1
|
Harman-Boehm I, Blüher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E, Shai I, Klöting N, Stumvoll M, Bashan N, Rudich A. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 2007; 92:2240-7. [PMID: 17374712 DOI: 10.1210/jc.2006-1811] [Citation(s) in RCA: 423] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CONTEXT Macrophage infiltration into adipose tissue has been demonstrated to accompany obesity, with a potential preferential infiltration into intraabdominal vs. sc fat. OBJECTIVE Our objective was to determine whether this occurs across different populations with a range of body mass indexes and to assess the relationship with regional adiposity and comorbidity of obesity. SETTING AND PATIENTS In two independent cohorts, we used paired omental (OM) and sc fat biopsies from lean controls or predominantly sc or intraabdominally obese persons with minimal comorbidity (n = 60, cohort 1), or from severely obese women with a significant rate of comorbidity (n = 29, cohort 2). RESULTS Elevated macrophage infiltration into OM vs. sc fat was observable in lean subjects and exaggerated by obesity, particularly if predominantly intraabdominal. This was paralleled by increased monocyte chemoattractant protein-1 (MCP1) and colony-stimulating factor-1 (CSF1) mRNA levels. Level of CSF1 and MCP1 mRNA correlated with the number of OM macrophages (r = 0.521, P < 0.0001 and r = 0.258, P < 0.051, respectively). In severely obese women (mean body mass index = 43.0 +/- 1.1 kg/m(2)), higher protein expression of both MCP1 and CSF1 was detected in OM vs. sc fat. Number of OM macrophages, but not of sc macrophages, correlated with waist circumference (r = 0.636, P = 0.001 vs. r = 0.170, P = 0.427) and with the number of metabolic syndrome parameters (r = 0.385, P = 0.065 vs. r = -0.158, P = 0.472, respectively). Preferential macrophage infiltration into OM fat was mainly observed in a subgroup in whom obesity was associated with impaired glucose homeostasis. CONCLUSIONS Preferential macrophage infiltration into OM fat is a general phenomenon exaggerated by central obesity, potentially linking central adiposity with increased risk of diabetes and coronary heart disease.
Collapse
|
|
18 |
423 |
2
|
Smith P, Adams WP, Lipschitz AH, Chau B, Sorokin E, Rohrich RJ, Brown SA. Autologous Human Fat Grafting: Effect of Harvesting and Preparation Techniques on Adipocyte Graft Survival. Plast Reconstr Surg 2006; 117:1836-44. [PMID: 16651956 DOI: 10.1097/01.prs.0000218825.77014.78] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Autogenous fat transfer with lipoinjection for soft-tissue augmentation is a commonly used technique without a universally accepted approach. The high percentage and variable amount of fat resorption reduce the clinical efficacy of this procedure and often result in the need for further grafting. The purposes of this study were to evaluate the effect of different harvesting and preparation techniques on human fat tissue viability and to determine fat tissue viability rates among the different fat preparations transplanted into a severe combined immune deficiency mouse model at 3 months. METHODS Using standard liposuction and syringe aspiration, fat was removed from patients (n = 3) undergoing elective body contouring. Tissue was prepared by six different combinations of centrifugation and/or washing the cells with lactated Ringer's solution or normal saline. Metabolic activities of fat cell viability were monitored to assess overall cell viability. To analyze viability over 3 months, freshly harvested tissue specimens (minimum n = 5) were prepared by a combination of various procedures (wash, centrifugation, and different solutions) and subsequently injected under the dorsal flank skin of severe combined immune deficiency mice in two experiments. Mice were monitored for 12 weeks and the fat xenografts were removed for mass and histological evaluations. RESULTS Metabolic analyses showed improved cell viability in tissue specimens undergoing minimal manipulation. No significant differences in fat cell viability, as assessed by graft weight maintenance or histologic evaluations, were observed with regard to harvesting or preparation techniques. CONCLUSIONS Improved viability of freshly harvested but untreated fat specimens may be expected as compared with grafts that have undergone additional manipulations. No unique combination of preparation or harvesting techniques appeared to be more advantageous on transplanted fat grafts at 3 months. This study also demonstrated a reliable animal model for future investigation into examining novel applications for augmenting fat graft survival.
Collapse
|
|
19 |
227 |
3
|
Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S. White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol 2014; 170:R159-R171. [PMID: 24468979 DOI: 10.1530/eje-13-0945] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In mammals, adipocytes are lipid-laden cells making up the parenchyma of the multi-depot adipose organ. White adipocytes store lipids for release as free fatty acids during fasting periods; brown adipocytes burn glucose and lipids to maintain thermal homeostasis. A third type of adipocyte, the pink adipocyte, has recently been characterised in mouse subcutaneous fat depots during pregnancy and lactation. Pink adipocytes are mammary gland alveolar epithelial cells whose role is to produce and secrete milk. Emerging evidence suggests that they derive from the transdifferentiation of subcutaneous white adipocytes. The functional response of the adipose organ to a range of metabolic and environmental challenges highlights its extraordinary plasticity. Cold exposure induces an increase in the 'brown' component of the organ to meet the increased thermal demand; in states of positive energy balance, the 'white' component expands to store excess nutrients; finally, the 'pink' component develops in subcutaneous depots during pregnancy to ensure litter feeding. At the cell level, plasticity is provided not only by stem cell proliferation and differentiation but also, distinctively, by direct transdifferentiation of fully differentiated adipocytes by the stimuli that induce genetic expression reprogramming and through it a change in phenotype and, consequently function. A greater understanding of adipocyte transdifferentiation mechanisms would have the potential to shed light on their biology as well as inspire novel therapeutic strategies against metabolic syndrome (browning) and breast cancer (pinking).
