1
|
Claycomb WC, Lanson NA, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 1998; 95:2979-84. [PMID: 9501201 PMCID: PMC19680 DOI: 10.1073/pnas.95.6.2979] [Citation(s) in RCA: 1221] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have derived a cardiac muscle cell line, designated HL-1, from the AT-1 mouse atrial cardiomyocyte tumor lineage. HL-1 cells can be serially passaged, yet they maintain the ability to contract and retain differentiated cardiac morphological, biochemical, and electrophysiological properties. Ultrastructural characteristics typical of embryonic atrial cardiac muscle cells were found consistently in the cultured HL-1 cells. Reverse transcriptase-PCR-based analyses confirmed a pattern of gene expression similar to that of adult atrial myocytes, including expression of alpha-cardiac myosin heavy chain, alpha-cardiac actin, and connexin43. They also express the gene for atrial natriuretic factor. Immunohistochemical staining of the HL-1 cells indicated that the distribution of the cardiac-specific markers desmin, sarcomeric myosin, and atrial natriuretic factor was similar to that of cultured atrial cardiomyocytes. A delayed rectifier potassium current (IKr) was the most prominent outward current in HL-1 cells. The activating currents displayed inward rectification and deactivating current tails were voltage-dependent, saturated at >>+20 mV, and were highly sensitive to dofetilide (IC50 of 46.9 nM). Specific binding of [3H]dofetilide was saturable and fit a one-site binding isotherm with a Kd of 140 +/- 60 nM and a Bmax of 118 fmol per 10(5) cells. HL-1 cells represent a cardiac myocyte cell line that can be repeatedly passaged and yet maintain a cardiac-specific phenotype.
Collapse
|
research-article |
27 |
1221 |
2
|
van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE, Willis SN, Scott CL, Day CL, Cory S, Adams JM, Roberts AW, Huang DC. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10:389-99. [PMID: 17097561 PMCID: PMC2953559 DOI: 10.1016/j.ccr.2006.08.027] [Citation(s) in RCA: 1027] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 06/28/2006] [Accepted: 08/24/2006] [Indexed: 10/23/2022]
Abstract
Since apoptosis is impaired in malignant cells overexpressing prosurvival Bcl-2 proteins, drugs mimicking their natural antagonists, BH3-only proteins, might overcome chemoresistance. Of seven putative BH3 mimetics tested, only ABT-737 triggered Bax/Bak-mediated apoptosis. Despite its high affinity for Bcl-2, Bcl-x(L), and Bcl-w, many cell types proved refractory to ABT-737. We show that this resistance reflects ABT-737's inability to target another prosurvival relative, Mcl-1. Downregulation of Mcl-1 by several strategies conferred sensitivity to ABT-737. Furthermore, enforced Mcl-1 expression in a mouse lymphoma model conferred resistance. In contrast, cells overexpressing Bcl-2 remained highly sensitive to ABT-737. Hence, ABT-737 should prove efficacious in tumors with low Mcl-1 levels, or when combined with agents that inactivate Mcl-1, even to treat those tumors that overexpress Bcl-2.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biphenyl Compounds/metabolism
- Biphenyl Compounds/pharmacology
- Biphenyl Compounds/therapeutic use
- Cells, Cultured
- Cytokines/metabolism
- Disease Models, Animal
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myeloid Cell Leukemia Sequence 1 Protein
- Neoplasm Proteins/metabolism
- Nitrophenols/metabolism
- Nitrophenols/pharmacology
- Nitrophenols/therapeutic use
- Piperazines/metabolism
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA Interference
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sulfonamides/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- bcl-2 Homologous Antagonist-Killer Protein/genetics
- bcl-2 Homologous Antagonist-Killer Protein/metabolism
- bcl-2-Associated X Protein/chemistry
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
Collapse
|
Research Support, N.I.H., Extramural |
19 |
1027 |
3
|
Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S, Deng X, Zhai D, Shi YX, Sneed T, Verhaegen M, Soengas M, Ruvolo VR, McQueen T, Schober WD, Watt JC, Jiffar T, Ling X, Marini FC, Harris D, Dietrich M, Estrov Z, McCubrey J, May WS, Reed JC, Andreeff M. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 2006; 10:375-88. [PMID: 17097560 DOI: 10.1016/j.ccr.2006.10.006] [Citation(s) in RCA: 845] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 07/21/2006] [Accepted: 10/20/2006] [Indexed: 02/05/2023]
Abstract
