1
|
Holzer P, Holzer-Petsche U. Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation. Pharmacol Ther 1997; 73:219-63. [PMID: 9175156 DOI: 10.1016/s0163-7258(96)00196-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The preprotachykinin-A gene-derived peptides substance (substance P; SP) and neurokinin (NK) A are expressed in intrinsic enteric neurons, which supply all layers of the gut, and extrinsic primary afferent nerve fibers, which innervate primarily the arterial vascular system. The actions of tachykinins on the digestive effector systems are mediated by three different types of tachykinin receptor, termed NK1, NK2 and NK3 receptors. Within the enteric nervous system, SP and NKA are likely to mediate, or comediate, slow synaptic transmission and to modulate neuronal excitability via stimulation of NK3 and NK1 receptors. In the intestinal mucosa, tachykinins cause net secretion of fluid and electrolytes, and it appears as if SP and NKA play a messenger role in intramural secretory reflex pathways. Secretory processes in the salivary glands and pancreas are likewise influenced by tachykinins. The gastrointestinal arterial system may be dilated or constricted by tachykinins, whereas constriction and an increase in the vascular permeability are the only effects seen in the venous system. Various gastrointestinal disorders are associated with distinct changes in the tachykinin system, and there is increasing evidence that tachykinins participate in the hypersecretory, vascular and immunological disturbances associated with infection and inflammatory bowel disease. In a therapeutic perspective, it would seem conceivable that tachykinin antagonists could be exploited as antidiarrheal, antiinflammatory and antinociceptive drugs.
Collapse
|
Review |
28 |
166 |
2
|
Datar P, Srivastava S, Coutinho E, Govil G. Substance P: structure, function, and therapeutics. Curr Top Med Chem 2004; 4:75-103. [PMID: 14754378 DOI: 10.2174/1568026043451636] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extensive efforts since 1931, on the structural determination of the mammalian tachykinin SP by NMR, CD and IR have turned out to be inconclusive. Studies are now being concentrated on the structural properties and characteristics of various NK receptors (NK(1), NK(2) and NK(3)) with the help of genetics, cloning, receptor engineering, mutagenesis and modeling. This knowledge is now being fruitfully used in the development of non-peptide NK(1) receptor antagonists that essentially block the pharmacological effects of SP. It is now being realized that the simultaneous blockade of two or more receptors gives promising results in emesis, depression and pulmonary obstructive diseases. In addition to the synthetic compounds, the discovery of antagonists from natural origin has added a great value to this field. In this review we have made an attempt to present the structural characteristics of SP, its analogs and antagonists, the structural characteristics of the NK receptor, and structure activity relationships that have helped to improve the therapeutic utilities of SP antagonists.
Collapse
|
Review |
21 |
116 |
3
|
Kneifel S, Cordier D, Good S, Ionescu MCS, Ghaffari A, Hofer S, Kretzschmar M, Tolnay M, Apostolidis C, Waser B, Arnold M, Mueller-Brand J, Maecke HR, Reubi JC, Merlo A. Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance p. Clin Cancer Res 2006; 12:3843-50. [PMID: 16778112 DOI: 10.1158/1078-0432.ccr-05-2820] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Malignant glial brain tumors consistently overexpress neurokinin type 1 receptors. In classic seed-based brachytherapy, one to several rigid (125)I seeds are inserted, mainly for the treatment of small low-grade gliomas. The complex geometry of rapidly proliferating high-grade gliomas requires a diffusible system targeting tumor-associated surface structures to saturate the tumor, including its margins. EXPERIMENTAL DESIGN We developed a new targeting vector by conjugating the chelator 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid to Arg(1) of substance P, generating a radiopharmaceutical with a molecular weight of 1,806 Da and an IC(50) of 0.88 +/- 0.34 nmol/L. Cell biological studies were done with glioblastoma cell lines. neurokinin type-1 receptor (NK1R) autoradiography was done with 58 tumor biopsies. For labeling, (90)Y was mostly used. To reduce the "cross-fire effect" in critically located tumors, (177)Lut and (213)Bi were used instead. In a pilot study, we assessed feasibility, biodistribution, and early and long-term toxicity following i.t. injection of radiolabeled 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid substance P in 14 glioblastoma and six glioma patients of WHO grades 2 to 3. RESULTS Autoradiography disclosed overexpression of NK1R in 55 of 58 gliomas of WHO grades 2 to 4. Internalization of the peptidic vector was found to be specific. Clinically, the radiopharmeutical was distributed according to tumor geometry. Only transient toxicity was seen as symptomatic radiogenic edema in one patient (observation period, 7-66 months). Disease stabilization and/or improved neurologic status was observed in 13 of 20 patients. Secondary resection disclosed widespread radiation necrosis with improved demarcation. CONCLUSIONS Targeted radiotherapy using diffusible peptidic vectors represents an innovative strategy for local control of malignant gliomas, which will be further assessed as a neoadjuvant approach.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
112 |
4
|
Holmdahl G, Håkanson R, Leander S, Rosell S, Folkers K, Sundler F. A substance P antagonist, [D-Pro2, D-Trp7,9]SP, inhibits inflammatory responses in the rabbit eye. Science 1981; 214:1029-31. [PMID: 6171036 DOI: 10.1126/science.6171036] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neurogenic factors released by antidromic nerve stimulation are thought to be in part responsible for the vasodilation and breakdown of the blood-aqueous barrier that follows trauma to the eye. Substance P is one candidate for the mediation of the inflammatory response since it is thought to be a neurotransmitter in sensory afferents and since exogenous substance P is capable of eliciting a response characteristic of inflammation. In rabbits, intravitreal or topical application onto the eye of a specific substance P antagonist, [d-Pro2, D-Trp7,9]SP, inhibited not only the irritant effects of exogenous substance P but also the inflammatory response to a standardized trauma (infrared irradiation of the iris). These observations suggest that substance P, or a related peptide, is a neurogenic mediator of the inflammatory response in the eye.
