1
|
Abstract
Mice unable to synthesize dopamine (DA) specifically in dopaminergic neurons were created by inactivating the tyrosine hydroxylase (TH) gene then by restoring TH function in noradrenergic cells. These DA-deficient (DA-/-) mice were born at expected frequency but became hypoactive and stopped feeding a few weeks after birth. Midbrain dopaminergic neurons, their projections, and most characteristics of their target neurons in the striatum appeared normal. Within a few minutes of being injected with L-dihdroxyphenylalanine (L-DOPA), the product of TH, the DA-/- mice became more active and consumed more food than control mice. With continued administration of L-DOPA, nearly normal growth was achieved. These studies indicate that DA is essential for movement and feeding, but is not required for the development of neural circuits that control these behaviors.
Collapse
|
|
30 |
543 |
2
|
Woolf CJ, Safieh-Garabedian B, Ma QP, Crilly P, Winter J. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 1994; 62:327-31. [PMID: 7530342 DOI: 10.1016/0306-4522(94)90366-2] [Citation(s) in RCA: 509] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Experimental inflammation produced by an intraplantar injection of complete Freund's adjuvant results in local sensory hypersensitivity and up-regulates the neuropeptides substance P and calcitonin gene related peptide in the primary sensory neurons innervating the inflamed tissue. The inflammation also elevates nerve growth factor levels in the skin. Systemic administration of anti-NGF neutralizing antibodies prevent the behavioral sensitivity, the up-regulation of neuropeptides and the inflammation-induced expression of the immediate early gene c-fos in dorsal horn neurons, without modifying swelling and erythema. Elevation of the neurotrophin NGF in the periphery is a major contributor, therefore, of inflammatory pain.
Collapse
|
|
31 |
509 |
3
|
Abstract
This article provides a brief overview of the history of substance P from its discovery in the 1930s to the present day. The development of substance P receptor agonists and antagonists, and more recently the employment of transgenic mice, provide a framework to explore the functional role of substance P. Chronic inflammation and pain are associated with a number of diseases, and it has been proposed that substance P, released from primary afferent nerve endings play a role in these conditions. Recent developments with substance P antagonists have demonstrated the importance of substance P in several models of disease that span from asthma to chronic bronchitis; from cystitis, inflammatory bowel disease to migraine; emesis, depression, pain and seizures. Advancements in the knowledge of the role of substance P, its agonists and antagonists could provide clinical solutions for a variety of chronic inflammatory conditions.
Collapse
|
Review |
24 |
370 |
4
|
Brownstein MJ, Mroz EA, Tappaz ML, Leeman SE. On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra. Brain Res 1977; 135:315-23. [PMID: 922480 DOI: 10.1016/0006-8993(77)91034-4] [Citation(s) in RCA: 281] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Knife cuts in the frontal plane separating the anterior part of the caudate-putamen from the globus pallidus resulted in marked decreases in substances P levels in the reticular part of the substantia nigra. More caudal knife cuts were required in order to effect maximal decreases in nigral glutamic acid decarboxylase levels. Thus, there is a clear anatomical dissociation between the striatal neurons which project to the reticular part of the substantia nigra and which contain SP, and the more caudally located GAD-containing striatal and pallidal neurons, all of which travel through the globus pallidus on their way to the substantia nigra.
Collapse
|
|
48 |
281 |
5
|
Abstract
Molecular changes in the neostriatum of human subjects who died with a history of cocaine abuse were revealed in discrete cell populations by means of the techniques of in situ hybridization histochemistry and in vitro receptor binding and autoradiography. Cocaine subjects had a history of repeated cocaine use and had cocaine and/or cocaine metabolites on board at the time of death. These subjects were compared to control subjects that had both a negative history and toxicology of cocaine use. Selective alterations in mRNA levels of striatal neuropeptides were detected in cocaine subjects compared to control subjects, especially for the opioid peptides. Marked reductions in the levels of enkephalin mRNA and mu opiate receptor binding were found in the caudate and putamen, concomitant with elevations in levels of dynorphin mRNA and kappa opiate receptor binding in the putamen and caudate, respectively. Dopamine uptake site binding was reduced in the caudate and putamen of cocaine subjects. The greater magnitude of changes in the dorsolateral striatum (caudate and putamen) as opposed to the ventromedial striatum (nucleus accumbens) suggests that cocaine abuse preferentially alters the biosynthetic activity of striatal systems associated with sensorimotor functioning. Additionally, an imbalance in the activity of the two major striatal output pathways in cocaine users is implicated because peptide mRNA levels were reduced in enkephalinergic striatopallidal neurons and increased in dynorphinergic striatonigral neurons. Another imbalance, that of reductions of transmitter mRNA and receptor expression associated with euphoria (enkephalin and mu opiate receptors), together with elevations in mRNAs of transmitter systems associated with dysphoria (dynorphin and kappa opiate receptors), suggests a model of dysphoria and craving in the human cocaine addict brain.