Collapse
MESH Headings
- Adipocytes, Brown/cytology
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/pathology
- Adipocytes, White/cytology
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Transdifferentiation
- Female
- Humans
- Lactation
- Lipid Metabolism
- Male
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/pathology
- Obesity/metabolism
- Obesity/pathology
- Organ Specificity
- Pigmentation
- Pregnancy
- Sex Characteristics
- Subcutaneous Fat, Abdominal/cytology
- Subcutaneous Fat, Abdominal/metabolism
- Subcutaneous Fat, Abdominal/pathology
Collapse
|
Review |
11 |
180 |
4
|
Heneidi S, Simerman AA, Keller E, Singh P, Li X, Dumesic DA, Chazenbalk G. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS One 2013; 8:e64752. [PMID: 23755141 PMCID: PMC3673968 DOI: 10.1371/journal.pone.0064752] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/17/2013] [Indexed: 12/15/2022] Open
Abstract
Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT) derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse) Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal). When compared to adipose stem cells (ASCs), microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell homing. Being highly resistant to severe cellular stress, Muse-AT cells have the potential to make a critical impact on the field of regenerative medicine and cell-based therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
93 |
5
|
Tews D, Fischer-Posovszky P, Fromme T, Klingenspor M, Fischer J, Rüther U, Marienfeld R, Barth TF, Möller P, Debatin KM, Wabitsch M. FTO deficiency induces UCP-1 expression and mitochondrial uncoupling in adipocytes. Endocrinology 2013; 154:3141-51. [PMID: 23751871 DOI: 10.1210/en.2012-1873] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Variants in the fat mass- and obesity-associated (FTO) gene are associated with obesity and body fat mass in genome-wide association studies. However, the mechanism by which FTO predisposes individuals to obesity is not clear so far. First mechanistic evidence was shown in Fto-negative mice. These mice are resistant to obesity due to enhanced energy expenditure, whereas the mass of brown adipose tissue remains unchanged. We hypothesize that FTO is involved in the induction of white adipose tissue browning, which leads to mitochondrial uncoupling and increases energy expenditure. Uncoupling protein 1 (Ucp-1) was significantly higher expressed in both gonadal and inguinal adipose depots of Fto(-/-) compared with Fto(+/+) littermates accompanied by the appearance of multivacuolar, Ucp-1-positive adipocytes in these tissues. By using lentiviral short hairpin RNA constructs, we established FTO-deficient human preadipocytes and adipocytes and analyzed key metabolic processes. FTO-deficient adipocytes showed an adipogenic differentiation rate comparable with control cells but exhibited a reduced de novo lipogenesis despite unchanged glucose uptake. In agreement with the mouse data, FTO-deficient adipocytes exhibited 4-fold higher expression of UCP-1 in mitochondria compared with control cells. The up-regulation of UCP-1 in FTO-deficient adipocytes resulted in enhanced mitochondrial uncoupling. We conclude that FTO deficiency leads to the induction of a brown adipocyte phenotype, thereby enhancing energy expenditure. Further understanding of the signaling pathway connecting FTO with UCP-1 expression might lead to new options for obesity and overweight treatment.
Collapse
|
|
12 |
71 |
6
|
Pereira MJ, Palming J, Svensson MK, Rizell M, Dalenbäck J, Hammar M, Fall T, Sidibeh CO, Svensson PA, Eriksson JW. FKBP5 expression in human adipose tissue increases following dexamethasone exposure and is associated with insulin resistance. Metabolism 2014; 63:1198-208. [PMID: 24997500 DOI: 10.1016/j.metabol.2014.05.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/01/2014] [Accepted: 05/29/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To study effects of dexamethasone on gene expression in human adipose tissue aiming to identify potential novel mechanisms for glucocorticoid-induced insulin resistance. MATERIALS/METHODS Subcutaneous and omental adipose tissue, obtained from non-diabetic donors (10 M/15 F; age: 28-60 years; BMI: 20.7-30.6 kg/m²), was incubated with or without dexamethasone (0.003-3 μmol/L) for 24 h. Gene expression was assessed by microarray and real time-PCR and protein expression by immunoblotting. RESULTS FKBP5 (FK506-binding protein 5) and CNR1 (cannabinoid receptor 1) were the most responsive genes to dexamethasone in both subcutaneous and omental adipose tissue (~7-fold). Dexamethasone increased FKBP5 gene and protein expression in a dose-dependent manner in both depots. The gene product, FKBP51 protein, was 10-fold higher in the omental than in the subcutaneous depot, whereas the mRNA levels were similar. Higher FKBP5 gene expression in omental adipose tissue was associated with reduced insulin effects on glucose uptake in both depots. Furthermore, FKBP5 gene expression in subcutaneous adipose tissue was positively correlated with serum insulin, HOMA-IR and subcutaneous adipocyte diameter and negatively with plasma HDL-cholesterol. FKBP5 SNPs were found to be associated with type 2 diabetes and diabetes-related phenotypes in large population-based samples. CONCLUSIONS Dexamethasone exposure promotes expression of FKBP5 in adipose tissue, a gene that may be implicated in glucocorticoid-induced insulin resistance.