Collapse
|
|
44 |
104 |
5
|
Guran T, Tolhurst G, Bereket A, Rocha N, Porter K, Turan S, Gribble FM, Kotan LD, Akcay T, Atay Z, Canan H, Serin A, O'Rahilly S, Reimann F, Semple RK, Topaloglu AK. Hypogonadotropic hypogonadism due to a novel missense mutation in the first extracellular loop of the neurokinin B receptor. J Clin Endocrinol Metab 2009; 94:3633-3639. [PMID: 19755480 PMCID: PMC4306717 DOI: 10.1210/jc.2009-0551] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The neurokinin B (NKB) receptor, encoded by TACR3, is widely expressed within the central nervous system, including hypothalamic nuclei involved in regulating GnRH release. We have recently reported two mutations in transmembrane segments of the receptor and a missense mutation in NKB in patients with normosmic isolated hypogonadotropic hypogonadism (nIHH). PATIENTS AND METHODS We sequenced the TACR3 gene in a family in which three siblings had nIHH. The novel mutant receptor thus identified was studied in a heterologous expression system using calcium flux as the functional readout. RESULTS All affected siblings were homozygous for the His148Leu mutation, in the first extracellular loop of the NKB receptor. The His148Leu mutant receptor exhibited profoundly impaired signaling in response to NKB (EC(50) = 3 +/- 0.1 nm and >5 microm for wild-type and His148Leu, respectively). The location of the mutation in an extracellular part of the receptor led us also to test whether senktide, a synthetic NKB analog, may retain ability to stimulate the mutant receptor. However, the signaling activity of the His148Leu receptor in response to senktide was also severely impaired (EC(50) = 1 +/- 1 nm for wild-type and no significant response of His148Leu to 10 microm). CONCLUSIONS Homozygosity for the TACR3 His148Leu mutation leads to failure of sexual maturation in humans, whereas signaling by the mutant receptor in vitro in response to either NKB or senktide is severely impaired. These observations further strengthen the link between NKB, the NKB receptor, and regulation of human reproductive function.
Collapse
|
Case Reports |
16 |
102 |
6
|
Nagano T, Nakamura M, Nakata K, Yamaguchi T, Takase K, Okahara A, Ikuse T, Nishida T. Effects of substance P and IGF-1 in corneal epithelial barrier function and wound healing in a rat model of neurotrophic keratopathy. Invest Ophthalmol Vis Sci 2003; 44:3810-5. [PMID: 12939296 DOI: 10.1167/iovs.03-0189] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To establish a rat model of neurotrophic keratopathy and to examine the effects of the combination of substance P (SP) and insulin-like growth factor (IGF)-1 on corneal epithelial barrier function and wound healing in this model. METHODS Corneal denervation was achieved by thermocoagulation of the ophthalmic branch of the trigeminal nerve. A modified Schirmer test was performed without topical anesthesia. Corneal epithelial barrier function was assessed by measurement of fluorescein permeability with an anterior fluorophotometer. Epithelial wound healing was evaluated by measurement of the area of the defect at various times after removal of the entire epithelium. Eye drops containing both 1 mM SP and IGF-1 (1 micro g/mL) were administered six times daily. RESULTS The Schirmer test result in eyes subjected to trigeminal denervation was lower than that in control eyes. The fluorescein permeability of the corneal epithelium of denervated eyes was increased relative to that of control eyes. Furthermore, trigeminal denervation induced a delay in corneal epithelial wound healing. Application of eye drops containing SP and IGF-1 to denervated corneas restored the fluorescein permeability of the corneal epithelium to control levels and abolished the delay in epithelial wound healing. CONCLUSIONS A rat model of neurotrophic keratopathy, characterized by reduced tear secretion, loss of corneal sensation, impaired epithelial barrier function, and delayed epithelial wound healing, was established by trigeminal denervation. Treatment with both SP and IGF-1 improved corneal epithelial barrier function and stimulated corneal epithelial wound healing in this model.