Collapse
MESH Headings
- Adolescent
- Adult
- Autoradiography
- Cocaine
- Dynorphins/biosynthesis
- Enkephalins/biosynthesis
- Female
- Histocytochemistry
- Humans
- In Situ Hybridization
- Male
- Middle Aged
- Neostriatum/pathology
- Nucleus Accumbens/metabolism
- Putamen/metabolism
- RNA, Messenger/biosynthesis
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Substance P/biosynthesis
- Substance-Related Disorders/pathology
Collapse
|
|
32 |
232 |
6
|
Lu XY, Ghasemzadeh MB, Kalivas PW. Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience 1998; 82:767-80. [PMID: 9483534 DOI: 10.1016/s0306-4522(97)00327-8] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In situ hybridization was combined with FluoroGold retrograde labelling to determine the distribution of messenger RNAs for the D1 dopamine receptor, D2 dopamine receptor, beta-preprotachykinin or preproenkephalin in the neurons projecting from the nucleus accumbens to the ventral pallidum and the ventral tegmental area. Neurons were quantified in both the core and the shell of the nucleus accumbens to estimate the proportion of neurons projecting to the ventral pallidum or ventral tegmental area that contain transcripts for D1 receptors, D2 receptors, beta-preprotachykinin or preproenkephalin. Following the deposition of FluoroGold into the central ventral pallidum, both the core and the shell of the nucleus accumbens were retrogradely labelled, while deposits into the ventral tegmental area selectively labelled cells in the shell. A high percentage of nucleus accumbens neurons innervating the ventral tegmental area expressed messenger RNAs for D1 receptors (72%) and beta-preprotachykinin (62%), while less than 3% of the neurons contained messenger RNAs for preproenkephalin or D2 receptors. The neurons projecting to the ventral pallidum did not show the discrete distribution of transcripts as was observed in the accumbens-ventral tegmental area projection. Preproenkephalin messenger RNA was identified in 46% of the neurons innervating the ventral pallidum, and D2 receptor messenger RNA was found in approximately 40% of the cells. A large minority of neurons projecting from the nucleus accumbens to the ventral pallidum also expressed messenger RNAs for D1 receptors (37%) and beta-preprotachykinin (35%). While a higher percentage of D1 receptor, and beta-preprotachykinin messenger RNA expressing cells were located in the shell than in the core of the nucleus accumbens, the percentage tended to be higher in the core for cells expressing D2 receptors or preproenkephalin messenger RNA. These data indicate that messenger RNAs for D2 receptors and enkephalin are selectively expressed in the accumbens-pallidal projection while transcripts encoding D1 receptors and substance P are contained in the efferent projections to both the ventral pallidum and ventral tegmental area. The presence of D1 receptor and beta-preprotachykinin messenger RNAs in both mesencephalic and pallidal projections contrasts output from the striatum where the expression of D1 receptor and beta-preprotachykinin messenger RNAs is primarily restricted to the mesencephalic projection.
Collapse
|
|
27 |
229 |
7
|
Fischer A, McGregor GP, Saria A, Philippin B, Kummer W. Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent neurons by allergic airway inflammation. J Clin Invest 1996; 98:2284-91. [PMID: 8941645 PMCID: PMC507678 DOI: 10.1172/jci119039] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Substance P (SP), neurokinin A (NKA), and calcitonin gene-related peptide (CGRP) have potent proinflammatory effects in the airways. They are released from sensory nerve endings originating in jugular and dorsal root ganglia. However, the major sensory supply to the airways originates from the nodose ganglion. In this study, we evaluated changes in neuropeptide biosynthesis in the sensory airway innervation of ovalbumin-sensitized and -challenged guinea pigs at the mRNA and peptide level. In the airways, a three- to fourfold increase of SP, NKA, and CGRP, was seen 24 h following allergen challenge. Whereas no evidence of local tachykinin biosynthesis was found 12 h after challenge, increased levels of preprotachykinin (PPT)-A mRNA (encoding SP and NKA) were found in nodose ganglia. Quantitative in situ hybridization indicated that this increase could be accounted for by de novo induction of PPT-A mRNA in nodose ganglion neurons. Quantitative immunohistochemistry showed that 24 h after challenge, the number of tachykinin-immunoreactive nodose ganglion neurons had increased by 25%. Their projection to the airways was shown. Changes in other sensory ganglia innervating the airways were not evident. These findings suggest that an induction of sensory neuropeptides in nodose ganglion neurons is crucially involved in the increase of airway hyperreactivity in the late response to allergen challenge.