Collapse
MESH Headings
- Adult
- Biological Transport/drug effects
- Cells, Cultured
- Dexamethasone/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Expression Regulation/drug effects
- Glucocorticoids/pharmacology
- Glucose/metabolism
- Humans
- Insulin/blood
- Insulin/pharmacology
- Insulin Resistance
- Intra-Abdominal Fat/blood supply
- Intra-Abdominal Fat/cytology
- Intra-Abdominal Fat/drug effects
- Intra-Abdominal Fat/metabolism
- Male
- Middle Aged
- Osmolar Concentration
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Stromal Cells/cytology
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Subcutaneous Fat, Abdominal/blood supply
- Subcutaneous Fat, Abdominal/cytology
- Subcutaneous Fat, Abdominal/drug effects
- Subcutaneous Fat, Abdominal/metabolism
- Tacrolimus Binding Proteins/chemistry
- Tacrolimus Binding Proteins/genetics
- Tacrolimus Binding Proteins/metabolism
Collapse
|
Comparative Study |
11 |
71 |
7
|
Fraser JK, Wulur I, Alfonso Z, Zhu M, Wheeler ES. Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy 2007; 9:459-67. [PMID: 17786607 DOI: 10.1080/14653240701358460] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Human adipose tissue has been shown to contain multipotent cells with properties similar to mesenchymal stromal cells. While there have been many studies of the biology of these cells, no study has yet evaluated issues associated with tissue harvest. METHODS Adipose tissue was obtained from the subcutaneous space of the abdomen and hips of 10 donors using both syringe and pump-assisted liposuction. Tissue was digested with collagenase and then assayed for the presence of different stem and progenitor cell types using clonogenic culture assays, including fibroblast colony-forming unit (CFU-F) and alkaline phosphatase-positive colony-forming unit (CFU-AP). Paired analysis of samples obtained from the same individual was used to compare harvest method and site. RESULTS Syringe suction provided significantly greater recovery of adipocytes and a non-significant trend towards improved recovery of cells in the adipocyte-depleted fraction. There was considerable donor-to-donor variation in stem cell recovery. However, paired analysis of tissue obtained from different subcutaneous sites in the same donor showed that tissue harvested from the hip yielded 2.3-fold more CFU-F/unit volume and a 7-fold higher frequency of CFU-AP than that obtained from the abdomen. These differences were statistically significant. DISCUSSION Harvest site influences the stem and progenitor cell content of subcutaneous adipose tissue.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
70 |
8
|
Kang HS, Choi SH, Kim BS, Choi JY, Park GB, Kwon TG, Chun SY. Advanced Properties of Urine Derived Stem Cells Compared to Adipose Tissue Derived Stem Cells in Terms of Cell Proliferation, Immune Modulation and Multi Differentiation. J Korean Med Sci 2015; 30:1764-76. [PMID: 26713051 PMCID: PMC4689820 DOI: 10.3346/jkms.2015.30.12.1764] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/01/2015] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue stem cells (ADSCs) would be an attractive autologous cell source. However, ADSCs require invasive procedures, and has potential complications. Recently, urine stem cells (USCs) have been proposed as an alternative stem cell source. In this study, we compared USCs and ADSCs collected from the same patients on stem cell characteristics and capacity to differentiate into various cell lineages to provide a useful guideline for selecting the appropriate type of cell source for use in clinical application. The urine samples were collected via urethral catheterization, and adipose tissue was obtained from subcutaneous fat tissue during elective laparoscopic kidney surgery from the same patient (n = 10). Both cells were plated for primary culture. Cell proliferation, colony formation, cell surface markers, immune modulation, chromosome stability and multi-lineage differentiation were analyzed for each USCs and ADSCs at cell passage 3, 5, and 7. USCs showed high cell proliferation rate, enhanced colony forming ability, strong positive for stem cell markers expression, high efficiency for inhibition of immune cell activation compared to ADSCs at cell passage 3, 5, and 7. In chromosome stability analysis, both cells showed normal karyotype through all passages. In analysis of multi-lineage capability, USCs showed higher myogenic, neurogenic, and endogenic differentiation rate, and lower osteogenic, adipogenic, and chondrogenic differentiation rate compared to ADSCs. Therefore, we expect that USC can be an alternative autologous stem cell source for muscle, neuron and endothelial tissue reconstruction instead of ADSCs.
Collapse
|
Comparative Study |
10 |
69 |
9
|
Kos K, Harte AL, James S, Snead DR, O'Hare JP, McTernan PG, Kumar S. Secretion of neuropeptide Y in human adipose tissue and its role in maintenance of adipose tissue mass. Am J Physiol Endocrinol Metab 2007; 293:E1335-40. [PMID: 17785501 DOI: 10.1152/ajpendo.00333.2007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NPY is an important central orexigenic hormone, but little is known about its peripheral actions in human adipose tissue (AT) or its potential paracrine effects. Our objective was to examine NPY's role in AT, specifically addressing NPY protein expression, the effect of NPY on adipokine secretion, and the influence of insulin and rosiglitazone (RSG) on adipocyte-derived NPY in vitro. Ex vivo human AT was obtained from women undergoing elective surgery [age: 42.7 +/- 1.5 yr (mean +/- SE), BMI: 26.2 +/- 0.7 kg/m(2); n = 38]. Western blot analysis was used to determine NPY protein expression in AT depots. Abdominal subcutaneous (AbSc) adipocytes were isolated and treated with recombinant (rh) NPY, insulin, and RSG. NPY and adipokine levels were measured by ELISA. Our results were that NPY was localized in human AT and adipocytes and confirmed by immunohistochemistry. Depot-specific NPY expression was noted as highest in AbSc AT (1.87 +/- 0.23 ODU) compared with omental (Om; 1.03 +/- 0.15 ODU, P = 0.029) or thigh AT (Th; 1.0 +/- 0.29 ODU, P = 0.035). Insulin increased NPY secretion (control: 0.22 +/- 0.024 ng/ml; 1 nM insulin: 0.26 +/- 0.05 ng/ml; 100 nM insulin: 0.29 +/- 0.04 ng/ml; 1,000 nM insulin: 0.3 +/- 0.04 ng/ml; P < 0.05, n = 13), but cotreatment of RSG (10 nM) with insulin (100 nM) had no effect on NPY secretion. Furthermore, adipocyte treatment with rh-NPY downregulated leptin secretion (control: 6.99 +/- 0.89 ng/ml; 1 nmol/l rh-NPY: 4.4 +/- 0.64 ng/ml; 10 nmol/l rh-NPY: 4.3 +/- 0.61 ng/ml, 100 nmol/l rh-NPY: 4.2 +/- 0.67 ng/ml; P < 0.05, n = 10) but had no effect on adiponectin or TNF-alpha secretion. We conclude that NPY is expressed and secreted by human adipocytes. NPY secretion is stimulated by insulin, but this increment was limited by cotreatment with RSG. NPY's antilipolytic action may promote an increase in adipocyte size in hyperinsulinemic conditions. Adipose-derived NPY mediates reduction of leptin secretion and may have implications for central feedback of adiposity signals.