BCL-2 proteins are critical for cell survival and are overexpressed in many tumors. ABT-737 is a small-molecule BH3 mimetic that exhibits single-agent activity against lymphoma and small-cell lung cancer in preclinical studies. We here report that ABT-737 effectively kills acute myeloid leukemia blast, progenitor, and stem cells without affecting normal hematopoietic cells. ABT-737 induced the disruption of the BCL-2/BAX complex and BAK-dependent but BIM-independent activation of the intrinsic apoptotic pathway. In cells with phosphorylated BCL-2 or increased MCL-1, ABT-737 was inactive. Inhibition of BCL-2 phosphorylation and reduction of MCL-1 expression restored sensitivity to ABT-737. These data suggest that ABT-737 could be a highly effective antileukemia agent when the mechanisms of resistance identified here are considered.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
845 |
4
|
Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45:525-38. [PMID: 9663807 PMCID: PMC1873650 DOI: 10.1046/j.1365-2125.1998.00721.x] [Citation(s) in RCA: 572] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1998] [Accepted: 01/07/1998] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence indicates that CYP2C9 ranks amongst the most important drug metabolizing enzymes in humans. Substrates for CYP2C9 include fluoxetine, losartan, phenytoin, tolbutamide, torsemide, S-warfarin, and numerous NSAIDs. CYP2C9 activity in vivo is inducible by rifampicin. Evidence suggests that CYP2C9 substrates may also be induced variably by carbamazepine, ethanol and phenobarbitone. Apart from the mutual competitive inhibition which may occur between alternate substrates, numerous other drugs have been shown to inhibit CYP2C9 activity in vivo and/or in vitro. Clinically significant inhibition may occur with coadministration of amiodarone, fluconazole, phenylbutazone, sulphinpyrazone, sulphaphenazole and certain other sulphonamides. Polymorphisms in the coding region of the CYP2C9 gene produce variants at amino acid residues 144 (Arg144Cys) and 359 (Ile359Leu) of the CYP2C9 protein. Individuals homozygous for Leu359 have markedly diminished metabolic capacities for most CYP2C9 substrates, although the frequency of this allele is relatively low. Consistent with the modulation of enzyme activity by genetic and other factors, wide interindividual variability occurs in the elimination and/or dosage requirements of prototypic CYP2C9 substrates. Individualisation of dose is essential for those CYP2C9 substrates with a narrow therapeutic index.
Collapse
|
Review |
27 |
572 |
5
|
Matsunaga N, Tsuchimori N, Matsumoto T, Ii M. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol 2011; 79:34-41. [PMID: 20881006 DOI: 10.1124/mol.110.068064] [Citation(s) in RCA: 436] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
TAK-242 (resatorvid), a small-molecule-specific inhibitor of Toll-like receptor (TLR) 4 signaling, inhibits the production of lipopolysaccharide-induced inflammatory mediators by binding to the intracellular domain of TLR4. Cys747 in TLR4 has been identified previously as the binding site of TAK-242. However, the mechanism by which TAK-242 inhibits TLR4 signaling after binding to TLR4 remains unknown. The present study demonstrated, using coimmunoprecipitation, that TAK-242 interferes with protein-protein interactions between TLR4 and its adaptor molecules. Among 10 different human TLRs, TAK-242 selectively bound to TLR4. The time course of the inhibitory effect of TAK-242 on inflammatory mediator production corresponded to that of the binding of TAK-242 to TLR4. TAK-242 inhibited the association of TLR4 with Toll/interleukin-1 receptor domain-containing adaptor protein (TIRAP) or Toll/interleukin-1 receptor domain-containing adaptor protein inducing interferon-β-related adaptor molecule (TRAM) in human embryonic kidney (HEK) 293 cells overexpressing TLR4, MD-2, and TIRAP or TRAM, respectively. TAK-242 inhibited the TIRAP-mediated activation of nuclear factor κB (NF-κB) and the TRAM-mediated activation of NF-κB and interferon-sensitive response element in HEK293 cells stably expressing TLR4, MD-2, and CD14. The activation of endogenous interleukin-1 receptor-associated kinase in RAW264.7 cells was also inhibited by TAK-242 treatment. These findings suggest that TAK-242 binds selectively to TLR4 and subsequently disrupts the interaction of TLR4 with adaptor molecules, thereby inhibiting TLR4 signal transduction and its downstream signaling events. This work proposes a novel paradigm of a small molecule capable of disrupting protein-protein interactions.