Collapse
|
research-article |
29 |
197 |
8
|
Armstrong DM, Pickel VM, Joh TH, Reis DJ, Miller RJ. Immunocytochemical localization of catecholamine synthesizing enzymes and neuropeptides in area postrema and medial nucleus tractus solitarius of rat brain. J Comp Neurol 1981; 196:505-17. [PMID: 6163796 DOI: 10.1002/cne.901960312] [Citation(s) in RCA: 187] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The catecholaminergic and peptidergic neurons in the area postrema and adjacent portion of the medial nucleus tractus solitarii (mNTS) were characterized by the immunocytochemical localization of the catecholamine synthesizing enzymes tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH) and phenylethanolamine-N-methyltransferase (PNMT) and two neuropeptides, substance P and (Leu5)-enkephalin. The catecholamine synthesizing enzymes TH and DBH, found jointly only in noradrenergic and adrenergic neurons, were localized in cells having a similar morphology and topographical distribution. These cells were located throughout the rostrocaudal and dorsoventral extent of the area postrema, as well as in neurons within the mNTS. The processes showing TH and DBH immunoreactivity appear to form reciprocal connections between the area postrema and mNTS. Phenylethanolamine-N-methyltransferase, the enzymatic marker found only in adrenergic neurons, was detected immunocytochemically in terminals distributed throughout the area postrema and in neuronal perikarya and varicosities within the adjacent mNTS. Like the catecholamine synthesizing enzymes TH and DBH, enkephalin-like immunoreactivity was localized to perikarya, proximal processes and varicose axon terminals within the area postrema and the adjacent mNTS. However, in contrast to the widespread distribution of the enzymes, the enkephalin-like immunoreactivity was localized predominantly along the dorsal and ventrolateral margins of the area postrema. The distribution of substance P immunoreactivity, which was detected only in varicose processes, paralleled the distribution of enkephalin-like immunoreactivity, being predominantly located along the dorsal and ventrolateral margins of the area postrema. Within the mNTS adjacent to the area postrema, substance P immunoreactivity was localized to neuronal perikarya, proximal processes and varicose axon terminals. Based upon the presence of appropriate biosynthetic enzyme markers and neuropeptide localization, these findings suggest that neurons within the area postrema contain noradrenalin and enkephalin and that the afferent axons contain substance P, adrenalin and, probably, noradrenalin.
Collapse
|
|
44 |
187 |
9
|
Zimmer A, Zimmer AM, Baffi J, Usdin T, Reynolds K, König M, Palkovits M, Mezey E. Hypoalgesia in mice with a targeted deletion of the tachykinin 1 gene. Proc Natl Acad Sci U S A 1998; 95:2630-5. [PMID: 9482938 PMCID: PMC19441 DOI: 10.1073/pnas.95.5.2630] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tachykinin neuropeptides, substance P and substance K, are produced in nociceptive primary sensory neurons and in many brain regions involved in pain signaling. However, the precise role and importance of these neuropeptides in pain responses has been debated. We now show that mice that cannot produce these peptides display no significant pain responses following formalin injection and have an increased pain threshold in the hotplate test. On the other hand, the mutant mice react normally in the tail flick assay and acetic acid-induced writhing tests. These results demonstrate that substance P and/or substance K have essential functions in specific responses to pain.
Collapse
|
research-article |
27 |
150 |
10
|
Woolf CJ. Phenotypic modification of primary sensory neurons: the role of nerve growth factor in the production of persistent pain. Philos Trans R Soc Lond B Biol Sci 1996; 351:441-8. [PMID: 8730783 DOI: 10.1098/rstb.1996.0040] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Inflammation results in an early and maintained elevation in nerve growth factor (NGF) levels in inflamed tissues. Neutralizing the action of the increased NGF with specific anti-NGF antibodies substantially diminishes inflammatory hypersensitivity, indicating that this neurotrophin is a key mediator in the production of inflammatory pain. The hyperalgesic actions of NGF may in part be the consequence of an increase in sensitivity of the peripheral terminals of high threshold nociceptors either as a result of a direct action of NGF on trkA expressing sensory fibres or indirectly via the release of sensitizing mediators from trkA expressing inflammatory cells and postganglionic sympathetic neurons. NGF is also, however, retrogradely transported in sensory neurons to the dorsal root ganglion where it alters transcription of a number of proteins and peptides. This chapter reviews evidence suggesting that an NGF-mediated modification of gene expression in the dorsal root ganglion during inflammation is central to the pathophysiology of persistent pain. The phenotype changes produced by NGF during inflammation include elevation of neuropeptides which may amplify sensory input signals in the spinal cord and augment neurogenic inflammation in the periphery and the upregulation of growth related molecules which may lead to a hyperinnervation of injured tissue by promoting terminal sprouting.
Collapse
|
Review |
29 |
150 |
11
|
Gold MS, Dastmalchi S, Levine JD. Co-expression of nociceptor properties in dorsal root ganglion neurons from the adult rat in vitro. Neuroscience 1996; 71:265-75. [PMID: 8834408 DOI: 10.1016/0306-4522(95)00433-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cell body of sensory neurons in vitro has been used as a model to study the electrophysiological properties of afferent terminals. A limitation of this approach has been the ability to identify the function of the neuron studied. In the present study, we have tested the hypothesis that a putative nociceptor can be identified in vitro based on the expression of properties associated with nociceptors in vivo. A combination of patch-clamp electrophysiological and immunohistochemical techniques were used to describe the expression of nociceptor properties in acutely cultured dorsal root ganglion neurons from the adult rat. These properties include: a small cell body diameter; the presence of the neuropeptides substance P and calcitonin-gene related peptide; a shoulder (inflection) on the falling phase of the somal action potential, a response to the algogenic agent capsaicin, and sensitization in response to prostaglandin E2. Our results indicate that the frequency of expression of each of these properties varies in a manner consistent with that predicted from observations made in vivo, and that when one property is present in any given neuron, the other properties are also likely to be present. These data support the suggestion that the cell body of adult rat dorsal root ganglion neurons in vitro can be used to study the electrophysiological properties of nociceptors.
