1
|
Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 2006; 52:313-20. [PMID: 15979893 DOI: 10.1016/j.phrs.2005.05.004] [Citation(s) in RCA: 1272] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/07/2005] [Accepted: 05/13/2005] [Indexed: 12/19/2022]
Abstract
The objective of the present study was to develop a rat model that replicates the natural history and metabolic characteristics of human type 2 diabetes and is also suitable for pharmacological screening. Male Sprague-Dawley rats (160-180 g) were divided into two groups and fed with commercially available normal pellet diet (NPD) (12% calories as fat) or in-house prepared high-fat diet (HFD) (58% calories as fat), respectively, for a period of 2 weeks. The HFD-fed rats exhibited significant increase in body weight, basal plasma glucose (PGL), insulin (PI), triglycerides (PTG) and total cholesterol (PTC) levels as compared to NPD-fed control rats. Besides, the HFD rats showed significant reduction in glucose disappearance rate (K-value) on intravenous insulin glucose tolerance test (IVIGTT). Hyperinsulinemia together with reduced glucose disappearance rate (K-value) suggested that the feeding of HFD-induced insulin resistance in rats. After 2 weeks of dietary manipulation, a subset of the rats from both groups was injected intraperitoneally with low dose of streptozotocin (STZ) (35 mg kg(-1)). Insulin-resistant HFD-fed rats developed frank hyperglycemia upon STZ injection that, however, caused only mild elevation in PGL in NPD-fed rats. Though there was significant reduction in PI level after STZ injection in HFD rats, the reduction observed was only to a level that was comparable with NPD-fed control rats. In addition, the levels of PTG and PTC were further accentuated after STZ treatment in HFD-fed rats. In contrast, STZ (35 mg kg(-1), i.p.) failed to significantly alter PI, PTG and PTC levels in NPD-fed rats. Thus, these fat-fed/STZ-treated rats simulate natural disease progression and metabolic characteristics typical of individuals at increased risk of developing type 2 diabetes because of insulin resistance and obesity. Further, the fat-fed/STZ-treated rats were found to be sensitive for glucose lowering effects of insulin sensitizing (pioglitazone) as well as insulinotropic (glipizide) agents. Besides, the effect of pioglitazone and glipizide on the plasma lipid parameters (PTG and PTC) was shown in these diabetic rats. The present study represents that the combination of HFD-fed and low-dose STZ-treated rat serves as an alternative animal model for type 2 diabetes simulating the human syndrome that is also suitable for testing anti-diabetic agents for the treatment of type 2 diabetes.
Collapse
|
Journal Article |
19 |
1272 |
2
|
Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998; 102:783-91. [PMID: 9710447 PMCID: PMC508941 DOI: 10.1172/jci2425] [Citation(s) in RCA: 924] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study determined whether retinal degeneration during diabetes includes retinal neural cell apoptosis. Image analysis of retinal sections from streptozotocin (STZ) diabetic rats after 7.5 months of STZ diabetes identified 22% and 14% reductions in the thickness of the inner plexiform and inner nuclear layers, respectively (P < 0. 001). The number of surviving ganglion cells was also reduced by 10% compared to controls (P < 0.001). In situ end labeling of DNA terminal dUTP nick end labeling (TUNEL) identified a 10-fold increase in the frequency of retinal apoptosis in whole-mounted rat retinas after 1, 3, 6, and 12 months of diabetes (P < 0.001, P < 0. 001, P < 0.01, and P < 0.01, respectively). Most TUNEL-positive cells were not associated with blood vessels and did not colocalize with the endothelial cell-specific antigen, von Willebrand factor. Insulin implants significantly reduced the number of TUNEL-positive cells (P < 0.05). The number of TUNEL-positive cells was also increased in retinas from humans with diabetes. These data indicate that retinal neural cell death occurs early in diabetes. This is the first quantitative report of an increase in neural cell apoptosis in the retina during diabetes, and indicates that neurodegeneration is an important component of diabetic retinopathy.
Collapse
|
research-article |
27 |
924 |
3
|
Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ, Chow WS, Stern D, Schmidt AM. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 1998; 4:1025-31. [PMID: 9734395 DOI: 10.1038/2012] [Citation(s) in RCA: 859] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accelerated atherosclerosis in patients with diabetes is a major cause of their morbidity and mortality, and it is unresponsive to therapy aimed at restoring relative euglycemia. In hyperglycemia, nonenzymatic glycation and oxidation of proteins and lipids results in the accumulation of irreversibly formed advanced glycation endproducts. These advanced glycation endproducts engage their receptor in cells of the blood vessel wall, thereby activating mechanisms linked to the development of vascular lesions. We report here a model of accelerated and advanced atherosclerosis in diabetic mice deficient for apolipoprotein E. Treatment of these mice with the soluble extracellular domain of the receptor for advanced glycation endproducts completely suppressed diabetic atherosclerosis in a glycemia- and lipid-independent manner. These findings indicate interaction between the advanced glycation endproducts and their receptor is involved in the development of accelerated atherosclerosis in diabetes, and identify this receptor as a new therapeutic target in diabetic macrovascular disease.