Collapse
|
Comparative Study |
14 |
436 |
6
|
Hidaka H, Sasaki Y, Tanaka T, Endo T, Ohno S, Fujii Y, Nagata T. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci U S A 1981; 78:4354-7. [PMID: 6945588 PMCID: PMC319788 DOI: 10.1073/pnas.78.7.4354] [Citation(s) in RCA: 429] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and its derivatives are putative calmodulin antagonists that bind to calmodulin and inhibit Ca2+/calmodulin-regulated enzyme activities. Autoradiographic studies using tritiated W-7 showed that this compound penetrates the cell membrane, is distributed mainly in the cytoplasm, and inhibits proliferation of Chinese hamster ovary K1 (CHO-K1) cells. Cytoplasmic [3H]W-7 was excluded completely within 6 hr after removal of [3H]W-7 from the culture medium. N-(6-aminohexyl)-1-naphthalenesulfonamide, an analogue of W-7 that interacts only weakly with calmodulin, proved to be a much weaker inhibitor of cell proliferation. CHO-K1 cells were synchronized by shaking during mitosis and then released into the cell cycle in the presence of 25 microM W-7 or 2.5 mM thymidine for 12 hr. Cell division was observed approximately 6 hr later. The results suggest that the effect of W-7 on cell proliferation might be through selective inhibition of the G1/S boundary phase, which is similar to the effect of excess thymidine. This pharmacological demonstration that cytoplasmic calmodulin is involved in cell proliferation is significant; W-7 and its derivatives may be useful tools for research on calmodulin and cell biology-related studies.
Collapse
|
research-article |
44 |
429 |
7
|
Lahiri J, Isaacs L, Tien J, Whitesides GM. A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal Chem 1999; 71:777-90. [PMID: 10051846 DOI: 10.1021/ac980959t] [Citation(s) in RCA: 398] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper describes the immobilization of ten proteins and two low-molecular-weight ligands on mixed self-assembled monolayers (SAMs) of alkanethiolates on gold generated from the tri(ethylene glycol)-terminated thiol 1 (HS(CH2)11(OCH2CH2)3OH) (chi(1) = 1.0-0.0) and the longer, carboxylic acid-terminated thiol2(HS(CH2)11(OCH2-CH2)6OCH2CO2H) (chi(2) = 0.0-1.0). The immobilization was achieved by a two-step procedure: generation of reactive N-hydroxysuccinimidyl esters from the carboxylic acid groups of 2 in the SAM and coupling of these groups with amines on the protein or ligand. Because this method involves a common reactive intermediate that is easily prepared, it provides a convenient method for attaching ligands to SAMs for studies using surface plasmon resonance spectroscopy (and, in principle, other bioanalytical methods that use derivatized SAMs on gold, silver, and other surfaces). These SAMs were resistant to nonspecific adsorption of proteins having a wide range of molecular weights and isoelectric points. The pH of the coupling buffer, the concentration of protein, the ionic strength of the solution of protein, and the molecular weight of the protein all influenced the amount of the protein that was immobilized. For the proteins investigated in detail--carbonic anhydrase and lysozyme--the highest quantities of immobilized proteins were obtained when using a low ionic strength solution at a value of pH approximately one unit below the isoelectric point (pI) of the protein, at a concentration of approximately 0.5 mg mL-1. Comparisons of the kinetic and thermodynamic constants describing binding of carbonic anhydrase and vancomycin to immobilized benzenesulfonamide and N-alpha-Ac-Lys-D-Ala-D-Ala groups, respectively, on mixed SAMs (by methods described in this paper) and in the carboxymethyl dextran matrix of commercially available substrates yielded (for these systems) essentially indistinguishable values of Kd, koff, and kon.