Collapse
|
|
29 |
148 |
12
|
Iwasaki H, Kajimura M, Osawa S, Kanaoka S, Furuta T, Ikuma M, Hishida A. A deficiency of gastric interstitial cells of Cajal accompanied by decreased expression of neuronal nitric oxide synthase and substance P in patients with type 2 diabetes mellitus. J Gastroenterol 2006; 41:1076-1087. [PMID: 17160518 DOI: 10.1007/s00535-006-1909-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Accepted: 08/29/2006] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gastrointestinal motility is impaired in patients with diabetes mellitus (DM). Interstitial cells of Cajal (ICC) in the gastrointestinal tract play a central role in gastrointestinal motility. The present study examined whether ICC density, or expression of neuronal nitric oxide synthase (nNOS)- and substance P (SP)-containing nerves in the gastric antrum, were altered in patients with type 2 DM. METHODS Paraffin-embedded gastric specimens from 51 controls and 36 male DM patients with gastric cancer were used for immunohistochemistry. Serial sections were stained with Kit and mast cell tryptase-specific antibodies. Fresh-frozen gastric specimens from patients with gastric cancer were used for immunofluorescence. The specimens were stained with antibodies to Kit, nNOS, and SP, and levels of expression of these three markers were compared between controls and DM patients. RESULTS ICC density in the inner circular muscle layer, but not in the myenteric plexus, was lower in patients with severe DM than in controls in paraffin-embedded specimens. In addition, decreased expression of nNOS and SP accompanied by reduced ICC density was observed in frozen specimens from patients with DM. CONCLUSIONS These results suggest that lower gastric ICC, nNOS, and SP densities in patients with DM may be associated with the pathogenesis of diabetic gastroparesis.
Collapse
|
|
19 |
140 |
13
|
Svenningsson P, Le Moine C, Kull B, Sunahara R, Bloch B, Fredholm BB. Cellular expression of adenosine A2A receptor messenger RNA in the rat central nervous system with special reference to dopamine innervated areas. Neuroscience 1997; 80:1171-85. [PMID: 9284069 DOI: 10.1016/s0306-4522(97)00180-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cellular distribution of adenosine A2A receptor messenger RNA in the central nervous system was investigated using in situ hybridization with ribonucleotide probes. A specific expression was found in the dorsal (i.e. caudate putamen) and ventral (i.e. nucleus accumbens and olfactory tubercle) striatum, the lateral septum and in some cerebellar Purkinje cells. Simultaneous detection of radioactive and non-radioactive probes showed that the majority of adenosine A2A receptor messenger RNA-containing neurons in the dorsal and ventral striatum co-expressed dopamine D2 receptor messenger RNA and preproenkephalin A messenger RNA. However, a minor sub-population of neurons expressing adenosine A2A receptor messenger RNA, but not preproenkephalin A messenger RNA, was found in clusters along the ventral border of the nucleus accumbens. Only a small number of striatal neurons expressing dopamine D1 receptor or substance P messenger RNAs also expressed adenosine A2A receptor messenger RNA. Finally, in the ventral part of nucleus accumbens and in the olfactory tubercle a major sub-population of neurons expressed preproenkephalin A messenger RNA, but not adenosine A2A receptor messenger RNA. Cholinergic interneurons did not express adenosine A2A receptor messenger RNA. Thus, the extensive co-localization of adenosine A2A and dopamine D2 receptors previously described in the dorsal striatum extends into its ventral part. There is also a high degree of co-expression of adenosine A2A receptor messenger RNA and preproenkephalin A messenger RNA in the ventral striatum, but within this region several topologically defined sub-populations of neurons express only one of these transcripts. A majority of the adenosine A2A receptor messenger RNA-containing neurons in the lateral septum did contain preproenkephalin A messenger RNA, whereas only a few co-expressed dopamine D2 receptor messenger RNA. This detailed investigation demonstrates that most of the subcortical areas innervated by dopamine have an abundant, although restricted expression of the adenosine A2A receptor gene and that this receptor is expressed in very few cells outside these areas. These results predict that adenosine A2A receptors are involved not only in motor behaviour, but also in goal-oriented behaviours.