Collapse
|
|
27 |
859 |
4
|
Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 2001; 88:E14-22. [PMID: 11157681 DOI: 10.1161/01.res.88.2.e14] [Citation(s) in RCA: 803] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Incubation of endothelial cells in vitro with high concentrations of glucose activates protein kinase C (PKC) and increases nitric oxide synthase (NOS III) gene expression as well as superoxide production. The underlying mechanisms remain unknown. To address this issue in an in vivo model, diabetes was induced with streptozotocin in rats. Streptozotocin treatment led to endothelial dysfunction and increased vascular superoxide production, as assessed by lucigenin- and coelenterazine-derived chemiluminescence. The bioavailability of vascular nitric oxide (as measured by electron spin resonance) was reduced in diabetic aortas, although expression of endothelial NOS III (mRNA and protein) was markedly increased. NOS inhibition with N:(G)-nitro-L-arginine increased superoxide levels in control vessels but reduced them in diabetic vessels, identifying NOS as a superoxide source. Similarly, we found an activation of the NADPH oxidase and a 7-fold increase in gp91(phox) mRNA in diabetic vessels. In vitro PKC inhibition with chelerythrine reduced vascular superoxide in diabetic vessels, whereas it had no effect on superoxide levels in normal vessels. In vivo PKC inhibition with N:-benzoyl-staurosporine did not affect glucose levels in diabetic rats but prevented NOS III gene upregulation and NOS-mediated superoxide production, thereby restoring vascular nitric oxide bioavailability and endothelial function. The reduction of superoxide in vitro by chelerythrine and the normalization of NOS III gene expression and reduction of superoxide in vivo by N:-benzoyl-staurosporine point to a decisive role of PKC in mediating these phenomena and suggest a therapeutic potential of PKC inhibitors in the prevention or treatment of vascular complications of diabetes mellitus. The full text of this article is available at http://www.circresaha.org.
Collapse
MESH Headings
- Animals
- Aorta
- Blood Glucose/drug effects
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- In Vitro Techniques
- Luminescent Measurements
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- NADPH Oxidase 2
- NADPH Oxidases/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type III
- Oxidative Stress/drug effects
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Streptozocin
- Superoxides/metabolism
- Up-Regulation/drug effects
- Vascular Diseases/etiology
- Vascular Diseases/metabolism
Collapse
|
|
24 |
803 |
5
|
Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, Brown MS, Goldstein JL. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 1999; 96:13656-61. [PMID: 10570128 PMCID: PMC24120 DOI: 10.1073/pnas.96.24.13656] [Citation(s) in RCA: 599] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sterol regulatory element binding proteins (SREBPs) enhance transcription of genes encoding enzymes of cholesterol and fatty acid biosynthesis and uptake. In the current experiments, we observed a decline in the mRNA encoding one SREBP isoform, SREBP-1c, in the livers of rats that were rendered diabetic by treatment with streptozotocin. There was no change in the mRNA encoding SREBP-1a, which is derived from the same gene as SREBP-1c but uses a different promoter. The ratio of SREBP-1c:1a transcripts fell 25-fold from 5:1 in control rats to 0.2:1 in the diabetic animals. The SREBP-1c mRNA rose nearly to normal, and the 1c:1a ratio increased 17-fold when the diabetic rats were treated for 6 h with insulin. These treatments produced no change in the mRNA for SREBP-2, which is encoded by a separate gene. The SREBP-1c mRNA also fell selectively in freshly isolated rat hepatocytes and rose when the cells were treated with insulin. Considered together with recent data on hepatocytes [Foretz, M., Pacot, C., Dugal, I., et al. (1999) Mol. Cell. Biol. 19, 3760-3768], the current in vivo studies suggest that insulin may stimulate lipid synthesis in the liver by selectively inducing transcription of the SREBP-1c gene.