Collapse
|
|
18 |
67 |
10
|
Contreras GA, Lee YH, Mottillo EP, Granneman JG. Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation. Am J Physiol Endocrinol Metab 2014; 307:E793-9. [PMID: 25184993 PMCID: PMC4216946 DOI: 10.1152/ajpendo.00033.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Brown adipocytes (BA) generate heat in response to sympathetic activation and are the main site of nonshivering thermogenesis in mammals. Although most BA are located in classic brown adipose tissue depots, BA are also abundant in the inguinal white adipose tissue (iWAT) before weaning. The number of BA is correlated with the density of sympathetic innervation in iWAT; however, the role of continuous sympathetic tone in the establishment and maintenance of BA in WAT has not been investigated. BA marker expression in iWAT was abundant in weaning mice but was greatly reduced by 8 wk of age. Nonetheless, BA phenotype could be rapidly reinstated by acute β₃-adrenergic stimulation with CL-316,243 (CL). Genetic tagging of adipocytes with adiponectin-CreER(T2) demonstrated that CL reinstates uncoupling protein 1 (UCP1) expression in adipocytes that were present before weaning. Chronic surgical denervation dramatically reduced the ability of CL to induce the expression of UCP1 and other BA markers in the tissue as a whole, and this loss of responsiveness was prevented by concurrent treatment with CL. These results indicate that ongoing sympathetic activity is critical to preserve the ability of iWAT fat cells to express a BA phenotype upon adrenergic stimulation.
Collapse
MESH Headings
- Adipocytes, Brown/cytology
- Adipocytes, Brown/metabolism
- Adipogenesis
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Aging
- Animals
- Biomarkers/metabolism
- Crosses, Genetic
- Denervation/adverse effects
- Dioxoles/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Groin
- Immunohistochemistry
- Ion Channels/agonists
- Ion Channels/metabolism
- Mice, 129 Strain
- Mice, Transgenic
- Mitochondrial Proteins/agonists
- Mitochondrial Proteins/metabolism
- Subcutaneous Fat, Abdominal/cytology
- Subcutaneous Fat, Abdominal/growth & development
- Subcutaneous Fat, Abdominal/innervation
- Subcutaneous Fat, Abdominal/metabolism
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/growth & development
- Sympathetic Nervous System/metabolism
- Synaptic Transmission/drug effects
- Uncoupling Protein 1
- Weaning
Collapse
|
Research Support, N.I.H., Extramural |
11 |
66 |
11
|
Pereira MJ, Palming J, Rizell M, Aureliano M, Carvalho E, Svensson MK, Eriksson JW. The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue. Mol Cell Endocrinol 2013; 365:260-269. [PMID: 23160140 DOI: 10.1016/j.mce.2012.10.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 10/15/2012] [Accepted: 10/30/2012] [Indexed: 02/07/2023]
Abstract
Cyclosporin A (CsA), tacrolimus and rapamycin are immunosuppressive agents (IAs) associated with insulin resistance and dyslipidemia, although their molecular effects on lipid metabolism in adipose tissue are unknown. We explored IAs effects on lipolysis, lipid storage and expression of genes involved on lipid metabolism in isolated human adipocytes and/or adipose tissue obtained via subcutaneous and omental fat biopsies. CsA, tacrolimus and rapamycin increased isoproterenol-stimulated lipolysis and inhibited lipid storage by 20-35% and enhanced isoproterenol-stimulated hormone-sensitive lipase Ser552 phosphorylation. Rapamycin also increased basal lipolysis (~20%) and impaired insulin's antilipolytic effect. Rapamycin, down-regulated the gene expression of perilipin, sterol regulatory element-binding protein 1 (SREBP1) and lipin 1, while tacrolimus down-regulated CD36 and aP2 gene expression. All three IAs increased IL-6 gene expression and secretion, but not expression and secretion of TNF-α or adiponectin. These findings suggest that CsA, tacrolimus and rapamycin enhance lipolysis, inhibit lipid storage and expression of lipogenic genes in adipose tissue, which may contribute to the development of dyslipidemia and insulin resistance associated with immunosuppressive therapy.
Collapse
|
|
12 |
60 |
12
|
Caron-Jobin M, Morisset AS, Tremblay A, Huot C, Légaré D, Tchernof A. Elevated serum 25(OH)D concentrations, vitamin D, and calcium intakes are associated with reduced adipocyte size in women. Obesity (Silver Spring) 2011; 19:1335-41. [PMID: 21527900 DOI: 10.1038/oby.2011.90] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent studies have suggested a beneficial effect of vitamin D and calcium on adipocyte metabolism and the metabolic profile. Our objective was to examine associations of vitamin D intake, calcium and dairy products as well as serum 25(OH)D concentration with adiposity measures and adipocyte size in women. Omental and subcutaneous adipose tissue samples were obtained from 43 women undergoing gynecological surgeries. Adipocyte size was measured using adipocyte suspensions from collagenase-digested fat tissues. Total and visceral adiposity were assessed by dual-energy X-ray absorptiometry and computed tomography, respectively. Serum 25(OH)D was measured by radioimmmunoassay. Dietary intakes were assessed using a food frequency questionnaire. Women consuming two or more dairy product portions daily had smaller adipocytes in the omental depot compared to women consuming less than two portions daily (79 ± 12 vs. 94 ± 16 µm, P ≤ 0.01). Dietary intakes of calcium (r = -0.55) and vitamin D (r = -0.43) as well as serum 25(OH)D (r = -0.35) were also inversely and significantly associated with omental adipocyte size (P ≤ 0.05 for all). Dietary vitamin D intake was inversely associated with visceral adipose tissue area (r = -0.34, P ≤ 0.05). Serum 25(OH)D was also inversely associated with visceral adipose tissue area (r = -0.32) as well as with total adipose tissue area (r = -0.44), subcutaneous adipose tissue area (r = -0.36), BMI (r =-0.43) and total body fat mass (r = -0.41, P ≤ 0.05 for all). In conclusion, elevated dietary vitamin D intake and serum 25(OH)D values are related to lower visceral adiposity and omental adipocyte size in women.