Collapse
|
|
28 |
139 |
14
|
Castagliuolo I, Keates AC, Qiu B, Kelly CP, Nikulasson S, Leeman SE, Pothoulakis C. Increased substance P responses in dorsal root ganglia and intestinal macrophages during Clostridium difficile toxin A enteritis in rats. Proc Natl Acad Sci U S A 1997; 94:4788-93. [PMID: 9114070 PMCID: PMC20803 DOI: 10.1073/pnas.94.9.4788] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/1997] [Indexed: 02/04/2023] Open
Abstract
Previously we reported that pretreatment of rats with the substance P (SP) antagonist CP-96,345 inhibits the enterotoxic responses following administration of toxin A from Clostridium difficile into ileal loops, indicating that SP participates in the intestinal responses to this toxin. We now report that injection of toxin A into rat ileum causes a rapid increase in SP content in lumbar dorsal root ganglia (DRG) and mucosal scrapings 30-60 min after toxin A administration. Toxin A-mediated fluid secretion, mannitol permeability, and ileal histologic damage is significantly increased only after 2 hr. Toxin A also causes an increase in the abundance of SP mRNA in lumbar DRG and ileal mucosa as measured by reverse transcription-PCR. Lamina propria macrophages (LPMs) obtained from toxin A-injected loops release greater amounts of tumor necrosis factor alpha (TNFalpha) and SP as compared with LPMs isolated from buffer-injected loops (P < 0.01). Pretreatment of rats with the SP antagonist CP-96,345 inhibits toxin A-mediated TNFalpha release from isolated LPMs, whereas an inactive enantiomer (CP-96,344) of the SP antagonist has no effect. LPMs obtained from toxin A-injected ileal loops incubated in vitro with SP (10(-8) to 10(-9) M) show enhanced TNFalpha secretion, whereas LPMs isolated from buffer-injected loops do not respond to SP. In addition, LPMs obtained from toxin A-injected ileal loops incubated in vitro with CP-96,345 showed a diminished TNFalpha release. Our results indicate that activated LPMs secrete SP during toxin A enteritis that can lead to secretion of cytokines, suggesting an autocrine/paracrine regulation of cytokine secretion by SP from LPMs during intestinal inflammation.
Collapse
|
research-article |
28 |
131 |
15
|
Copray JC, Mantingh I, Brouwer N, Biber K, Küst BM, Liem RS, Huitinga I, Tilders FJ, Van Dam AM, Boddeke HW. Expression of interleukin-1 beta in rat dorsal root ganglia. J Neuroimmunol 2001; 118:203-11. [PMID: 11498255 DOI: 10.1016/s0165-5728(01)00324-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression of interleukin-1beta was examined in dorsal root ganglion (DRG) neurons from adult rats using non-radioactive in situ hybridization and immunocytochemistry. At all spinal levels, approximately 70% of the DRG neurons appeared to express IL-1beta mRNA; about 80% of these DRG neurons actually appeared to produce the IL-1beta protein at markedly varying levels. The expression of IL-1beta was found in large as well as in intermediate diameter sensory neurons but only sporadically in the population of small sensory neurons. The population of IL-1beta immunopositive sensory neurons included most of the large calretinin-positive Ia afferents, but only a few of the small substance P/CGRP positive sensory neurons. In situ hybridization staining for the detection of type 1 IL-1 receptor showed expression of this receptor by most of the sensory neurons as well as by supportive glial-like cells, presumably satellite cells. The functional significance of IL-1beta in the DRG neurons needs to be elucidated, but we speculate that IL-1beta produced by DRG neurons may be an auto/paracrine signalling molecule in sensory transmission.
Collapse
|
|
24 |
126 |
16
|
Kawaguchi Y, Hoshimaru M, Nawa H, Nakanishi S. Sequence analysis of cloned cDNA for rat substance P precursor: existence of a third substance P precursor. Biochem Biophys Res Commun 1986; 139:1040-6. [PMID: 2429656 DOI: 10.1016/s0006-291x(86)80282-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sequence of the mRNA for the rat substance P precursor (preprotachykinin A) has been elucidated by molecular cloning and sequence analysis. The deduced amino acid sequence of rat preprotachykinin A indicates that it contains both substance P and substance K but differs in the sequence organization from either bovine alpha- or beta-preprotachykinin A reported previously. The existence of the bovine mRNA for the third preprotachykinin A has thus been examined and evidenced by the isolation of the corresponding cDNA clone. This mRNA, named gamma-preprotachykinin A mRNA, deletes the sequence precisely corresponding to the exon 4 sequence of the preprotachykinin A gene. Thus, alternative RNA splicing in the expression of the single preprotachykinin A gene results in the generation of three different forms of the preprotachykinin A mRNAs.
Collapse
|
|
39 |
123 |
17
|
Drago J, Gerfen CR, Westphal H, Steiner H. D1 dopamine receptor-deficient mouse: cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 1996; 74:813-23. [PMID: 8884777 DOI: 10.1016/0306-4522(96)00145-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Psychomotor stimulants such as cocaine alter gene expression in neurons of the striatum. Whereas many of these effects are mediated by D1 dopamine receptors, the involvement of other dopamine receptor subtypes or neurotransmitters is likely. To distinguish between these possibilities, regulation by cocaine of immediate-early genes and genes encoding neuropeptides was analysed in mice that lack functional D1 receptors. Gene expression was examined with in situ hybridization histochemistry. In these animals, cocaine failed to induce the immediate-early genes c-fos and zif 268. In contrast, substance P expression was abnormally increased by this drug. These results demonstrate that some of the effects of cocaine on gene regulation are mediated via D1 receptor-dependent mechanisms, as evidenced by the absence of immediate-early gene induction in D1-deficient mice, whereas others also involve additional, non-D1 receptor mechanisms, as shown for substance P expression.