Collapse
|
Comparative Study |
26 |
398 |
8
|
Abstract
The carboxylic acid functional group can be an important constituent of a pharmacophore, however, the presence of this moiety can also be responsible for significant drawbacks, including metabolic instability, toxicity, as well as limited passive diffusion across biological membranes. To avoid some of these shortcomings while retaining the desired attributes of the carboxylic acid moiety, medicinal chemists often investigate the use of carboxylic acid (bio)isosteres. The same type of strategy can also be effective for a variety other purposes, for example, to increase the selectivity of a biologically active compound or to create new intellectual property. Several carboxylic acid isosteres have been reported, however, the outcome of any isosteric replacement cannot be readily predicted as this strategy is generally found to be dependent upon the particular context (i.e., the characteristic properties of the drug and the drug-target). As a result, screening of a panel of isosteres is typically required. In this context, the discovery and development of novel carboxylic acid surrogates that could complement the existing palette of isosteres remains an important area of research. The goal of this Minireview is to provide an overview of the most commonly employed carboxylic acid (bio)isosteres and to present representative examples demonstrating the use and utility of each isostere in drug design.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
361 |
9
|
Leu JIJ, Pimkina J, Frank A, Murphy ME, George DL. A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 2009; 36:15-27. [PMID: 19818706 DOI: 10.1016/j.molcel.2009.09.023] [Citation(s) in RCA: 359] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 05/20/2009] [Accepted: 08/13/2009] [Indexed: 12/20/2022]
Abstract
The multifunctional, stress-inducible molecular chaperone HSP70 has important roles in aiding protein folding and maintaining protein homeostasis. HSP70 expression is elevated in many cancers, contributing to tumor cell survival and resistance to therapy. We have determined that a small molecule called 2-phenylethynesulfonamide (PES) interacts selectively with HSP70 and leads to a disruption of the association between HSP70 and several of its cochaperones and substrate proteins. Treatment of cultured tumor cells with PES promotes cell death that is associated with protein aggregation, impaired autophagy, and inhibition of lysosomal function. Moreover, this small molecule is able to suppress tumor development and enhance survival in a mouse model of Myc-induced lymphomagenesis. The data demonstrate that PES disrupts actions of HSP70 in multiple cell signaling pathways, offering an opportunity to better understand the diverse functions of this molecular chaperone and also to aid in the development of new cancer therapies.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
359 |
10
|
Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 2005; 57:252-60. [PMID: 15691526 DOI: 10.1016/j.biopsych.2004.10.019] [Citation(s) in RCA: 347] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 09/29/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Previous studies of postmortem neurochemical markers in severe psychiatric disorders have been carried out on different brain collections, making it difficult to compare results. METHODS One hundred RNA, protein, and other neurochemical markers were assessed in a single set of 60 postmortem brains (15 each with schizophrenia, bipolar disorder, major depression without psychosis, and unaffected control subjects) in relation to seven neurochemical systems. Quantitative measures of continuous variables for prefrontal, hippocampus, anterior cingulate, superior temporal cortex, or a combination of these were analyzed from published and unpublished studies by 56 research groups. RESULTS Before correcting for multiple comparisons, 23% of markers (23/100) were abnormal in one or more regions, with most indicating decreased expression. The largest percentage were associated with the developmental/synaptic (10/22) and gamma-aminobutyric acid (GABA; 3/7) systems. Bipolar disorder (20) and schizophrenia (19) had the most abnormalities, with a 65% overlap. When all brain areas were considered together and corrected for multiple comparisons, reelin, parvalbumin, and GAD67 were the most abnormal. CONCLUSIONS Confirming other studies, the GABA and developmental/synaptic neurochemical systems are promising areas for research on schizophrenia and bipolar disorder. Research should include tissue from both diseases, and additional brain areas should be assessed.