Collapse
|
|
22 |
99 |
7
|
|
Review |
43 |
86 |
8
|
Brown SM, Lamberts DW, Reid TW, Nishida T, Murphy CJ. Neurotrophic and anhidrotic keratopathy treated with substance P and insulinlike growth factor 1. ARCHIVES OF OPHTHALMOLOGY (CHICAGO, ILL. : 1960) 1997; 115:926-7. [PMID: 9230840 DOI: 10.1001/archopht.1997.01100160096021] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
Case Reports |
28 |
61 |
9
|
Heppelmann B, Pawlak M. Inhibitory effect of somatostatin on the mechanosensitivity of articular afferents in normal and inflamed knee joints of the rat. Pain 1997; 73:377-382. [PMID: 9469528 DOI: 10.1016/s0304-3959(97)00124-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of somatostatin on the sensory activity of primary afferents was studied in normal and acutely inflamed rat knee joints. Fine afferent nerve fibers with conduction velocities of 0.9-18.0 m/s were recorded as single units. All nerve fibers tested responded to local mechanical stimulation, movements of the joint and i.a. injections of KCl (10(-4) mol, 0.1 ml) close to the joint. Somatostatin (10(-4) mol, 0.2 ml) caused no direct response of the units. In normal joints, somatostatin did not change the discharges evoked by non-noxious movements but decreased the responses to noxious movements significantly to about 63% of the responses before the application. In acutely inflamed joints, somatostatin reduced the discharges of non-noxious and of noxious movements to about 55% and 52%, respectively. Injections of somatostatin with lower concentrations (10(-6) mol, 10(-8) mol) i.a. close to inflamed joints revealed shorter and less pronounced reductions of the responses to noxious movements. In a proportion of afferents, substance P (10(-4) mol) and bradykinin (10(-4) mol) were able to increase these responses again. These data indicate that the mechanosensitivity of articular afferents in normal joints may also be regulated by several neuropeptides based on a balance of pro-inflammatory peptides such as substance P, and anti-inflammatory peptides such as somatostatin. In an inflamed joint, pro-inflammatory peptides seem to predominate resulting in a sensitization of the peripheral nerve fibers. In this case, an application of somatostatin or its analogues could be used clinically to compensate this effect.
Collapse
|
|
28 |
57 |
10
|
Hasenöhrl RU, Jentjens O, De Souza Silva MA, Tomaz C, Huston JP. Anxiolytic-like action of neurokinin substance P administered systemically or into the nucleus basalis magnocellularis region. Eur J Pharmacol 1998; 354:123-33. [PMID: 9754912 DOI: 10.1016/s0014-2999(98)00441-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is evidence that the neurokinin substance P plays a role in neural mechanisms governing learning and reinforcement. Reinforcing and memory-promoting effects of substance P were found after it was injected into several parts of the brain and intraperitoneally. With regard to the close link between anxiety and memory processes for negative reinforcement learning, the aim of the present study was to gauge the effect of substance P on anxiety-related behaviors in the rat elevated plus-maze and social interaction test. Substance P was tested at injection sites where the neurokinin has been shown to promote learning and to serve as a reinforcer, namely in the periphery (after i.p. administration) and after injection into the nucleus basalis magnocellularis region. When administered i.p., substance P had a biphasic dose-response effect on behavior in the plus-maze with an anxiolytic-like action at 50 microg/kg and an anxiogenic-like one at 500 microg/kg. After unilateral microinjection into the nucleus basalis magnocellularis region, substance P (1 ng) was found to exert anxiolytic-like effects, because substance P-treated rats spent more time on the open arms of the plus-maze and showed an increase in time spent in social interaction. Furthermore, the anxiolytic effects of intrabasalis substance P were sequence-specific since injection of a compound with the inverse amino acid sequence of substance P (0.1 to 100 ng) did not influence anxiety parameters. These results show that substance P has anxiolytic-like properties in addition to its known promnestic and reinforcing effects, supporting the hypothesis of a close relationship between anxiety, memory and reinforcement processes.