Collapse
|
|
29 |
120 |
18
|
Galeazza MT, Garry MG, Yost HJ, Strait KA, Hargreaves KM, Seybold VS. Plasticity in the synthesis and storage of substance P and calcitonin gene-related peptide in primary afferent neurons during peripheral inflammation. Neuroscience 1995; 66:443-58. [PMID: 7477885 DOI: 10.1016/0306-4522(94)00545-g] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several indices of peptidergic, primary afferent neural transmission in rat at the level of the lumbar spinal cord exhibited differential changes over time in response to adjuvant-induced inflammation of the hindpaw. The indices were measurements of the production of messenger RNA encoding the precursors for substance P and calcitonin gene-related peptide in dorsal root ganglia, the storage of substance P and calcitonin gene-related peptide in the dorsal spinal cord and the release of the peptides evoked by application of capsaicin to the dorsal spinal cord. A 47% decrease in the content of immunoreactive substance P in the dorsal half of the lumbar spinal cord, as determined by radioimmunoassay, was measured at 6 h following the injection of complete Freund's adjuvant into the hindpaw. Decreased content of immunoreactive SP persisted for four days, but was no longer present at eight days after the adjuvant injection. The content of immunoreactive calcitonin gene-related peptide in the dorsal spinal cord was decreased by 29% at one day following the injection of adjuvant into the rat hindpaw and 43% at two days; the content then increased to a level greater than that of control animals at eight days. The amount of messenger RNA encoding preprotachykinin and prepro-calcitonin gene-related peptide in L4-L6 dorsal root ganglia was determined from northern blot analysis of the total messenger RNA extracted from the dorsal root ganglia. Each species of messenger RNA had increased compared to the control animals at two days following the injection of adjuvant into the rat hindpaws and remained elevated after eight days. Thus, an increase in the messenger RNAs encoding substance P and calcitonin gene-related peptide in the dorsal root ganglia preceeded the recovery of the content of the peptides in the spinal cord. Morphometric studies of calcitonin gene-related peptide-immunoreactive perikarya in the L4 dorsal root ganglia indicated that the increase in messenger RNA occurred in neurons of the size that normally express calcitonin gene-related protein. Radioimmunoassay of the superfusate of the dorsal half of the lumbar spinal cord was used to measure the release of immunoreactive substance P and immunoreactive calcitonin gene-related protein in vitro. Although the basal release of immunoreactive substance P and immunoreactive calcitonin-gene related protein from the dorsal spinal cord was constant throughout the time points examined, changes occurred in the release of peptide evoked by 10 microM capsaicin. The capsaicin-evoked release of immunoreactive substance P was decreased at 6 h and eight days post-injection of adjuvant.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
30 |
118 |
19
|
Johansson B, Lindström K, Fredholm BB. Differences in the regional and cellular localization of c-fos messenger RNA induced by amphetamine, cocaine and caffeine in the rat. Neuroscience 1994; 59:837-49. [PMID: 7520134 DOI: 10.1016/0306-4522(94)90288-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Male rats were treated i.p. with either 5 mg/kg amphetamine, 3 and 30 mg/kg cocaine or 100 mg/kg caffeine and killed after 30 min. Brains were sectioned and processed for radioactive in situ hybridization histochemistry for the labelling of either c-fos, enkephalin, substance P, neurokinin B, choline acetyltransferase, somatostatin or adenosine A2A receptor messenger RNA. The distribution of c-fos messenger RNA was investigated both at the regional level using film autoradiography, and at the cellular level using emulsion autoradiography. All drug treatments except 3 mg/kg cocaine induced an increased level of c-fos messenger RNA in cells that had a neuron-like morphology. The cells that contained the c-fos messenger RNA were identified by making pairs of 5-microns sections in which one section was processed for c-fos messenger RNA and the other was processed for one of the other messenger RNA species. After amphetamine treatment, only some 10% of the cells in the striatum were labelled, and to a variable extent. Instead there was prominent labelling of a band in the cortex that runs parallel to the cortical surface. There was also a moderate degree of labelling in the nucleus accumbens. c-fos-positive cells were substance P-positive and negative for enkephalin or A2A receptor messenger RNA. Cocaine (30 mg/kg) induced a modest labelling in the caudate-putamen, as well as in the accumbens. With cocaine treatment (30 mg/kg), about 30% of striatal neuron-like cells were c-fos labelled. Most c-fos-positive cells were substance P-positive, but none of the c-fos-positive cells were enkephalin-positive or A2A-receptor-positive. Cocaine (3 mg/kg) had no significant effect on c-fos. Caffeine gave rise to a strong hybridization signal in the caudate-putamen, particularly the dorsolateral part. No other region examined differed significantly from control. With caffeine treatment, about 73% of neuron-like cells were c-fos labelled in the lateral striatum, but labelling was much less pronounced in the medial part or in the accumbens. c-fos-labelled cells were found in enkephalin-positive and enkephalin-negative, substance P-positive and substance P-negative, neurokinin B-positive and neurokinin B-negative groups. No choline acetyltransferase-positive or somatostatin-positive cells were found that were also c-fos-positive with any of the treatments. We conclude that each of the different CNS stimulant drugs induces a highly specific pattern of c-fos messenger RNA.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