Collapse
|
research-article |
26 |
599 |
6
|
Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, Reaven GM. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 2000; 49:1390-4. [PMID: 11092499 DOI: 10.1053/meta.2000.17721] [Citation(s) in RCA: 591] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was initiated to develop an animal model of type 2 diabetes in a non-obese, outbred rat strain that replicates the natural history and metabolic characteristics of the human syndrome and is suitable for pharmaceutical research. Male Sprague-Dawley rats (n = 31), 7 weeks old, were fed normal chow (12% of calories as fat), or high-fat diet (40% of calories as fat) for 2 weeks and then injected with streptozotocin (STZ, 50 mg/kg intravenously). Before STZ injection, fat-fed rats had similar glucose concentrations to chow-fed rats, but significantly higher insulin, free fatty acid (FFA), and triglyceride (TG) concentrations (P < .01 to .0001). Plasma insulin concentrations in response to oral glucose (2 g/kg) were increased 2-fold by fat feeding (P < .01), and adipocyte glucose clearance under maximal insulin stimulation was significantly reduced (P < .001), suggesting that fat feeding induced insulin resistance. STZ injection increased glucose (P < .05), insulin (P < .05), FFA (P < .05), and TG (P < .0001) concentrations in fat-fed rats (Fat-fed/STZ rats) compared with chow-fed, STZ-injected rats (Chow-fed/STZ rats). Fat-fed/STZ rats were not insulin deficient compared with normal chow-fed rats, but had hyperglycemia and a somewhat higher insulin response to an oral glucose challenge (both P < .05). In addition, insulin-stimulated adipocyte glucose clearance was reduced in Fat-fed/STZ rats compared with both chow-fed and Chow-fed/STZ rats (P < .001). Finally, Fat-fed/STZ rats were sensitive to the glucose lowering effects of metformin and troglitazone. In conclusion, Fat-fed/STZ rats provide a novel animal model for type 2 diabetes, simulates the human syndrome, and is suitable for the testing of antidiabetic compounds.
Collapse
|
|
25 |
591 |
7
|
|
Review |
52 |
525 |
8
|
Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap Y, Stern DM, Schmidt AM. RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation 2002; 106:2827-35. [PMID: 12451010 DOI: 10.1161/01.cir.0000039325.03698.36] [Citation(s) in RCA: 447] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Previous studies suggested that blockade of RAGE in diabetic apolipoprotein (apo) E-null mice suppressed early acceleration of atherosclerosis. A critical test of the potential applicability of RAGE blockade to clinical settings was its ability to impact established vascular disease. In this study, we tested the hypothesis that RAGE contributed to lesion progression in established atherosclerosis in diabetic apoE-null mice. METHODS AND RESULTS Male apoE-null mice, age 6 weeks, were rendered diabetic with streptozotocin or treated with citrate buffer. At age 14 weeks, certain mice were killed or treated with once-daily murine soluble RAGE or albumin; all mice were killed at age 20 weeks. Compared with diabetic mice at age 14 weeks, albumin-treated animals displayed increased atherosclerotic lesion area and complexity. In diabetic mice treated with sRAGE from age 14 to 20 weeks, lesion area and complexity were significantly reduced and not statistically different from those observed in diabetic mice at age 14 weeks. In parallel, decreased parameters of inflammation and mononuclear phagocyte and smooth muscle cell activation were observed. CONCLUSIONS RAGE contributes not only to accelerated lesion formation in diabetic apoE-null mice but also to lesion progression. Blockade of RAGE may be a novel strategy to stabilize atherosclerosis and vascular inflammation in established diabetes.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Arteriosclerosis/complications
- Arteriosclerosis/drug therapy
- Arteriosclerosis/pathology
- Cell Count
- Cell Division/drug effects
- Cell Movement/drug effects
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Disease Models, Animal
- Disease Progression
- Injections, Intraperitoneal
- Leukocytes, Mononuclear/pathology
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Myocardium/pathology
- Phagocytes/pathology
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/administration & dosage
- Receptors, Immunologic/antagonists & inhibitors
- Sinus of Valsalva/drug effects
- Sinus of Valsalva/pathology
- Streptozocin
- Treatment Outcome
- Vasculitis/complications
- Vasculitis/drug therapy
- Vasculitis/pathology
Collapse
|
|
23 |
447 |
9
|
Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 2003; 21:763-70. [PMID: 12819790 DOI: 10.1038/nbt841] [Citation(s) in RCA: 419] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 05/01/2003] [Indexed: 02/08/2023]
Abstract
We show that transplantation of adult bone marrow-derived cells expressing c-kit reduces hyperglycemia in mice with streptozotocin-induced pancreatic damage. Although quantitative analysis of the pancreas revealed a low frequency of donor insulin-positive cells, these cells were not present at the onset of blood glucose reduction. Instead, the majority of transplanted cells were localized to ductal and islet structures, and their presence was accompanied by a proliferation of recipient pancreatic cells that resulted in insulin production. The capacity of transplanted bone marrow-derived stem cells to initiate endogenous pancreatic tissue regeneration represents a previously unrecognized means by which these cells can contribute to the restoration of organ function.
