase, as well as cytokinesis. In Uronema sp., a particular radial MT assembly is organized during preprophase-early prophase, which was not observed in the other species. In Stichococcus a fine MT ring surrounded the nucleus during preprophase and prophase. An MT ring, together with single cytoplasmic MTs, was also found associated with the developing diaphragm during cytokinesis in Stichococcus. A phycoplast participates in cytokinesis in Uronema sp., but not in the other species. In Uronema sp. the centrosome functions as a microtubule organizing center (MTOC) during mitosis, but not during interphase and cytokinesis. The phylogenetic significance of these differences is discussed in combination with SSU/ITS sequencing and other, existing molecular data.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
12 |
22
|
He C, Si C, Teixeira da Silva JA, Li M, Duan J. Genome-wide identification and classification of MIKC-type MADS-box genes in Streptophyte lineages and expression analyses to reveal their role in seed germination of orchid. BMC PLANT BIOLOGY 2019; 19:223. [PMID: 31138149 PMCID: PMC6540398 DOI: 10.1186/s12870-019-1836-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/17/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND MADS-box genes play crucial roles in plant floral organ formation and plant reproductive development. However, there is still no information on genome-wide identification and classification of MADS-box genes in some representative plant species. A comprehensive investigation of MIKC-type genes in the orchid Dendrobium officinale is still lacking. RESULTS Here we conducted a genome-wide analysis of MADS-box proteins from 29 species. In total, 1689 MADS-box proteins were identified. Two types of MADS-box genes, termed type I and II, were found in land plants, but not in liverwort. The SQUA, DEF/GLO, AG and SEP subfamilies existed in all the tested flowering plants, while SQUA was absent in the gymnosperm Ginkgo biloba, and no genes of the four subfamilies were found in a charophyte, liverwort, mosses, or lycophyte. This strongly corroborates the notion that clades of floral organ identity genes led to the evolution of flower development in flowering plants. Nine subfamilies of MIKCC genes were present in two orchids, D. officinale and Phalaenopsis equestris, while the TM8, FLC, AGL15 and AGL12 subfamilies may be lost. In addition, the four clades of floral organ identity genes in both orchids displayed a conservative and divergent expression pattern. Only three MIKC-type genes were induced by cold stress in D. officinale while 15 MIKC-type genes showed different levels of expression during seed germination. CONCLUSIONS MIKC-type genes were identified from streptophyte lineages, revealing new insights into their evolution and development relationships. Our results show a novel role of MIKC-type genes in seed germination and provide a useful clue for future research on seed germination in orchids.
Collapse
|
research-article |
6 |
12 |
23
|
Wu H, Shen Y, Hu Y, Tan S, Lin Z. A phytocyanin-related early nodulin-like gene, BcBCP1, cloned from Boea crassifolia enhances osmotic tolerance in transgenic tobacco. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:935-43. [PMID: 21459474 DOI: 10.1016/j.jplph.2010.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 09/23/2010] [Accepted: 09/23/2010] [Indexed: 05/03/2023]
Abstract
Using the mRNA differential display combined with 5' rapid amplification of cDNA ends (RACE) technique, an early nodulin-like protein gene (BcBCP1) (accession no. AY243047.1) was isolated from drought-treated Boea crassifolia leaves. The full-length cDNA of BcBCP1 consists of 844 bp nucleotides and has an open reading frame of 606 bp, encoding a putative polypeptide of 201 amino acids with a predicted molecular mass of 22 kDa and a pI of 5.13. The putative protein precursor contains four sequence domains, including a 27 amino acid hydrophobic N-terminal transit peptide, a 100 amino acid phytocyanin-homologous globular domain, a 51 amino acid hydroxyproline-rich cell wall structural protein domain, and a 22 amino acid hydrophobic extension domain. Sequence alignment defined the encoded protein as an early nodulin-like protein, and the absence of key ligands implies that it is unlikely to bind copper. BcBCP1 expression was strongly induced by dehydration, salinity and abscisic acid (ABA), slightly induced by moderate heat shock, and weakly inhibited by low temperature, methyl jasmonic acid (MeJA), and a low concentration of salicylic acid (SA). Overexpression of BcBCP1 in tobacco under the control of CaMV 35S promoter enhanced tolerance to osmotic stress, as indicated by the less impaired growth, less damaged membrane integrity and lower lipid peroxidation levels after osmotic stress. Transgenic tobacco lines overexpressing BcBCP1 showed higher photosynthetic rates, higher antioxidant enzyme activities and higher cytosyl ascorbic peroxidase transcription levels than non-transgenic tobacco plants, both under normal conditions and under osmotic stress.