Collapse
|
|
14 |
55 |
13
|
Piasecki JH, Gutowski KA, Lahvis GP, Moreno KI. An Experimental Model for Improving Fat Graft Viability and Purity. Plast Reconstr Surg 2007; 119:1571-1583. [PMID: 17415252 DOI: 10.1097/01.prs.0000256062.74324.1c] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Autologous fat is an excellent soft-tissue filler, given its abundance, ease of harvest, and natural appearance. However, graft longevity is unpredictable and is reported in the literature to be between 3 months and 8 years. METHODS A genetically identical, age- and sex-matched mouse experiment was used to develop a model. Inguinal fat pads were subjected to different harvest and preparatory techniques. Primary endpoints-viability and purity-were assessed with the trypan blue viability assay and component counting with a hemocytometer. RESULTS Viability and purity were highest after excisional harvest versus blunt or needle harvest, presumably secondary to differences in cellular trauma. Saline wash or centrifugation after harvest produced modest but statistically significant improvements in viability and purity. However, if grafts harvested in any fashion were treated with an initial collagenase digestion followed by an idealized centrifugation regimen and a single wash step, viability and purity were consistently 96 percent and 93 percent, respectively. CONCLUSIONS Using an in vitro murine model, the authors have systematically developed a clinically practical model for creating a pure single-cell suspension of viable adipocytes that is reproducible, regardless of tissue harvest method.
Collapse
|
|
18 |
54 |
14
|
Murdolo G, Kempf K, Hammarstedt A, Herder C, Smith U, Jansson PA. Insulin differentially modulates the peripheral endocannabinoid system in human subcutaneous abdominal adipose tissue from lean and obese individuals. J Endocrinol Invest 2007; 30:RC17-21. [PMID: 17923791 DOI: 10.1007/bf03347440] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Human obesity has been associated with a dysregulation of the peripheral and adipose tissue (AT) endocannabinoid system (ES). The aim of this study was to elucidate the acute in vivo effects of insulin on gene expression of the cannabinoid type 1 (CB-1) and type 2 (CB-2) receptors, as well as of the fatty acid amide hydrolase (FAAH) in the sc abdominal adipose tissue (SCAAT). Nine lean (L) and 9 obese (OB), but otherwise healthy males were studied in the fasting state and during a euglycemic hyperinsulinemic clamp (40 mU/m2 * min(-1)). SCAAT biopsies were obtained at baseline and after 270 min of i.v. maintained hyperinsulinemia. The basal SCAAT gene expression pattern revealed an upregulation of the FAAH in the OB (p=0.03 vs L), whereas similar CB-1 and CB-2 mRNA levels were seen. Following hyperinsulinemia, the FAAH mRNA levels significantly increased approximately 2-fold in the L (p=0.01 vs baseline) but not in the OB. In contrast, insulin failed to significantly change both the adipose CB-1 and CB-2 gene expression. Finally, the FAAH gene expression positively correlated with the fasting serum insulin concentration (r 0.66; p=0.01), whereas an inverse association with the whole-body glucose disposal (r -0.58; p<0.05) was seen. Taken together, these first time observations demonstrate that the ES-related genes in the SCAAT differentially respond to hyperinsulinemia in lean/insulin-sensitive and in obese/insulin-resistant individuals. We suggest that insulin may play a key role in the obesity-linked dysregulation of the adipose ES at the gene level.
Collapse
|
Clinical Trial |
18 |
47 |
15
|
García-Contreras M, Vera-Donoso CD, Hernández-Andreu JM, García-Verdugo JM, Oltra E. Therapeutic potential of human adipose-derived stem cells (ADSCs) from cancer patients: a pilot study. PLoS One 2014; 9:e113288. [PMID: 25412325 PMCID: PMC4239050 DOI: 10.1371/journal.pone.0113288] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/21/2014] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells from adipose tissue (ADSCs) are an important source of cells for regenerative medicine. The therapeutic effect of culture-expanded adipose derived stem cells has been shown; however, optimal xeno-free culture conditions remain to be determined. Cancer patients, specifically those undergoing invasive surgery, constitute a subgroup of patients who could benefit from autologous stem cell transplantation. Although regenerative potential of their ADSCs could be affected by the disease and/or treatment, we are not aware of any study that has evaluated the therapeutic potential of ADSCs isolated from cancer patients in reference to that of ADSCs derived from healthy subjects. Here we report that ADSCs isolated from subabdominal adipose tissue of patients with urological neoplasms yielded similar growth kinetics, presented equivalent mesenchymal surface markers and showed similar differentiation potential into distinct mesodermal cell lineages: adipocytes, chondroblasts and osteoblasts than ADSCs isolated from adipose tissue of age-matched non-oncogenic participants, all under xeno-free growth culture conditions. Molecular karyotyping of patient expanded ADSCs genomes showed no disease-related alterations indicating their safety. In addition, vesicles <100 nm identified as exosomes (EXOs) which may be at least partly responsible for the attributed therapeutic paracrine effects of the ADSCs were effectively isolated from ADSCs and showed equivalent miRNA content regardless they were derived from cancer patients or non-oncogenic participants indicating that the repair capabilities of xeno-free expanded ADSCs are not compromised by patient condition and therefore their xeno-free culture expanded ADSCs should be suitable for autologous stem cell transplantation in a clinical setting.