Comparative Study |
31 |
109 |
20
|
Bae YC, Oh JM, Hwang SJ, Shigenaga Y, Valtschanoff JG. Expression of vanilloid receptor TRPV1 in the rat trigeminal sensory nuclei. J Comp Neurol 2004; 478:62-71. [PMID: 15334649 DOI: 10.1002/cne.20272] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Little is known about the central projection patterns of trigeminal afferent neurons expressing the vanilloid receptor TRPV1 and their coexpression of neuromodulatory peptides. To address these issues, we examined the distribution of TRPV1-positive neurons in the trigeminal ganglion (TG) and trigeminal sensory nuclei principalis (Vp), oralis (Vo), interpolaris (Vi), and caudalis (Vc) in the rat via light and electron microscopy. In addition, we studied the colocalization of TRPV1-positive neurons with substance P (SP) and calcitonin gene-related peptide (CGRP) via confocal microscopy. In TG, only small and medium-sized neurons were immunopositive for TRPV1. The staining for TRPV1 was found in axon collaterals in the dorsal parts of Vp, Vo, and Vi and in terminals and fibers throughout lamina I and the outer zone of lamina II (IIo) of Vc. With electron microscopy, TRPV1-positive fibers in the ascending and descending trigeminal tracts were found to be unmyelinated. Almost all TRPV1-positive terminals in Vc contained numerous large dense-core vesicles and formed synaptic contacts with single small dendrites. Multiple immunofluorescence revealed a high degree of colocalization of TRPV1 with SP and CGRP in TG neurons as well as in fibers and terminals confined to laminae I and IIo of Vc. These results suggest that the central projections of unmyelinated (C) afferents sensitive to noxious heat and capsaicin are organized differently between Vc and the rostral trigeminal nuclei and that Vc may play a role in the development of hyperalgesia.
Collapse
|
|
21 |
101 |
21
|
Diemel LT, Brewster WJ, Fernyhough P, Tomlinson DR. Expression of neuropeptides in experimental diabetes; effects of treatment with nerve growth factor or brain-derived neurotrophic factor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 21:171-5. [PMID: 7513041 DOI: 10.1016/0169-328x(94)90391-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rats with streptozotocin-induced diabetes of 4 to 6 weeks duration showed a depletion of both substance P (P < 0.01) and calcitonin gene-related peptide (P < 0.01) in the sciatic nerve. Since expression of both peptides is sensitive to nerve growth factor (NGF) in vitro we examined the effect of treatment of diabetic rats with NGF, which significantly increased the levels of both peptides in treated diabetic animals (P < 0.01 for both). Treatment of non-diabetic rats with a similar NGF regime raised the mean peptide levels to a value similar to that seen in treated diabetic rats but the change was not statistically significant. In vehicle-treated diabetic rats the depletions of sciatic nerve neuropeptides were accompanied by a significant (P < 0.05) reduction in the level of CGRP mRNA in the 4th and 5th lumbar dorsal root ganglia, this was accompanied by an analogous reduction in the mRNA for gamma-preprotachykinin A (gamma-PPT), which did not attain statistical significance. Treatment of diabetic rats with NGF also prevented the deficits in the levels of CGRP and gamma-PPT mRNA in the lumbar dorsal root ganglia (P < 0.05). Treatment of other diabetic rats with the related neurotrophin, brain-derived neurotrophic factor (BDNF), had no effect on the levels of substance P and calcitonin gene-related peptide in the sciatic nerve.
Collapse
|
|
31 |
101 |
22
|
Sun Y, Zigmond RE. Leukaemia inhibitory factor induced in the sciatic nerve after axotomy is involved in the induction of galanin in sensory neurons. Eur J Neurosci 1996; 8:2213-20. [PMID: 8921314 DOI: 10.1111/j.1460-9568.1996.tb00744.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dramatic changes occur in neuropeptide expression in sensory and sympathetic neurons following axonal injury. Based on the finding that the cytokine leukemia inhibitory factor (LIF) plays an important role in mediating these changes in sympathetic neurons, its participation in triggering changes in sensory neurons was examined. By the use of transgenic mice in which the LIF gene had been knocked out, LIF was found to contribute to the induction of galanin expression in dorsal root ganglia (DRG) after sciatic nerve lesion. On the other hand, two other neuropeptide changes that occur in DRG under these conditions, the reduction of substance P and induction of neuropeptide Y, were independent of LIF expression. In the sympathetic superior cervical ganglion, transection of the postganglionic nerves close to the ganglion resulted in a rapid induction of LIF mRNA in the ganglion and in the lesioned nerve trunk. In contrast, transection of the sciatic nerve close to or distant from the DRG caused a rapid induction of LIF mRNA in the lesioned nerve, but not in the DRG. DRG were capable of making substantial amounts of LIF mRNA when placed in explant cultures, but, in vivo, only a slight induction was found even when both central and peripheral nerve processes of these sensory neurons were transected. These latter observations suggest that, in contrast to the superior cervical ganglia, the DRG environment inhibits the lesion-induced expression of LIF in vivo and/or explanted DRG produce stimulatory signals not found in vivo. Together with the data on the induction of galanin, these observations provide evidence that LIF, generated at a site at some distance from the ganglion, is involved in triggering part of the cell body reaction in sensory neurons.