Collapse
|
|
22 |
419 |
10
|
Kim KH, Lee K, Moon YS, Sul HS. A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J Biol Chem 2001; 276:11252-6. [PMID: 11278254 DOI: 10.1074/jbc.c100028200] [Citation(s) in RCA: 412] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A 12.5-kDa cysteine-rich adipose tissue-specific secretory factor (ADSF/resistin) is a novel secreted protein rich in serine and cysteine residues with a unique cysteine repeat motif of CX(12)CX(8)CXCX(3)CX(10)CXCXCX(9)CC. A single 0.8-kilobase mRNA coding for this protein was found in various murine white adipose tissues including inguinal and epididymal fats and also in brown adipose tissue but not in any other tissues examined. Two species of mRNAs with sizes of 1.4 and 0.8 kilobases were found in rat adipose tissue. Sequence analysis indicates that this is because of two polyadenylation signals, the proximal one with the sequence AATACA with a single base mismatch from murine AATAAA and the distal consensus sequence AATAAA. The mRNA level was markedly increased during 3T3-L1 and primary preadipocyte differentiation into adipocytes. Its expression in adipose tissue is under tight nutritional and hormonal regulation; the mRNA level was very low during fasting and increased 25-fold when fasted mice were refed a high carbohydrate diet. It was also very low in adipose tissue of streptozotocin-diabetes and increased 23-fold upon insulin administration. Upon treatment with the conditioned medium from COS cells transfected with the expression vector, conversion of 3T3-L1 cells to adipocytes was inhibited by 80%. The regulated expression pattern suggesting this factor as an adipose sensor for the nutritional state of the animals and the inhibitory effect on adipocyte differentiation implicate its function as a feedback regulator of adipogenesis.
Collapse
|
|
24 |
412 |
11
|
Greene DA, De Jesus PV, Winegrad AI. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest 1975; 55:1326-36. [PMID: 124320 PMCID: PMC301888 DOI: 10.1172/jci108052] [Citation(s) in RCA: 401] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The factors influencing the development of impaired sciatic motor nerve conduction velocity (MNCV) in acute experimental diabetes were examined. Decreased MNCV developed by the 14th day after streptozotocin administration but only in rats which became hyperglycemic. Insulin treatment, begun on day 3, failed to prevent imparied MNCV in diabetic rats in which improved or normal weight gain and a decreased degree of hyperglycemia was induced. However, insulin treatment prevented the development of impaired MNCV in a group of diabetic rats in which the tail vein plasma glucose concentration was never found to exceed 160 mg/dl during days 6 through 14, andin which the mean plus or minus SEM of the average plasma glucose concentration for each animal during the same period was 75 plus or minus 18 mg/dl. In normal rats fed diets containing 0.011% or 0.069% free myoinositol (a presumably normal range), sciatic nerve free myoinositol concentrations were 90- and 60-fold higher than those in plasma. On these diets the development of impaired MNCV in the diabetics was associated with a decrease in nerve free myoinositol as compared with nerves from normals fed the same diet, despite similar plasma levels in the normals and diabetics. Plasma and nerve free myoinositol increased with increasing dietary myoinositol content in both normals and diabetics, and nerve myoinositol content could be acutely increased by an i.p. myoinositol load. By supplementing the diets with 1.0% myoinositol, the difference in nerve myoinositol in normal and diabetic rats on day 14 was abolished; on this diet the development of impaired MNCV in the diabetics was moderated or totally prevented, despite persistent hyperglycemia and elevated nerve sorbitol and fructose concentrations. Insulin treatment that prevented impaired MNCV prevented a decrease in nerve myoinositol in diabetics. These studies suggest that insulin deficiency, and possibly hyperglycemia, are primary factors in the development of imparied MNCV in acute experimental diabetes. However, the development of impaired MNCV appears to be related in some manner to a derangement in the regulation of nerve free myoinositol content, which appears to be subject to modification by increases in plasma myoinositol concentration over a critical range.
Collapse
|
research-article |
50 |
401 |
12
|
MESH Headings
- Adjuvants, Immunologic/therapeutic use
- Animals
- Autoantigens/immunology
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Autoimmune Diseases/therapy
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cytokines/therapeutic use
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Disease Susceptibility/immunology
- Female
- Genes, MHC Class I
- Genes, MHC Class II
- Genetic Markers
- Genetic Predisposition to Disease
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Immunosuppressive Agents/therapeutic use
- Macrophages/immunology
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred NOD/genetics
- Mice, Inbred NOD/metabolism
- Mice, Transgenic/immunology
- Rats
- Rats, Inbred BB/genetics
- Rats, Inbred BB/immunology
- Streptozocin
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
|
Review |
33 |
351 |
13
|
Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Rollin BJ, Tesch GH. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int 2006; 69:73-80. [PMID: 16374426 DOI: 10.1038/sj.ki.5000014] [Citation(s) in RCA: 343] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Diabetic nephropathy involves a renal inflammatory response induced by the diabetic milieu. Macrophages accumulate in diabetic kidneys in association with the local upregulation of monocyte chemoattractant protein-1 (MCP-1); however, the contribution of macrophages to renal injury and the importance of MCP-1 to their accrual are unclear. Therefore, we examined the progression of streptozotocin (STZ)-induced diabetic nephropathy in mice deficient in MCP-1 in order to explore the role of MCP-1-mediated macrophage accumulation in the development of diabetic kidney damage. Renal pathology was examined at 2, 8, 12 and 18 weeks after STZ treatment in MCP-1 intact (+/+) and deficient (-/-) mice with equivalent blood glucose and hemoglobin A1c levels. In MCP-1(+/+) mice, the development of diabetic nephropathy was associated with increased kidney MCP-1 production, which occurred mostly in tubules, consistent with our in vitro finding that elements of the diabetic milieu (high glucose and advanced glycation end products) directly stimulate tubular MCP-1 secretion. Diabetes of 18 weeks resulted in albuminuria and elevated plasma creatinine in MCP-1(+/+) mice, but these aspects of renal injury were largely suppressed in MCP-1(-/-) mice. Protection from nephropathy in diabetic MCP-1(-/-) mice was associated with marked reductions in glomerular and interstitial macrophage accumulation, histological damage and renal fibrosis. Diabetic MCP-1(-/-) mice also had a smaller proportion of kidney macrophages expressing markers of activation (inducible nitric oxide synthase or sialoadhesin) compared to diabetic MCP-1(+/+) mice. In conclusion, our study demonstrates that MCP-1-mediated macrophage accumulation and activation plays a critical role in the development of STZ-induced mouse diabetic nephropathy.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
343 |
14
|
Uemura S, Matsushita H, Li W, Glassford AJ, Asagami T, Lee KH, Harrison DG, Tsao PS. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res 2001; 88:1291-8. [PMID: 11420306 DOI: 10.1161/hh1201.092042] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a primary risk factor for cardiovascular disease. Although recent studies have demonstrated an important role for extracellular matrix metalloproteinases (MMPs) in atherosclerosis, little is known about the effects of hyperglycemia on MMP regulation in vascular cells. Gelatin zymography and Western blot analysis revealed that the activity and expression of 92-kDa (MMP-9) gelatinase, but not of 72 kDa (MMP-2) gelatinase, were significantly increased in vascular tissue and plasma of two distinct rodent models of DM. Bovine aortic endothelial cells (BAECs) grown in culture did not express MMP-9 constitutively; however, chronic (2-week) incubation with high glucose medium induced MMP-9 promoter activity, mRNA and protein expression, and gelatinase activity in BAECs. On the other hand, high glucose culture did not change MMP-9 activity from vascular smooth muscle cells or macrophages. Electron paramagnetic resonance studies indicate that BAECs chronically grown in high glucose conditions produce 70% more ROS than do control cells. Enhanced MMP-9 activity was significantly reduced by treatment with the antioxidants polyethylene glycol-superoxide dismutase and N-acetyl-L-cysteine but not by inhibitors of protein kinase C. In conclusion, vascular MMP-9 activity is increased in DM, in part because of enhanced elaboration from vascular endothelial cells, and oxidative stress plays an important role. This novel mechanism of redox-sensitive MMP-9 expression by hyperglycemia may provide a rationale for antioxidant therapy to modulate diabetic vascular complications.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Aorta
- Blood Glucose
- Cattle
- Cells, Cultured
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/enzymology
- Disease Models, Animal
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- Glucose/metabolism
- Glucose/pharmacology
- Hyperglycemia/metabolism
- Insulin/blood
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oxidative Stress/physiology
- Promoter Regions, Genetic
- Protein Kinase C/antagonists & inhibitors
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Streptozocin
Collapse
|
|
24 |
325 |
15
|
Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, Wu P, Shi Y, Mao F, Yan Y, Xu W, Qian H. Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Relieving β-Cell Destruction. ACS NANO 2018; 12:7613-7628. [PMID: 30052036 DOI: 10.1021/acsnano.7b07643] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Exosomes are nanosized extracellular vesicles (EVs) that show great promise in tissue regeneration and injury repair as mesenchymal stem cell (MSC). MSC has been shown to alleviate diabetes mellitus (DM) in both animal models and clinical trials. In this study, we aimed to investigate whether exosomes from human umbilical cord MSC (hucMSC-ex) have a therapeutic effect on type 2 DM (T2DM). We established a rat model of T2DM using a high-fat diet and streptozotocin (STZ). We found that the intravenous injection of hucMSC-ex reduced blood glucose levels as a main paracrine approach of MSC. HucMSC-ex partially reversed insulin resistance in T2DM indirectly to accelerate glucose metabolism. HucMSC-ex restored the phosphorylation (tyrosine site) of the insulin receptor substrate 1 and protein kinase B in T2DM, promoted expression and membrane translocation of glucose transporter 4 in muscle, and increased storage of glycogen in the liver to maintain glucose homeostasis. HucMSC-ex inhibited STZ-induced β-cell apoptosis to restore the insulin-secreting function of T2DM. Taken together, exosomes from hucMSC can alleviate T2DM by reversing peripheral insulin resistance and relieving β-cell destruction, providing an alternative approach for T2DM treatment.