Collapse
|
|
27 |
56 |
11
|
Donkin JJ, Turner RJ, Hassan I, Vink R. Substance P in traumatic brain injury. PROGRESS IN BRAIN RESEARCH 2007; 161:97-109. [PMID: 17618972 DOI: 10.1016/s0079-6123(06)61007-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent evidence has suggested that neuropeptides, and in particular substance P (SP), may play a critical role in the development of morphological injury and functional deficits following acute insults to the brain. Few studies, however, have examined the role of SP, and more generally, neurogenic inflammation, in the pathophysiology of traumatic brain injury and stroke. Those studies that have been reported suggest that SP is released following injury to the CNS and facilitates the increased permeability of the blood brain barrier, the development of vasogenic edema and the subsequent cell death and functional deficits that are associated with these events. Inhibition of the SP activity, either through inhibition of the neuropeptide release or the use of SP receptor antagonists, have consistently resulted in profound decreases in edema formation and marked improvements in functional outcome. The current review summarizes the role of SP in acute brain injury, focussing on its properties as a neurotransmitter and the potential for SP to adversely affect outcome.
Collapse
|
Review |
18 |
52 |
12
|
Nakamura M, Kawahara M, Nakata K, Nishida T. Restoration of corneal epithelial barrier function and wound healing by substance P and IGF-1 in rats with capsaicin-induced neurotrophic keratopathy. Invest Ophthalmol Vis Sci 2003; 44:2937-40. [PMID: 12824234 DOI: 10.1167/iovs.02-0868] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the effects of topical application of the combination of substance P (SP) and insulin-like growth factor (IGF)-1 on corneal epithelial barrier function and epithelial wound closure in rats with capsaicin-induced neurotrophic keratopathy. METHODS Neonatal rats were injected subcutaneously with a single dose of capsaicin to induce neurotrophic keratopathy. Corneal epithelial barrier function was evaluated with an anterior fluorophotometer. Tear fluid secretion was measured by the Schirmer test. Corneal epithelial wound healing was determined by measurement of the size of the epithelial defect after debridement of the entire epithelium. The combination of SP (1 mM) and IGF-1 (1 micro g/mL) in phosphate-buffered saline was administered in eye drops six times daily. RESULTS Corneal epithelial barrier function was impaired and corneal epithelial wound healing was delayed in rats injected with capsaicin. The application of eye drops containing the combination of SP and IGF-1 to capsaicin-injected rats resulted in a significant improvement in corneal epithelial barrier function compared with that apparent in capsaicin-injected animals that received eye drops containing vehicle alone. Such treatment with SP and IGF-1 also significantly increased the rate of corneal epithelial wound closure in capsaicin-injected animals. CONCLUSIONS Topical application of the combination of SP and IGF-1 improved both corneal epithelial barrier function and epithelial wound healing in an animal model of neurotrophic keratopathy.
Collapse
|
|
22 |
51 |
13
|
Nakai K, Kasamatsu T. Accelerated regeneration of central catecholamine fibers in cat occipital cortex: effects of substance P. Brain Res 1984; 323:374-9. [PMID: 6084541 DOI: 10.1016/0006-8993(84)90317-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Remarkably fast regeneration of central noradrenaline (NA) fibers was recently observed in the 6-hydroxydopamine (6-OHDA)-perfused occipital cortex. In the present study, we found that this reinnervation by NA fibers was further accelerated by substance P (SP) perfused into the fourth ventricle but not by SP directly perfused into the cortex. The site of SP's action is therefore most likely located in the soma-dendritic area of NA cells in the locus coeruleus (LC). The regeneration-stimulating effect of SP seems to be mediated by a process specific to SP, since the similar treatment with bethanechol in place of SP was ineffective.
Collapse
|
|
41 |
50 |
14
|
Patterson M, Bloom SR, Gardiner JV. Ghrelin and appetite control in humans--potential application in the treatment of obesity. Peptides 2011; 32:2290-4. [PMID: 21835215 DOI: 10.1016/j.peptides.2011.07.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/13/2011] [Accepted: 07/22/2011] [Indexed: 12/15/2022]
Abstract
Ghrelin is a peptide hormone secreted into circulation from the stomach. It has been postulated to act as a signal of hunger. Ghrelin administration acutely increases energy intake in lean and obese humans and chronically induces weight gain and adiposity in rodents. Circulating ghrelin levels are elevated by fasting and suppressed following a meal. Inhibiting ghrelin signaling therefore appears an attractive target for anti-obesity therapies. A number of different approaches to inhibiting the ghrelin system to treat obesity have been explored. Despite this, over a decade after its discovery, no ghrelin based anti-obesity therapies are close to reaching the market. This article discusses the role of ghrelin in appetite control in humans, examines different approaches to inhibiting the ghrelin system and assesses their potential as anti-obesity therapies.