Collapse
|
Comparative Study |
20 |
347 |
11
|
Davies NM, McLachlan AJ, Day RO, Williams KM. Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor. Clin Pharmacokinet 2000; 38:225-42. [PMID: 10749518 DOI: 10.2165/00003088-200038030-00003] [Citation(s) in RCA: 320] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Celecoxib, a nonsteroidal anti-inflammatory drug (NSAID), is the first specific inhibitor of cyclo-oxygenase-2 (COX-2) approved to treat patients with rheumatism and osteoarthritis. Preliminary data suggest that celecoxib also has analgesic and anticancer properties. The selective inhibition of COX-2 is thought to lead to a reduction in the unwanted effects of NSAIDs. Upper gastrointestinal complication rates in clinical trials are significantly lower for celecoxib than for traditional nonselective NSAIDs (e.g. naproxen, ibuprofen and diclofenac). The rate of absorption of celexocib is moderate when given orally (peak plasma drug concentration occurs after 2 to 4 hours), although the extent of absorption is not known. Celexocib is extensively protein bound, primarily to plasma albumin, and has an apparent volume of distribution of 455+/-166L in humans. The area under the plasma concentration-time curve (AUC) of celecoxib increases in proportion to increasing oral doses between 100 and 800mg. Celecoxib is eliminated following biotransformation to carboxylic acid and glucuronide metabolites that are excreted in urine and faeces, with little drug (2%) being eliminated unchanged in the urine. Celecoxib is metabolised primarily by the cytochrome P450 (CYP) 2C9 isoenzyme and has an elimination half-life of about 11 hours in healthy individuals. Racial differences in drug disposition and pharmacokinetic changes in the elderly have been reported for celecoxib. Plasma concentrations (AUC) of celecoxib appear to be 43% lower in patients with chronic renal insufficiency [glomerular filtration rate 2.1 to 3.6 L/h (35 to 60 ml/min)] compared with individuals with healthy renal function, with a 47% increase in apparent clearance. Compared with healthy controls, it has been reported that the steady-state AUC is increased by approximately 40% and 180% in patients with mild and moderate hepatic impairment, respectively. Celecoxib does not appear to interact with warfarin, ketoconazole or methotrexate; however, clinically significant drug interactions with fluconazole and lithium have been documented. As celecoxib is metabolised by CYP2C9, increased clinical vigilance is required during the coadministration of other substrates or inhibitors of this enzyme.
Collapse
|
Review |
25 |
320 |
12
|
Sessa F, Mapelli M, Ciferri C, Tarricone C, Areces LB, Schneider TR, Stukenberg PT, Musacchio A. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 2005; 18:379-91. [PMID: 15866179 DOI: 10.1016/j.molcel.2005.03.031] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/19/2005] [Accepted: 03/31/2005] [Indexed: 11/25/2022]
Abstract
Aurora family serine/threonine kinases control mitotic progression, and their deregulation is implicated in tumorigenesis. Aurora A and Aurora B, the best-characterized members of mammalian Aurora kinases, are approximately 60% identical but bind to unrelated activating subunits. The structure of the complex of Aurora A with the TPX2 activator has been reported previously. Here, we report the crystal structure of Aurora B in complex with the IN-box segment of the inner centromere protein (INCENP) activator and with the small molecule inhibitor Hesperadin. The Aurora B:INCENP complex is remarkably different from the Aurora A:TPX2 complex. INCENP forms a crown around the small lobe of Aurora B and induces the active conformation of the T loop allosterically. The structure represents an intermediate state of activation of Aurora B in which the Aurora B C-terminal segment stabilizes an open conformation of the catalytic cleft, and a critical ion pair in the kinase active site is impaired. Phosphorylation of two serines in the carboxyl terminus of INCENP generates the fully active kinase.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
298 |
13
|
Zhou LJ, Ying GG, Liu S, Zhao JL, Yang B, Chen ZF, Lai HJ. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 452-453:365-76. [PMID: 23538107 DOI: 10.1016/j.scitotenv.2013.03.010] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/25/2013] [Accepted: 03/02/2013] [Indexed: 05/04/2023]
Abstract
Wastewater treatment plants (WWTPs) are regarded as one of the most important sources of antibiotics in the environment. Two sampling campaigns over a period of one year in two wastewater treatment plants (plant A: activated sludge with chlorination, and plant B: oxidation ditch with UV) of Guangdong Province, China were carried out to assess the occurrence and fate of 11 classes of 50 antibiotics. The wastewater samples were extracted by Oasis HLB cartridges (6mL, 500 mg), while the solid samples (sludge and suspended solid matter) were extracted by ultrasonic-assisted extraction with solvents (acetonitrile and citric acid buffer), followed by an enrichment and clean-up step with solid-phase extraction using SAX-HLB cartridges in tandem. The results showed the presence of 20 and 17 target compounds in the influents and effluents, respectively, at the concentrations ranging from low ng/L to a few μg/L. Sulfamethoxazole, norfloxacin, ofloxacin, anhydro erythromycin and trimethoprim were most frequently detected in the WWTPs wastewaters. Twenty-one antibiotics were found in the sewage sludge from the two WWTPs at the concentrations up to 5800ng/g, with tetracycline, oxytetracycline, norfloxacin and ofloxacin being the predominant antibiotics. The total mass loads of antibiotics per capita in the two plants ranged from 494 to 901 μg/d/inhabitant (672±182 μg/d/inhabitant) in the influents, from 130 to 238 μg/d/inhabitant (175±45 μg/d/inhabitant) in the effluents and from 107 to 307 μg/d/inhabitant (191±87.9 μg/d/inhabitant) in the dewatered sludge, respectively. The aqueous removals for sulfonamides, macrolides, trimethoprim, lincomycin and chloramphenicol in the WWTPs were mainly attributed to the degradation processes, while those for tetracyclines and fluoroquinolones were mainly due to the adsorption onto sludge.