Collapse
|
|
14 |
9 |
24
|
Elbl P, Navarro BV, de Oliveira LF, Almeida J, Mosini AC, dos Santos ALW, Rossi M, Floh EIS. Identification and Evaluation of Reference Genes for Quantitative Analysis of Brazilian Pine (Araucaria angustifolia Bertol. Kuntze) Gene Expression. PLoS One 2015; 10:e0136714. [PMID: 26313945 PMCID: PMC4552031 DOI: 10.1371/journal.pone.0136714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022] Open
Abstract
Quantitative analysis of gene expression is a fundamental experimental approach in many fields of plant biology, but it requires the use of internal controls representing constitutively expressed genes for reliable transcript quantification. In this study, we identified fifteen putative reference genes from an A. angustifolia transcriptome database. Variation in transcript levels was first evaluated in silico by comparing read counts and then by quantitative real-time PCR (qRT-PCR), resulting in the identification of six candidate genes. The consistency of transcript abundance was also calculated applying geNorm and NormFinder software packages followed by a validation approach using four target genes. The results presented here indicate that a diverse set of samples should ideally be used in order to identify constitutively expressed genes, and that the use of any two reference genes in combination, of the six tested genes, is sufficient for effective expression normalization. Finally, in agreement with the in silico prediction, a comprehensive analysis of the qRT-PCR data combined with validation analysis revealed that AaEIF4B-L and AaPP2A are the most suitable reference genes for comparative studies of A. angustifolia gene expression.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
8 |
25
|
Donner A, Glaser K, Borchhardt N, Karsten U. Ecophysiological Response on Dehydration and Temperature in Terrestrial Klebsormidium (Streptophyta) Isolated from Biological Soil Crusts in Central European Grasslands and Forests. MICROBIAL ECOLOGY 2017; 73:850-864. [PMID: 28011994 DOI: 10.1007/s00248-016-0917-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/09/2016] [Indexed: 05/22/2023]
Abstract
The green algal genus Klebsormidium (Klebsormidiophyceae, Streptophyta) is a typical member of biological soil crusts (BSCs) worldwide. Ecophysiological studies focused so far on individual strains and thus gave only limited insight on the plasticity of this genus. In the present study, 21 Klebsormidium strains (K. dissectum, K. flaccidum, K. nitens, K. subtile) from temperate BSCs in Central European grassland and forest sites were investigated. Photosynthetic performance under desiccation and temperature stress was measured under identical controlled conditions. Photosynthesis decreased during desiccation within 335-505 min. After controlled rehydration, most isolates recovered, but with large variances between single strains and species. However, all K. dissectum strains had high recovery rates (>69%). All 21 Klebsormidium isolates exhibited the capability to grow under a wide temperature range. Except one strain, all others grew at 8.5 °C and four strains were even able to grow at 6.2 °C. Twenty out of 21 Klebsormidium isolates revealed an optimum growth temperature >17 °C, indicating psychrotrophic features. Growth rates at optimal temperatures varied between strains from 0.26 to 0.77 μ day-1. Integrating phylogeny and ecophysiological traits, we found no phylogenetic signal in the traits investigated. However, multivariate statistical analysis indicated an influence of the recovery rate and growth rate. The results demonstrate a high infraspecific and interspecific physiological plasticity, and thus wide ecophysiological ability to cope with strong environmental gradients. This might be the reason why members of the genus Klebsormidium successfully colonize terrestrial habitats worldwide.
Collapse
|
|
8 |
7 |