Collapse
|
Review |
14 |
49 |
15
|
Darmani NA, Wang Y, Abad J, Ray AP, Thrush GR, Ramirez J. Utilization of the least shrew as a rapid and selective screening model for the antiemetic potential and brain penetration of substance P and NK1 receptor antagonists. Brain Res 2008; 1214:58-72. [PMID: 18471804 PMCID: PMC2486262 DOI: 10.1016/j.brainres.2008.03.077] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 03/20/2008] [Accepted: 03/24/2008] [Indexed: 02/06/2023]
Abstract
Substance P (SP) is thought to play a cardinal role in emesis via the activation of central tachykinin NK1 receptors during the delayed phase of vomiting produced by chemotherapeutics. Although the existing supportive evidence is significant, due to lack of an appropriate animal model, the evidence is indirect. As yet, no study has confirmed that emesis produced by SP or a selective NK1 receptor agonist is sensitive to brain penetrating antagonists of either NK1, NK2, or NK3 receptors. The goals of this investigation were to demonstrate: 1) whether intraperitoneal (i.p.) administration of either SP, a brain penetrating (GR73632) or non-penetrating (e.g. SarMet-SP) NK1 receptor agonist, an NK2 receptor agonist (GR64349), or an NK3 receptor agonist (Pro7-NKB), would induce vomiting and/or scratching in the least shrew (Cryptotis parva) in a dose-dependent manner; and whether these effects are sensitive to the above selective receptor antagonists; 2) whether an exogenous emetic dose of SP (50 mg/kg, i.p.) can penetrate into the shrew brain stem and frontal cortex; 3) whether GR73632 (2.5 mg/kg, i.p.)-induced activation of NK1 receptors increases Fos-measured neuronal activity in the neurons of both brain stem emetic nuclei and the enteric nervous system of the gut; and 4) whether selective ablation of peripheral NK1 receptors can affect emesis produced by GR73632. The results clearly demonstrated that while SP produced vomiting only, GR73632 caused both emesis and scratching behavior dose-dependently in shrews, and these effects were sensitive to NK1-, but not NK2- or NK3-receptor antagonists. Neither the selective, non-penetrating NK1 receptor agonists, nor the selective NK2- or NK3-receptor agonists, caused a significant dose-dependent behavioral effect. An emetic dose of SP selectively and rapidly penetrated the brain stem but not the frontal cortex. Systemic GR73632 increased Fos expression in the enteric nerve plexi, the medial subnucleus of nucleus tractus solitarius, and the dorsal motor nucleus of the vagus, but not the area postrema. Ablation of peripheral NK1 receptors attenuated the ability of GR73632 to induce a maximal frequency of emesis and shifted its percent animals vomiting dose-response curve to the right. The NK1-ablated shrews exhibited scratching behavior after systemic GR73632-injection. These results, for the first time, affirm a cardinal role for central NK1 receptors in SP-induced vomiting, and a facilitatory role for gastrointestinal NK1 receptors. In addition, these data support the validation of the least shrew as a specific and rapid behavioral animal model to screen concomitantly both the CNS penetration and the antiemetic potential of tachykinin NK1 receptor antagonists.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
47 |
16
|
Hazlett LD, McClellan SA, Barrett RP, Liu J, Zhang Y, Lighvani S. Spantide I decreases type I cytokines, enhances IL-10, and reduces corneal perforation in susceptible mice after Pseudomonas aeruginosa infection. Invest Ophthalmol Vis Sci 2007; 48:797-807. [PMID: 17251480 DOI: 10.1167/iovs.06-0882] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the effects of blocking substance P (SP) interactions with its major receptor (NK1-R) using the antagonist spantide I in susceptible mice infected with Pseudomonas aeruginosa. METHODS Immunohistochemistry and enzyme immunosorbent assay (EIA) tested levels of SP in the cornea of B6 and BALB/c mice. B6 mice were treated with spantide, and after infection, slit lamp examination; clinical score; bacterial counts; and myeloperoxidase (MPO), RT-PCR, ELISA, and polymorphonuclear (PMN) cell chemotaxis assays were performed. RESULTS SP corneal levels were significantly elevated constitutively and after infection in the B6 more than in BALB/c mice. Spantide treatment of B6 mice significantly decreased the number of perforated corneas, bacterial counts, and PMNs. mRNA levels for type I cytokines (e.g., IFN-gamma) as well as MIP-2, IL-6, TNF-alpha, and IL-1beta (mRNA and protein) also were significantly reduced after spantide treatment. The type II cytokine IL-10 (mRNA and protein) was elevated, whereas TGF-beta mRNA levels were unchanged after spantide treatment. PMN chemotaxis was induced by SP and other neuropeptides in vitro, but was not affected by spantide I. mRNA for neurokinin-1-receptor-1 (NK-1R) was detected in the normal and infected corneas and on macrophages (Mphis), but not on PMNs (unstimulated or stimulated with endotoxin [LPS]). Spantide treatment of Mphis reduced IL-1beta after LPS+SP treatment but not after either alone. CONCLUSIONS The SP antagonist Spantide provides a novel approach to reduce type 1 and enhance the type 2 cytokine IL-10 in the infected cornea of B6 mice, leading to a significant reduction in corneal perforation and improved disease outcome.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
43 |
17
|