Collapse
|
|
12 |
293 |
14
|
Sumara I, Giménez-Abián JF, Gerlich D, Hirota T, Kraft C, de la Torre C, Ellenberg J, Peters JM. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr Biol 2005; 14:1712-22. [PMID: 15458642 DOI: 10.1016/j.cub.2004.09.049] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 08/26/2004] [Accepted: 08/31/2004] [Indexed: 11/20/2022]
Abstract
BACKGROUND The stable association of chromosomes with both poles of the mitotic spindle (biorientation) depends on spindle pulling forces. These forces create tension across sister kinetochores and are thought to stabilize microtubule-kinetochore interactions and to silence the spindle checkpoint. Polo-like kinase 1 (Plk1) has been implicated in regulating centrosome maturation, mitotic entry, sister chromatid cohesion, the anaphase-promoting complex/cyclosome (APC/C), and cytokinesis, but it is unknown if Plk1 controls chromosome biorientation. RESULTS We have analyzed Plk1 functions in synchronized mammalian cells by RNA interference (RNAi). Plk1-depleted cells enter mitosis after a short delay, accumulate in a preanaphase state, and subsequently often die by apoptosis. Spindles in Plk1-depleted cells lack focused poles and are not associated with centrosomes. Chromosomes attach to these spindles, but the checkpoint proteins Mad2, BubR1, and CENP-E are enriched at many kinetochores. When Plk1-depleted cells are treated with the Aurora B inhibitor Hesperadin, which silences the spindle checkpoint by stabilizing microtubule-kinetochore interactions, cells degrade APC/C substrates and exit mitosis without chromosome segregation and cytokinesis. Experiments with monopolar spindles that are induced by the kinesin inhibitor Monastrol indicate that Plk1 is required for the assembly of spindles that are able to generate poleward pulling forces. CONCLUSIONS Our results imply that Plk1 is not essential for mitotic entry and APC/C activation but is required for proper spindle assembly and function. In Plk1-depleted cells spindles may not be able to create enough tension across sister kinetochores to stabilize microtubule-kinetochore interactions and to silence the spindle checkpoint.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
263 |
15
|
Shear NH, Spielberg SP, Grant DM, Tang BK, Kalow W. Differences in metabolism of sulfonamides predisposing to idiosyncratic toxicity. Ann Intern Med 1986; 105:179-84. [PMID: 3729200 DOI: 10.7326/0003-4819-105-2-179] [Citation(s) in RCA: 247] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Individual differences in metabolism of the sulfonamides may predispose patients to idiosyncratic reactions. Sulfonamides are metabolized by N-acetylation (mediated by a genetically polymorphic enzyme) and oxidation to potentially toxic metabolites. We examined 6 patients who had severe reactions to sulfonamides and compared them with 20 controls. Acetylator phenotype was determined with caffeine, a safe in-vivo probe of enzyme activity. All 6 patients were slow acetylators (expected, 55%; p less than 0.05). Detoxification of oxidative metabolites was studied in vitro with a lymphocyte assay evaluating cell death from metabolites generated by a murine hepatic microsomal system. Cells from each patient showed increased toxicity from sulfonamide metabolites but not from the drugs themselves. Cells from parents of 3 patients had intermediate toxicity from sulfonamide metabolites, whereas cells from a sibling of 1 patient had a normal response. Susceptibility to sulfonamide reactions may be due to interaction of metabolic pathways, possibly under genetic control, regulating N-acetylation and specific detoxification of toxic metabolites of the drugs.