Collapse
|
Comparative Study |
29 |
100 |
23
|
Minami M, Kuraishi Y, Kawamura M, Yamaguchi T, Masu Y, Nakanishi S, Satoh M. Enhancement of preprotachykinin A gene expression by adjuvant-induced inflammation in the rat spinal cord: possible involvement of substance P-containing spinal neurons in nociception. Neurosci Lett 1989; 98:105-10. [PMID: 2469044 DOI: 10.1016/0304-3940(89)90382-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Effects of adjuvant-induced inflammation on the biosynthesis of substance P in the rat nervous system were examined by measuring the levels of mRNA encoding preprotachykinin A (PPT-A, the precursor protein of substance P). Following injection of adjuvant into the bilateral hind paws, the levels of PPT-A mRNA were significantly increased in the dorsal root ganglia at L4-L6 levels and the lumbar spinal cord, but not in the striatum, midbrain and medulla oblongata. After the unilateral injection of adjuvant which produced inflammation only in the injected hind paw, increase in the mRNA level was observed only on the treated side of the spinal cord. These results suggest that biosynthesis of substance P in the spinal and primary sensory neurons was increased by adjuvant-induced inflammation with hyperalgesia. Substance P-containing spinal neurons may be involved in processes related to pain.
Collapse
|
|
36 |
98 |
24
|
Metwali A, Blum AM, Ferraris L, Klein JS, Fiocchi C, Weinstock JV. Eosinophils within the healthy or inflamed human intestine produce substance P and vasoactive intestinal peptide. J Neuroimmunol 1994; 52:69-78. [PMID: 7515901 DOI: 10.1016/0165-5728(94)90164-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The purpose of this study was to show if inflammatory cells within healthy or diseased human intestinal mucosa produce some regulatory neuropeptides. First, inflammatory cells were isolated from the intestinal lamina propria of 11 patients with ulcerative colitis or Crohn's disease. Also collected were cells from anatomically normal intestine derived from five patients requiring bowel resection for diseases not related to inflammatory bowel disease. Extracts of these isolated cells contained authentic substance P (SP) and vasoactive intestinal peptide (VIP) as shown by RIA and their elution profiles on HPLC. Immunostaining of cells from nine of 13 additional patients localized immunoreactive SP and VIP to secretory granules within most mucosal eosinophils. No other cell types stained positive. Messenger RNA encoding SP and VIP was localized to lamina propria eosinophils by in situ hybridization. Mucosa inflammatory cells, from eight of nine more patients, cultured in vitro, released detectable amounts of VIP, but not SP. It is concluded that intestinal eosinophils produce SP and VIP. Since the eosinophils store and release more VIP than SP, it is possible that VIP is the preferred secretory product.
Collapse
|
|
31 |
97 |
25
|
Noguchi K, Dubner R, De Leon M, Senba E, Ruda MA. Axotomy induces preprotachykinin gene expression in a subpopulation of dorsal root ganglion neurons. J Neurosci Res 1994; 37:596-603. [PMID: 7518007 DOI: 10.1002/jnr.490370506] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The distribution of dorsal root ganglion (DRG) cell sizes that show changes in preprotachykinin (PPT) gene expression and substance P (SP) levels following axotomy was examined using RNA blot analysis, in situ hybridization histochemistry, and immunocytochemistry. PPT mRNA was induced in medium-sized (1,000-2,000 microns 2) and large-sized (> 2,000 microns 2) cells in the DRG after axotomy. There was a 165% increase in the number of labeled cells after sciatic transection and a 260% increase after spinal nerve transection which results in axotomy of all the cells in the ganglion. The further increase after spinal nerve transection suggests that the induction occurred in axotomized neurons. PPT mRNA label was also present in a reduced number of small (< 1,000 microns 2) cells after axotomy. SP immunoreactivity was also induced in medium- and large-sized cells and reduced in small-sized cells. Our findings suggest that the expression of the PPT gene and SP is differentially regulated in different subpopulations of DRG neurons after axotomy and is consistent with the hypothesis that tachykinins may be important in both sensory transmission and regeneration.
Collapse
|
Comparative Study |
31 |
97 |