Schulze-Neick I, Penny DJ, Rigby ML, Morgan C, Kelleher A, Collins P, Li J, Bush A, Shinebourne EA, Redington AN. L-arginine and substance P reverse the pulmonary endothelial dysfunction caused by congenital heart surgery. Circulation 1999; 100:749-55. [PMID: 10449698 DOI: 10.1161/01.cir.100.7.749] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The increase in pulmonary vascular resistance (PVR) seen in children after cardiopulmonary bypass has been attributed to transient pulmonary endothelial dysfunction (PED). We therefore examined PED in children with congenital heart disease by assessing the L-arginine-nitric oxide (NO) pathway in terms of substrate supplementation (L-arginine [L-Arg]), stimulation of endogenous NO release (substance P [Sub-P]), and end-product provision (inhaled NO) before and after open heart surgery. METHODS AND RESULTS Ten patients (aged 0.62+/-0.27 years) with pulmonary hypertension undergoing cardiac catheterization who had not had surgery and 10 patients (aged 0.65+/-0.73 years) who had recently undergone cardiopulmonary bypass were examined. All were sedated and paralyzed and received positive-pressure ventilation. Blood samples and pressure measurements were taken from catheters in the pulmonary artery and the pulmonary vein or left atrium. Respiratory mass spectrometry was used to measure oxygen uptake, and cardiac output was determined by the direct Fick method. PVR was calculated during steady state at ventilation with room air, during FIO(2) of 0.65, then during additional intravenous infusion of L-Arg (15 mg. kg(-1). min(-1)) and Sub-P (1 pmol. kg(-1). min(-1)), and finally during inhalation of NO (20 ppm). In preoperative patients, the lack of an additional significant change of PVR with L-Arg, Sub-P, and inhaled NO suggests little preexisting PED. Postoperative PVR was higher, with an additional pulmonary endothelial contribution that was restorable with L-Arg and Sub-P. CONCLUSIONS Postoperatively, the rise in PVR suggested PED, which was restorable by L-Arg and Sub-P, with no additional effect of inhaled NO. These results may indicate important new treatment strategies for these patients.
Collapse
|
|
26 |
42 |
18
|
Rosén A, Zhang YX, Lund I, Lundeberg T, Yu LC. Substance P microinjected into the periaqueductal gray matter induces antinociception and is released following morphine administration. Brain Res 2004; 1001:87-94. [PMID: 14972657 DOI: 10.1016/j.brainres.2003.11.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2003] [Indexed: 11/23/2022]
Abstract
The aims of the present study were to investigate, in rats, the behavioral effects of substance P (SP) microinjected into the ventrolateral periaqueductal gray (PAG) and the effects of the neurokinin 1 (NK-1) receptor antagonist [d-Arg1, d-Trp7, 9, Leu11]-substance P (Spantide). The effect of morphine administration on the release of SP in the ventrolateral PAG was also investigated using microdialysis in awake rats. SP microinjected into the ventrolateral part of the PAG induced significant increases in the hindpaw withdrawal latencies (HWLs) to thermal and mechanical stimulation as an antinociceptive response. The NK-1 receptor antagonist blocked these effects but exhibited no antinociceptive effect alone. Subcutaneous administration of morphine increased basal SP-like immunoreactivity (SP-LI) release in the microdialysate obtained from the ventrolateral PAG of freely moving rats. Our results demonstrate that SP injected into the ventrolateral PAG induces an antinociceptive effect via activation of NK-1 receptors. Morphine administered systemically induces the release of SP in the ventrolateral PAG. We suggest that an increased release of SP in the PAG may contribute to opioid antinociception.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
41 |
19
|
Rupniak NMJ. New insights into the antidepressant actions of substance P (NK1 receptor) antagonists. Can J Physiol Pharmacol 2002; 80:489-94. [PMID: 12056558 DOI: 10.1139/y02-048] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considerable progress has been made in understanding the neural circuits involved the antidepressant and anxiolytic efficacy of substance P (NK, receptor) antagonists (SPAs). Progress has been hampered by species differences in the pharmacology of the NK1 receptor, and the availability of NK1R-/- mice has been a particularly useful resource in overcoming this difficulty. Using neuroanatomical, behavioural, and electrophysiological techniques, studies have now established that pharmacological blockade or deletion of the NK1 receptor produces an antidepressant and anxiolytic-like profile in a range of behavioural assays that is distinct from that of established drugs. There is evidence from focal injection studies that some of these effects may be mediated directly by blockade of NK, receptors in the amygdala and its projections to the hypothalamus, periaqueductal gray, and reticulopontine nucleus. Substance P and NK1 receptors are also intimately associated with ascending 5-HT and norepinephrine projections to the forebrain, and alterations in the function of these systems are also likely to be related to the antidepressant efficacy of SPAs. Unlike some established drugs, SPAs are generally well tolerated and do not induce sedation or motor impairment in preclinical species. These findings are consistent with a novel antidepressant mechanism of action of SPAs.