Collapse
|
|
7 |
325 |
16
|
Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, Chan L. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 2003; 9:596-603. [PMID: 12704384 DOI: 10.1038/nm867] [Citation(s) in RCA: 308] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 04/01/2003] [Indexed: 12/16/2022]
Abstract
To explore induced islet neogenesis in the liver as a strategy for the treatment of diabetes, we used helper-dependent adenovirus (HDAD) to deliver the pancreatic duodenal homeobox-1 gene (Ipf1; also known as Pdx-1) to streptozotocin (STZ)-treated diabetic mice. HDAD is relatively nontoxic as it is devoid of genes encoding viral protein. Mice treated with HDAD-Ipf1 developed fulminant hepatitis, however, because of the exocrine-differentiating activity of Ipf1. The diabetes of STZ mice was partially reversed by HDAD-mediated transfer of NeuroD (Neurod), a factor downstream of Ipf1, and completely reversed by a combination of Neurod and betacellulin (Btc), without producing hepatitis. Treated mice were healthy and normoglycemic for the duration of the experiment (>120 d). We detected in the liver insulin and other islet-specific transcripts, including proinsulin-processing enzymes, beta-cell-specific glucokinase and sulfonylurea receptor. Immunocytochemistry detected the presence of insulin, glucagon, pancreatic polypeptide and somatostatin-producing cells organized into islet clusters; immuno-electron microscopy showed typical insulin-containing granules. Our data suggest that Neurod-Btc gene therapy is a promising regimen to induce islet neogenesis for the treatment of insulin-dependent diabetes.
Collapse
|
|
22 |
308 |
17
|
Schulz TC, Young HY, Agulnick AD, Babin MJ, Baetge EE, Bang AG, Bhoumik A, Cepa I, Cesario RM, Haakmeester C, Kadoya K, Kelly JR, Kerr J, Martinson LA, McLean AB, Moorman MA, Payne JK, Richardson M, Ross KG, Sherrer ES, Song X, Wilson AZ, Brandon EP, Green CE, Kroon EJ, Kelly OG, D'Amour KA, Robins AJ. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 2012; 7:e37004. [PMID: 22623968 PMCID: PMC3356395 DOI: 10.1371/journal.pone.0037004] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023] Open
Abstract
Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50–100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
299 |
18
|
Kamalakkannan N, Prince PSM. Antihyperglycaemic and Antioxidant Effect of Rutin, a Polyphenolic Flavonoid, in Streptozotocin-Induced Diabetic Wistar Rats. Basic Clin Pharmacol Toxicol 2006; 98:97-103. [PMID: 16433898 DOI: 10.1111/j.1742-7843.2006.pto_241.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Flavonoids are non-nutritive dietary components that are widely distributed in plants. The present study investigated the antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid in normal and streptozotocin-induced diabetic Wistar rats. Diabetes as induced in rats by an intraperitoneal injection of streptozotocin. Rutin was orally administered to normal and diabetic rats for a period of 45 days. Fasting plasma glucose, glycosylated haemoglobin, thiobarbituric acid reactive substances and lipid hydroperoxides were significantly (P<0.05) increased, whereas insulin, C-peptide, total haemoglobin, protein levels, non-enzymic antioxidants (glutathione, vitamin C, vitamin E and ceruloplasmin) were decreased significantly (P<0.05) in diabetic rats. Oral administration of rutin to diabetic rats significantly (P<0.05) decreased fasting plasma glucose, glycosylated haemoglobin and increased insulin, C-peptide, haemoglobin and protein levels. Administration of rutin also decreased thiobarbituric acid reactive substances and lipid hydroperoxides and increased the non-enzymic antioxidants significantly (P<0.05). Treatment of normal rats with rutin did not significantly (P<0.05) alter any of the parameters studied. These results show that rutin exhibits antihyperglycaemic and antioxidant activity in streptozotocin-induced diabetic rats.
Collapse
|
|
19 |
293 |
19
|
Hori Y, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, Kim SK. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci U S A 2002; 99:16105-10. [PMID: 12441403 PMCID: PMC138572 DOI: 10.1073/pnas.252618999] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of embryonic stem cells for cell-replacement therapy in diseases like diabetes mellitus requires methods to control the development of multipotent cells. We report that treatment of mouse embryonic stem cells with inhibitors of phosphoinositide 3-kinase, an essential intracellular signaling regulator, produced cells that resembled pancreatic beta cells in several ways. These cells aggregated in structures similar, but not identical, to pancreatic islets of Langerhans, produced insulin at levels far greater than previously reported, and displayed glucose-dependent insulin release in vitro. Transplantation of these cell aggregates increased circulating insulin levels, reduced weight loss, improved glycemic control, and completely rescued survival in mice with diabetes mellitus. Graft removal resulted in rapid relapse and death. Graft analysis revealed that transplanted insulin-producing cells remained differentiated, enlarged, and did not form detectable tumors. These results provide evidence that embryonic stem cells can serve as the source of insulin-producing replacement tissue in an experimental model of diabetes mellitus. Strategies for producing cells that can replace islet functions described here can be adapted for similar uses with human cells.