Collapse
|
research-article |
11 |
47 |
16
|
You T, Murphy KM, Lyles MF, Demons JL, Lenchik L, Nicklas BJ. Addition of aerobic exercise to dietary weight loss preferentially reduces abdominal adipocyte size. Int J Obes (Lond) 2006; 30:1211-6. [PMID: 16446745 DOI: 10.1038/sj.ijo.0803245] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine if hypocaloric diet, diet plus low-intensity exercise, and diet plus high-intensity exercise differentially influence subcutaneous abdominal and gluteal adipocyte size in obese individuals. DESIGN Longitudinal intervention study of hypocaloric diet, diet plus low-intensity exercise, and diet plus high-intensity exercise (calorie deficit = 2800 kcal/week, 20 weeks). SUBJECTS Forty-five obese, middle-aged women (BMI = 33.0+/-0.6 kg/m2, age = 58+/-1 years). MEASUREMENTS Body composition testing and adipose tissue biopsies were conducted before and after the interventions. Subcutaneous abdominal and gluteal adipocyte size was determined. RESULTS All three interventions reduced body weight, fat mass, percent fat, and waist and hip girths to a similar degree. Diet only did not change subcutaneous abdominal adipocyte size, whereas both diet plus exercise groups significantly reduced abdominal adipocyte size. Changes in abdominal adipocyte size in the diet plus exercise groups were significantly different from that of the diet group. Gluteal adipocyte size decreased similarly in all three groups. CONCLUSION Addition of exercise training to dietary weight loss preferentially reduces subcutaneous abdominal adipocyte size in obese women. This may be of importance for the treatment of health complications associated with subcutaneous abdominal adiposity.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
47 |
17
|
Abstract
Increases in weight have been associated with corresponding increases in insulin resistance in postmenopausal women. Although estrogen has significant impact on body fat and body fat distribution, the cellular mechanisms that influence this process are not yet known. We measured adipose tissue fatty acid (FA) storage and FA storage factors in 12 premenopausal and 11 postmenopausal women matched for age and body composition. Postmenopausal women had lower postprandial FA oxidation (indirect calorimetry), greater meal FA, and direct free FA (FFA) storage than premenopausal women, including two-fold greater meal FA storage in the femoral depot. The fed/fasted activities of adipose tissue lipoprotein lipase were not significantly different between premenopausal and postmenopausal women. In contrast, adipocyte acyl-CoA synthetase and diacylglycerol acyltransferase activities in postmenopausal women were significantly upregulated and were positively correlated with direct FFA storage rates. These findings suggest that the propensity for subcutaneous adipose tissue FA storage is increased in postmenopausal women, more so from changes in adipocyte FA storage factors than from adipose tissue lipoprotein lipase activity. Our results suggest that female sex steroids, most likely estrogen, have important effects on adipose tissue FA storage and FA oxidation that could promote fat gain in postmenopausal women.
Collapse
|
Comparative Study |
12 |
43 |
18
|
Laforest S, Michaud A, Paris G, Pelletier M, Vidal H, Géloën A, Tchernof A. Comparative analysis of three human adipocyte size measurement methods and their relevance for cardiometabolic risk. Obesity (Silver Spring) 2017; 25:122-131. [PMID: 27883275 DOI: 10.1002/oby.21697] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine whether adipocyte diameters from three measurement methods are similarly associated with adiposity measurements and cardiometabolic variables. METHODS Surgical samples of omental and abdominal subcutaneous adipose tissue were obtained in a sample of 60 women (age 35-59 years; body mass index 20.3-41.1 kg/m2 ). Median adipocyte diameter of the main cell population was determined by collagenase digestion, osmium tetroxide fixation, and histological analysis. Adiposity and cardiometabolic risk factors were assessed. RESULTS Adipocyte diameter was consistently smaller with formalin fixation than with collagenase digestion, whereas osmium-fixed cells were larger (P < 0.0001, for all). Median adipocyte diameters derived from all methods were intercorrelated (r = 0.46-0.83, P < 0.001 for all). Positive associations were found between adipocyte diameters from all techniques and regional or total adiposity measurements (P < 0.01 for all). Omental adipocyte diameter was positively associated with fasting glucose, insulin, and homeostatic model assessment of insulin resistance (r = 0.30-0.52, P < 0.05 for all), with osmium-fixed cell size as a stronger correlate. Osmium-fixed cell diameter was also a better correlate of plasma adiponectin and leptin. CONCLUSIONS Although measurement techniques generated systematic differences in adipocyte size, associations with adiposity were only slightly affected by the technique. Osmium fixation generated stronger associations with cardiometabolic risk factors than collagenase digestion and histological analysis.
Collapse
|
Comparative Study |
8 |
36 |
19
|
Takeda K, Sriram S, Chan XHD, Ong WK, Yeo CR, Tan B, Lee SA, Kong KV, Hoon S, Jiang H, Yuen JJ, Perumal J, Agrawal M, Vaz C, So J, Shabbir A, Blaner WS, Olivo M, Han W, Tanavde V, Toh SA, Sugii S. Retinoic Acid Mediates Visceral-Specific Adipogenic Defects of Human Adipose-Derived Stem Cells. Diabetes 2016; 65:1164-78. [PMID: 26936961 PMCID: PMC5384626 DOI: 10.2337/db15-1315] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/20/2016] [Indexed: 12/20/2022]
Abstract
Increased visceral fat, rather than subcutaneous fat, during the onset of obesity is associated with a higher risk of developing metabolic diseases. The inherent adipogenic properties of human adipose-derived stem cells (ASCs) from visceral depots are compromised compared with those of ASCs from subcutaneous depots, but little is known about the underlying mechanisms. Using ontological analysis of global gene expression studies, we demonstrate that many genes involved in retinoic acid (RA) synthesis or regulated by RA are differentially expressed in human tissues and ASCs from subcutaneous and visceral fat. The endogenous level of RA is higher in visceral ASCs; this is associated with upregulation of the RA synthesis gene through the visceral-specific developmental factor WT1. Excessive RA-mediated activity impedes the adipogenic capability of ASCs at early but not late stages of adipogenesis, which can be reversed by antagonism of RA receptors or knockdown of WT1. Our results reveal the developmental origin of adipocytic properties and the pathophysiological contributions of visceral fat depots.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Adipogenesis/drug effects
- Adult Stem Cells/cytology
- Adult Stem Cells/drug effects
- Adult Stem Cells/metabolism
- Adult Stem Cells/pathology
- Bariatric Surgery
- Benzoates/pharmacology
- Cells, Cultured
- Down-Regulation/drug effects
- Gene Expression Profiling
- Gene Expression Regulation, Developmental/drug effects
- Gene Ontology
- Humans
- Intra-Abdominal Fat/cytology
- Intra-Abdominal Fat/drug effects
- Intra-Abdominal Fat/metabolism