Collapse
|
Review |
23 |
37 |
20
|
Abstract
Little is known about the mechanisms which generate cough in patients with diffuse parenchymal lung disease. This article outlines some of the possible mechanisms which cause cough in patients with idiopathic pulmonary fibrosis (IPF). It goes on to discuss what is currently known about the enhanced cough reflex which afflicts patients with this condition, and describes recent evidence for enhanced expression of neurotrophins in the lungs of these patients. Preliminary data indicating that corticosteroids can reduce the cough reflex response to capsaicin and substance P in IPF offer hope that more specific therapies may be developed in the future.
Collapse
|
Review |
20 |
29 |
21
|
Campolongo P, Ratano P, Ciotti MT, Florenzano F, Nori SL, Marolda R, Palmery M, Rinaldi AM, Zona C, Possenti R, Calissano P, Severini C. Systemic administration of substance P recovers beta amyloid-induced cognitive deficits in rat: involvement of Kv potassium channels. PLoS One 2013; 8:e78036. [PMID: 24265678 PMCID: PMC3827079 DOI: 10.1371/journal.pone.0078036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
Reduced levels of Substance P (SP), an endogenous neuropeptide endowed with neuroprotective and anti-apoptotic properties, have been found in brain and spinal fluid of Alzheimer's disease (AD) patients. Potassium (K(+)) channel dysfunction is implicated in AD development and the amyloid-β (Aβ)-induced up-regulation of voltage-gated potassium channel subunits could be considered a significant step in Aβ brain toxicity. The aim of this study was to evaluate whether SP could reduce, in vivo, Aβ-induced overexpression of Kv subunits. Rats were intracerebroventricularly infused with amyloid-β 25-35 (Aβ25-35, 20 µg) peptide. SP (50 µg/Kg, i.p.) was daily administered, for 7 days starting from the day of the surgery. Here we demonstrate that the Aβ infused rats showed impairment in cognitive performances in the Morris water maze task 4 weeks after Aβ25-35 infusion and that this impairing effect was prevented by SP administration. Kv1.4, Kv2.1 and Kv4.2 subunit levels were quantified in hippocampus and in cerebral cortex by Western blot analysis and immunofluorescence. Interestingly, SP reduced Kv1.4 levels overexpressed by Aβ, both in hippocampus and cerebral cortex. Our findings provide in vivo evidence for a neuroprotective activity of systemic administration of SP in a rat model of AD and suggest a possible mechanism underlying this effect.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
28 |
22
|
Steyaert AE, Burssens PJ, Vercruysse CW, Vanderstraeten GG, Verbeeck RM. The Effects of Substance P on the Biomechanic Properties of Ruptured Rat Achilles’ Tendon. Arch Phys Med Rehabil 2006; 87:254-8. [PMID: 16442981 DOI: 10.1016/j.apmr.2005.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 09/29/2005] [Accepted: 10/21/2005] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine whether injection of substance P into the paratendinous region of a ruptured and subsequently sutured rat Achilles' tendon alters the biomechanic properties of the tendon. DESIGN Interventional animal study. SETTING Animal laboratory at a university hospital. ANIMALS Ninety-six 2-month-old, male Sprague-Dawley rats. INTERVENTION Injection of saline, substance P (10(-6)micromol/kg of body weight [BW] or 10(-8)micromol/kg BW) associated with neutral endopeptidase inhibitors, or neutral endopeptidase inhibitors alone into the paratendinous region of ruptured and subsequently sutured rat Achilles' tendons from the second until the sixth day postoperatively. MAIN OUTCOME MEASURES Stress at maximal load and work to maximal load and stiffness. RESULTS Stress at maximal load was higher in the groups injected with substance P than in the saline group in the first, second, and sixth weeks. Work to maximal load was higher from the second until the sixth weeks in the substance P-treated groups than in the saline group. Stiffness did not differ between the 4 groups in any of the weeks. CONCLUSIONS Injection of substance P into the paratendinous region of ruptured and subsequently sutured rat Achilles' tendons improved tendon healing by enhancing stress at maximal load and work to maximal load. However, stiffness was not significantly affected.