Collapse
|
research-article |
23 |
292 |
20
|
Kanasaki K, Shi S, Kanasaki M, He J, Nagai T, Nakamura Y, Ishigaki Y, Kitada M, Srivastava SP, Koya D. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 2014; 63:2120-31. [PMID: 24574044 DOI: 10.2337/db13-1029] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Kidney fibrosis is the final common pathway of all progressive chronic kidney diseases, of which diabetic nephropathy is the leading cause. Endothelial-to-mesenchymal transition (EndMT) has emerged as one of the most important origins of matrix-producing fibroblasts. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been introduced into the market as antidiabetes drugs. Here, we found that the DPP-4 inhibitor linagliptin ameliorated kidney fibrosis in diabetic mice without altering the blood glucose levels associated with the inhibition of EndMT and the restoration of microRNA 29s. Streptozotocin-induced diabetic CD-1 mice exhibited kidney fibrosis and strong immunoreactivity for DPP-4 by 24 weeks after the onset of diabetes. At 20 weeks after the onset of diabetes, mice were treated with linagliptin for 4 weeks. Linagliptin-treated diabetic mice exhibited a suppression of DPP-4 activity/protein expression and an amelioration of kidney fibrosis associated with the inhibition of EndMT. The therapeutic effects of linagliptin on diabetic kidneys were associated with the suppression of profibrotic programs, as assessed by mRNA microarray analysis. We found that the induction of DPP-4 observed in diabetic kidneys may be associated with suppressed levels of microRNA 29s in diabetic mice; linagliptin restored microRNA 29s and suppressed DPP-4 protein levels. Using cultured endothelial cells, we found that linagliptin inhibited TGF-β2-induced EndMT, and such anti-EndMT effects of linagliptin were mediated through microRNA 29 induction. These results indicate the possible novel pleiotropic action of linagliptin to restore normal kidney function in diabetic patients with renal impairment.
Collapse
|
|
11 |
289 |
21
|
Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 2007; 101:757-70. [PMID: 17448147 DOI: 10.1111/j.1471-4159.2006.04368.x] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intracerebroventricular (icv) application of streptozotocin (STZ) in low dosage was used in 3-month-old rats to explore brain insulin system dysfunction. Three months following STZ icv treatment, the expression of insulin-1 and -2 mRNA was significantly reduced to 11% in hippocampus and to 28% in frontoparietal cerebral cortex, respectively. Insulin receptor (IR) mRNA expression decreased significantly in frontoparietal cerebral cortex and hippocampus (16% and 33% of control). At the protein/activity level, different abnormalities of protein tyrosine kinase activity (increase in hippocampus), total IR beta-subunit (decrease in hypothalamus) and phosphorylated IR tyrosine residues (increase) became apparent. The STZ-induced disturbance in learning and memory capacities was not abolished by icv application of glucose transport inhibitors known to prevent STZ-induced diabetes mellitus. The discrepancy between reduced IR gene expression and increase in both phosphorylated IR tyrosine residues/protein tyrosine kinase activity may indicate imbalance between phosphorylation/dephosphorylation of the IR beta-subunit causing its dysfunction. These abnormalities may point to a complex brain insulin system dysfunction after STZ icv application, which may lead to an increase in hyperphosphorylated tau-protein concentration. Brain insulin system dysfunction is discussed as possible pathological core in the generation of hyperphosphorylated tau protein as a morphological marker of sporadic Alzheimer's disease.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
284 |
22
|
Burkart V, Wang ZQ, Radons J, Heller B, Herceg Z, Stingl L, Wagner EF, Kolb H. Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat Med 1999; 5:314-9. [PMID: 10086388 DOI: 10.1038/6535] [Citation(s) in RCA: 276] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human type 1 diabetes results from the selective destruction of insulin-producing pancreatic beta cells during islet inflammation. Cytokines and reactive radicals released during this process contribute to beta-cell death. Here we show that mice with a disrupted gene coding for poly (ADP-ribose) polymerase (PARP-/- mice) are completely resistant to the development of diabetes induced by the beta-cell toxin streptozocin. The mice remained normoglycemic and maintained normal levels of total pancreatic insulin content and normal islet ultrastructure. Cultivated PARP-/- islet cells resisted streptozocin-induced lysis and maintained intracellular NAD+ levels. Our results identify NAD+ depletion caused by PARP activation as the dominant metabolic event in islet-cell destruction, and provide information for the development of strategies to prevent the progression or manifestation of the disease in individuals at risk of developing type 1 diabetes.