- Intra-Abdominal Fat/pathology
- Middle Aged
- Naphthalenes/pharmacology
- Obesity, Morbid/metabolism
- Obesity, Morbid/pathology
- Obesity, Morbid/surgery
- RNA Interference
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/antagonists & inhibitors
- Receptors, Retinoic Acid/metabolism
- Response Elements/drug effects
- Signal Transduction/drug effects
- Stilbenes/pharmacology
- Subcutaneous Fat, Abdominal/cytology
- Subcutaneous Fat, Abdominal/drug effects
- Subcutaneous Fat, Abdominal/metabolism
- Subcutaneous Fat, Abdominal/pathology
- Tretinoin/metabolism
- Up-Regulation/drug effects
- WT1 Proteins/antagonists & inhibitors
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
Collapse
|
Comparative Study |
9 |
35 |
20
|
Liu A, McLaughlin T, Liu T, Sherman A, Yee G, Abbasi F, Lamendola C, Morton J, Cushman SW, Reaven GM, Tsao PS. Differential intra-abdominal adipose tissue profiling in obese, insulin-resistant women. Obes Surg 2009; 19:1564-73. [PMID: 19711137 PMCID: PMC3181138 DOI: 10.1007/s11695-009-9949-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 08/11/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND We recently identified differences in abdominal subcutaneous adipose tissue (SAT) from insulin-resistant (IR) as compared to obesity-matched insulin sensitive individuals, including accumulation of small adipose cells, decreased expression of cell differentiation markers, and increased inflammatory activity. This study was initiated to see if these changes in SAT of IR individuals were present in omental visceral adipose tissue (VAT); in this instance, individuals were chosen to be IR but varied in degree of adiposity. We compared cell size distribution and genetic markers in SAT and VAT of IR individuals undergoing bariatric surgery. METHODS Eleven obese/morbidly obese women were IR by the insulin suppression test. Adipose tissue surgical samples were fixed in osmium tetroxide for cell size analysis via Beckman Coulter Multisizer. Quantitative real-time polymerase chain reaction for genes related to adipocyte differentiation and inflammation was performed. RESULTS While proportion of small cells and expression of adipocyte differentiation genes did not differ between depots, inflammatory genes were upregulated in VAT. Diameter of SAT large cells correlated highly with increasing proportion of small cells in both SAT and VAT (r = 0.85, p = 0.001; r = 0.72, p = 0.01, respectively). No associations were observed between VAT large cells and cell size variables in either depot. The effect of body mass index (BMI) on any variables in both depots was negligible. CONCLUSIONS The major differential property of VAT of IR women is increased inflammatory activity, independent of BMI. The association of SAT adipocyte hypertrophy with hyperplasia in both depots suggests a primary role SAT may have in regulating regional fat storage.
Collapse
|
Comparative Study |
16 |
35 |
21
|
Benabdelkamel H, Masood A, Almidani GM, Alsadhan AA, Bassas AF, Duncan MW, Alfadda AA. Mature adipocyte proteome reveals differentially altered protein abundances between lean, overweight and morbidly obese human subjects. Mol Cell Endocrinol 2015; 401:142-54. [PMID: 25498962 DOI: 10.1016/j.mce.2014.11.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 11/23/2014] [Accepted: 11/25/2014] [Indexed: 02/08/2023]
Abstract
Overweight (OW) and obese individuals are considered to be graded parts of the scale having increasing weight as a common feature. They may not, however, be part of the same continuum and may differ metabolically. In this study we applied an untargeted proteomic approach to compare protein abundances in mature adipocytes derived from the subcutaneous adipose tissue of overweight and morbidly obese female subjects to those of lean age matched controls. Mature adipocytes were isolated from liposuction samples of abdominal subcutaneous adipose tissue collected from both lean (L; n = 7, 23.3 ± 0.4 kg/m(2); mean BMI ± SD), overweight (OW; n = 8, 27.9 ± 0.6 kg/m(2); mean BMI ± SD) and morbidly obese (MOB; n = 7, 44.8 ± 3.8 kg/m(2); mean BMI ± SD) individuals. Total protein extracts were then compared by two-dimensional difference in gel electrophoresis (2D DIGE). One hundred and ten differentially expressed protein spots (i.e., fitting the statistical criteria ANOVA test, p < 0.05; fold-change ≥1.5) were detected, and of these, 89 were identified by MALDI-TOF mass spectrometry. Of these, 66 protein spots were common to both groups whereas 23 were unique to the MOB group. Significant differences were evident in the abundances of key proteins involved in glucose and lipid metabolism, energy regulation, cytoskeletal structure and redox control signaling pathways. Differences in the abundance of some chaperones were also evident. The differentially abundant proteins were investigated using Ingenuity Pathway Analysis (IPA) to establish their associations with known biological functions. The network identified in the OW group with the highest score relates to-: cell-to-cell signaling and interaction; in contrast, in the MOB group the major interacting pathways are associated with lipid metabolism, small molecule biochemistry and cancer. The differences in abundance of the differentially regulated proteins were validated by immunoblotting. These findings provide insights into metabolic differences in OW and MOB individuals.
Collapse
|
|
10 |
34 |
22
|
Xie X, Yi Z, Sinha S, Madan M, Bowen BP, Langlais P, Ma D, Mandarino L, Meyer C. Proteomics analyses of subcutaneous adipocytes reveal novel abnormalities in human insulin resistance. Obesity (Silver Spring) 2016; 24:1506-14. [PMID: 27345962 PMCID: PMC4926648 DOI: 10.1002/oby.21528] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/22/2016] [Accepted: 03/13/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To provide a more global view of adipocyte changes in human insulin resistance by proteomics analyses. METHODS Baseline biopsies of abdominal subcutaneous adipose tissue were obtained from 23 subjects without diabetes. Euglycemic clamps were used to divide subjects into an insulin-resistant group (IR, N = 10) and an insulin-sensitive (IS, N = 13) group, which were of similar age and gender but unequal adiposity (greater in IR). Proteins of isolated adipocytes were quantified by mass spectrometry using normalized spectral abundance factors. RESULTS Of 1,245 proteins assigned, 30 were detected in at least 12 of the 23 subjects that differed significantly in abundance ≥1.5-fold between IR and IS. IR displayed a pattern of increased cytoskeletal proteins and decreased mitochondrial proteins and FABP4 and FABP5. In subgroup analyses of adiposity-matched subjects, several of these changes were less pronounced in IR, but the abundance of proteins related to lipid metabolism and the unfolded/misfolded protein response were significantly and unfavorably altered. CONCLUSIONS These results confirm lower abundance of mitochondrial proteins and suggest increased cytoskeletal proteins and decreased FABP4 and FABP5 in subcutaneous adipocytes of typical IR individuals. Changes in proteins related to lipid metabolism and the unfolded/misfolded protein may discriminate IR and IS individuals of equal adiposity.