Collapse
|
|
19 |
28 |
23
|
Zhang YB, Wang L, Jia S, Du ZJ, Zhao YH, Liu YP, Lei DL. Local injection of substance P increases bony formation during mandibular distraction osteogenesis in rats. Br J Oral Maxillofac Surg 2014; 52:697-702. [PMID: 25069690 DOI: 10.1016/j.bjoms.2014.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/07/2014] [Indexed: 11/19/2022]
Abstract
Substance P is a neuropeptide that is distributed in those sensory nerve fibres that innervate the medullary tissues of bone. It is a potent accelerator of proliferation and differentiation of osteoblasts in vitro. However, its capacity for promoting repair of mandibular defects is not known. We have investigated the osteogenic effects of local injections of substance P during mandibular distraction osteogenesis in rats. Twenty Sprague-Dawley rats were randomly assigned to 2 groups (n = 10 in each): substance P 10(-7) mmol/l in normal saline 0.2ml was injected into the experimental group, and saline alone into the controls. The mandibular distraction rate was 0.2mm every 12hours for 10 days. Daily injections of substance P or saline were given during the distraction period. Regeneration of bone was assessed quantitatively on days 15 and 29 using microcomputed tomography (microCT), and histological analysis. The rate of bony union in the group treated with substance P was significantly higher than that in the saline alone group on day 29 (p=0.001) The microCT images and quantitation showed more callus and more mature cortical bone when substance P was given than with control. Histological examination showed that cartilaginous tissues had formed in the middle of the distraction gaps in both groups. Bony bridges were seen only in the substance P group at the final time point (day 29). Injection of substance P into the gap of a rat mandible during mandibular distraction improved formation of good-quality bone and accelerated bony union.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
28 |
24
|
Yezierski RP, Yu CG, Mantyh PW, Vierck CJ, Lappi DA. Spinal neurons involved in the generation of at-level pain following spinal injury in the rat. Neurosci Lett 2004; 361:232-6. [PMID: 15135936 DOI: 10.1016/j.neulet.2003.12.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a conjugate of substance P and the ribosome-inactivating protein saporin, neurons expressing the neurokinin-1 receptor in lamina I of the spinal cord were targeted to determine their role in the expression of a spontaneous pain behavior following intraspinal injections of quisqualic acid in the rat. Treatment was carried out at the time of injury in order to prevent the onset of the behavior, and following onset in order to evaluate the potential clinical utility of this intervention. Treatment at the time of injury resulted in significant decreases in onset-time and severity of pain behavior, while treatment at the time of onset led to a significant reduction of the spontaneous self-directed behavior. The results suggest that the substrate for at-level pain following spinal cord injury includes a population of spinal neurons expressing the neurokinin-1 receptor in the superficial laminae of the spinal cord.
Collapse
|
|
21 |
27 |
25
|
Abstract
Looking back at successes and failures in newer approaches to treating IBD, it is tempting--although still difficult--to draw conclusions about pathogenesis. When a therapy proves effective, do clinicians truly know how it works? Even with a therapy as specific as anti-TNF antibody, it is not clear if the benefit is attributable to simple binding and clearance of TNF-alpha or to binding on the cell surface and subsequent deletion of the activated macrophage. When a drug appears to be less effective than preclinical models suggest, can failures in effectiveness from delivery or dosing be differentiated? The disappointing results of clinical trials with IL-10--so at odds with the prediction of benefit from animal models--bring into question the validity of those models as well as the soundness of design of the clinical trials on which efficacy of IL-10 is judged. The variability of response even to the most narrowly targeted agents suggests that these diseases are far more heterogeneous in humans than in their murine counterparts. Clinicians are only just beginning to recognize subclinical markers of response, and it may soon be possible to predict response on the basis of genetic composition. For the moment, however, the field of pharmacogenetics is embryonic. Challenges in developing new therapeutic strategies include not only identifying novel agents, but also improving the definitions of clinical endpoints and defining efficacy at the biologic level. Only through considered evaluation of clinical evidence may clinicians determine which therapies should remain novelties and which should become an accepted part of the armamentarium.
Collapse
|
Review |
26 |
26 |