Collapse
|
|
26 |
276 |
23
|
Sun L, Halaihel N, Zhang W, Rogers T, Levi M. Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J Biol Chem 2002; 277:18919-27. [PMID: 11875060 DOI: 10.1074/jbc.m110650200] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diabetic renal disease is associated with lipid deposits in the kidney. The purpose of our study was to determine whether there is altered regulation of the sterol regulatory element-binding proteins (SREBPs) in the diabetic kidney and whether SREBPs mediate the abnormal renal lipid metabolism and diabetic renal disease. In streptozotocin-induced diabetes in the rat, there were marked increases in SREBP-1 and fatty acid synthase (FAS) expression, resulting in increased triglyceride (TG) accumulation. Treatment of diabetic rats with insulin prevented the increased renal expression of SREBP-1 and the accumulation of TG. The role of hyperglycemia in the up-regulation of SREBP-1 was confirmed in renal cells cultured in a high glucose media. High glucose induced increased expression of SREBP-1a and -1c mRNA, SREBP-1 protein, and FAS, resulting in increased TG content. To determine a direct role for SREBP in mediating the increase in renal lipids and glomerulosclerosis, we studied SREBP-1a transgenic mice with increased renal expression of SREBP-1. The increase in SREBP-1 was associated with increased expression of FAS and acetyl CoA carboxylase, resulting in increased TG content, increased expression of transforming growth factor beta1 and vascular endothelial growth factor, mesangial expansion, glomerulosclerosis, and proteinuria. Our study therefore indicates that renal SREBP-1 expression is increased in diabetes and that SREBP-1 plays an important role in the increased lipid synthesis, TG accumulation, mesangial expansion, glomerulosclerosis, and proteinuria by increasing the expression of transforming growth factor beta and vascular endothelial growth factor.
Collapse
|
|
23 |
273 |
24
|
Conarello SL, Li Z, Ronan J, Roy RS, Zhu L, Jiang G, Liu F, Woods J, Zycband E, Moller DE, Thornberry NA, Zhang BB. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci U S A 2003; 100:6825-30. [PMID: 12748388 PMCID: PMC164531 DOI: 10.1073/pnas.0631828100] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dipeptidyl peptidase IV (DP-IV), a member of the prolyl oligopeptidase family of peptidases, is involved in the metabolic inactivation of a glucose-dependent insulinotropic hormone, glucagon-like peptide 1 (GLP-1), and other incretin hormones. Here, we investigated the impact of DP-IV deficiency on body weight control and insulin sensitivity in mice. Whereas WT mice displayed accelerated weight gain and hyperinsulinemia when fed a high-fat diet (HFD), mice lacking the gene encoding DP-IV (DP-IV-/-) are refractory to the development of obesity and hyperinsulinemia. Pair-feeding and indirect calorimetry studies indicate that reduced food intake and increased energy expenditure accounted for the resistance to HFD-induced obesity in the DP-IV-/- mice. Ablation of DP-IV also is associated with elevated GLP-1 levels and improved metabolic control in these animals, resulting in improved insulin sensitivity, reduced pancreatic islet hypertrophy, and protection against streptozotocin-induced loss of beta cell mass and hyperglycemia. Together, these observations suggest that chronic deletion of DP-IV gene has significant impact on body weight control and energy homeostasis, providing validation of DP-IV inhibition as a viable therapeutic option for the treatment of metabolic disorders related to diabetes and obesity.
Collapse
|
research-article |
22 |
266 |
25
|
Price SR, Bailey JL, Wang X, Jurkovitz C, England BK, Ding X, Phillips LS, Mitch WE. Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription. J Clin Invest 1996; 98:1703-8. [PMID: 8878419 PMCID: PMC507607 DOI: 10.1172/jci118968] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In normal subjects and diabetic patients, insulin suppresses whole body proteolysis suggesting that the loss of lean body mass and muscle wasting in insulinopenia is related to increased muscle protein degradation. To document how insulinopenia affects organ weights and to identify the pathway for accelerated proteolysis in muscle, streptozotocin-treated and vehicle-injected, pair-fed control rats were studied. The weights of liver, adipose tissue, and muscle were decreased while muscle protein degradation was increased 75% by insulinopenia. This proteolytic response was not eliminated by blocking lysosomal function and calcium-dependent proteases at 7 or 3 d after streptozotocin. When ATP synthesis in muscle was inhibited, the rates of proteolysis were reduced to the same level in insulinopenic and control rats suggesting that the ATP-dependent, ubiquitin-proteasome pathway is activated. Additional evidence for activation of this pathway in muscle includes: (a) an inhibitor of proteasome activity eliminated the increased protein degradation; (b) mRNAs encoding ubiquitin and proteasome subunits were increased two- to threefold; and (c) there was increased transcription of the ubiquitin gene. We conclude that the mechanism for muscle protein wasting in insulinopenia includes activation of the ubiquitin-proteasome pathway with increased expression of the ubiquitin gene.
Collapse
|
research-article |
29 |
263 |