Collapse
|
research-article |
9 |
34 |
23
|
Lee MJ, Fried SK. Glucocorticoids antagonize tumor necrosis factor-α-stimulated lipolysis and resistance to the antilipolytic effect of insulin in human adipocytes. Am J Physiol Endocrinol Metab 2012; 303:E1126-33. [PMID: 22949029 PMCID: PMC3492859 DOI: 10.1152/ajpendo.00228.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High concentrations of TNF within obese adipose tissue increase basal lipolysis and antagonize insulin signaling. Adipocytes of the obese are also exposed to elevated levels of glucocorticoids (GCs), which antagonize TNF actions in many cell types. We tested the hypothesis that TNF decreases sensitivity to the antilipolytic effect of insulin and that GCs antagonize this effect in differentiated human adipocytes. Lipolysis and expression levels of lipolytic proteins were measured after treating adipocytes with TNF, dexamethasone (DEX), or DEX + TNF for up to 48 h. TNF not only increased basal lipolysis, it caused resistance to the antilipolytic effects of insulin in human adipocytes. DEX alone did not significantly affect lipolysis. Cotreatment with DEX blocked TNF induction of basal lipolysis and insulin resistance by antagonizing TNF stimulation of PKA-mediated phosphorylation of hormone-sensitive lipase (HSL) at Ser⁵⁶³ and Ser⁶⁶⁰ and perilipin. TNF did not affect perilipin, HSL, or phosphodiesterase-3B mass but paradoxically suppressed adipose tissue triglyceride lipase expression, and this effect was blocked by DEX. The extent to which GCs can restrain the lipolytic actions of TNF may both diminish the potentially deleterious effects of excess lipolysis and contribute to fat accumulation in obesity.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
32 |
24
|
Upchurch DA, Renberg WC, Roush JK, Milliken GA, Weiss ML. Effects of administration of adipose-derived stromal vascular fraction and platelet-rich plasma to dogs with osteoarthritis of the hip joints. Am J Vet Res 2017; 77:940-51. [PMID: 27580105 DOI: 10.2460/ajvr.77.9.940] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate effects of simultaneous intra-articular and IV injection of autologous adipose-derived stromal vascular fraction (SVF) and platelet-rich plasma (PRP) to dogs with osteoarthritis of the hip joints. ANIMALS 22 client-owned dogs (12 placebo-treated [control] dogs and 10 treated dogs). PROCEDURES Dogs with osteoarthritis of the hip joints that caused signs of lameness or discomfort were characterized on the basis of results of orthopedic examination, goniometry, lameness score, the Canine Brief Pain Inventory (CBPI), a visual analogue scale, and results obtained by use of a pressure-sensing walkway at week 0 (baseline). Dogs received a simultaneous intraarticular and IV injection of SVF and PRP or a placebo. Dogs were examined again 4, 8, 12, and 24 weeks after injection. RESULTS CBPI scores were significantly lower for the treatment group at week 24, compared with scores for the control group. Mean visual analogue scale score for the treatment group was significantly higher at week 0 than at weeks 4, 8, or 24. Dogs with baseline peak vertical force (PVF) in the lowest 25th percentile were compared, and the treatment group had a significantly higher PVF than did the control group. After the SVF-PRP injection, fewer dogs in the treated group than in the control group had lameness confirmed during examination. CONCLUSIONS AND CLINICAL RELEVANCE For dogs with osteoarthritis of the hip joints treated with SVF and PRP, improvements in CBPI and PVF were evident at some time points, compared with results for the control group.
Collapse
|
Journal Article |
8 |
31 |
25
|
Pu LLQ, Cui X, Fink BF, Gao D, Vasconez HC. Adipose Aspirates as a Source for Human Processed Lipoaspirate Cells after Optimal Cryopreservation. Plast Reconstr Surg 2006; 117:1845-50. [PMID: 16651957 DOI: 10.1097/01.prs.0000209931.24781.9c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The purpose of this study was to test the authors' hypothesis that previously cryopreserved adipose aspirates collected from conventional liposuction could still be a reliable source of human processed lipoaspirate cells. METHODS Adipose aspirates were collected from 12 adult female patients after conventional liposuction of the abdomen and were then preserved by an optimal cryopreservation method with added cryoprotective agents (0.5 M dimethyl sulfoxide and 0.2 M trehalose). Cryopreservation of the adipose tissues was subsequently conducted with controlled slow cooling and then stored in liquid nitrogen (-196 degrees C). One gram of fresh or cryopreserved (after fast rewarming) adipose aspirates was processed in vitro and the resulting cell pellet, consisting of processed lipoaspirate cells, was cultured separately. The length of time until processed lipoaspirate cells became adherent to the culture plate was recorded and the number of processed lipoaspirate cells after a 2-week culture was counted. RESULTS Flat, spindle-shape processed lipoaspirate cells from the cryopreserved group became adherent to the plate within 48 to 72 hours after initial culture compared with the fresh group, where the cells became adherent by 24 hours. After a 2-week culture, the cryopreserved aspirates yielded an average of 3.7 +/- 1.4 x 10(5) processed lipoaspirate cells per milliliter, equal to 90 percent of the yielded number of cells obtained from the fresh aspirates (4.1 +/- 1.4 x 10(5) cells/ml). CONCLUSIONS The authors' results indicate that although there is a latency of cell growth after an optimal cryopreservation, cryopreserved adipose aspirates can yield a significant number of processed lipoaspirate cells compared with fresh aspirates and may be a reliable source of human processed lipoaspirate cells because they can still be processed later after long-term preservation.
Collapse
|
|
19 |
31 |