Collapse
|
Comparative Study |
39 |
247 |
16
|
Iglarz M, Binkert C, Morrison K, Fischli W, Gatfield J, Treiber A, Weller T, Bolli MH, Boss C, Buchmann S, Capeleto B, Hess P, Qiu C, Clozel M. Pharmacology of macitentan, an orally active tissue-targeting dual endothelin receptor antagonist. J Pharmacol Exp Ther 2008; 327:736-45. [PMID: 18780830 DOI: 10.1124/jpet.108.142976] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Macitentan, also called Actelion-1 or ACT-064992 [N-[5-(4-bromophenyl)-6-(2-(5-bromopyrimidin-2-yloxy)ethoxy)-pyrimidin-4-yl]-N'-propylaminosulfonamide], is a new dual ET(A)/ET(B) endothelin (ET) receptor antagonist designed for tissue targeting. Selection of macitentan was based on inhibitory potency on both ET receptors and optimization of physicochemical properties to achieve high affinity for lipophilic milieu. In vivo, macitentan is metabolized into a major and pharmacologically active metabolite, ACT-132577. Macitentan and its metabolite antagonized the specific binding of ET-1 on membranes of cells overexpressing ET(A) and ET(B) receptors and blunted ET-1-induced calcium mobilization in various natural cell lines, with inhibitory constants within the nanomolar range. In functional assays, macitentan and ACT-132577 inhibited ET-1-induced contractions in isolated endothelium-denuded rat aorta (ET(A) receptors) and sarafotoxin S6c-induced contractions in isolated rat trachea (ET(B) receptors). In rats with pulmonary hypertension, macitentan prevented both the increase of pulmonary pressure and the right ventricle hypertrophy, and it markedly improved survival. In diabetic rats, chronic administration of macitentan decreased blood pressure and proteinuria and prevented end-organ damage (renal vascular hypertrophy and structural injury). In conclusion, macitentan, by its tissue-targeting properties and dual antagonism of ET receptors, protects against end-organ damage in diabetes and improves survival in pulmonary hypertensive rats. This profile makes macitentan a new agent to treat cardiovascular disorders associated with chronic tissue ET system activation.
Collapse
|
|
17 |
241 |
17
|
Rhoads KR, Janssen EML, Luthy RG, Criddle CS. Aerobic biotransformation and fate of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) in activated sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:2873-2878. [PMID: 18497137 DOI: 10.1021/es702866c] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Processes affecting the fate of perfluorinated organics are of increasing concern due to the global dispersal, persistence, and bioaccumulation of these contaminants. The volatile compound N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) and its phosphate esters have been used in protective surface coatings. In this report, we describe the fate of N-EtFOSE in aerobic batch assays. These assays were performed using undiluted activated sludge in serum bottles that were sealed to prevent the escape of N-EtFOSE and volatile transformation products. Separate assays were performed with N-EtFOSE and reported transformation products. N-EtFOSE degraded to N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) with an observed first-order rate of 0.99 +/- 0.08 day(-1) and a pseudosecond order rate of 0.26 +/- 0.02 L/mg VSS day(-1). N-EtFOSAA underwent further transformation at a slower rate (0.093 +/- 0.012 day(-1)) to N-ethylperfluorooctane sulfonamide (N-EtFOSA). N-EtFOSA then transformed to perfluorooctane sulfonamide (FOSA). FOSA transformed to perfluorooctane sulfinate (PFOSI), and PFOSI transformed to perfluorooctane sulfonate (PFOS). Perfluorooctanoic acid (PFOA) was not detected as a transformation product of any compound. Using the measured rate of N-EtFOSE biotransformation and literature values for phase partitioning and mass transfer in aeration basins, we modeled the fate of N-EtFOSE in a typical activated sludge aeration basin open to the atmosphere. The model predicts that 76% of the N-EtFOSE is stripped into the atmosphere, 5% sorbs to waste solids, 13% undergoes transformation to N-EtFOSAA, and 6% is discharged in the wastewater effluent.
Collapse
|
|
17 |
234 |
18
|
Treiber A, Schneiter R, Häusler S, Stieger B. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab Dispos 2007; 35:1400-7. [PMID: 17496208 DOI: 10.1124/dmd.106.013615] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The elimination process of the endothelin receptor antagonist bosentan (Tracleer) in humans is entirely dependent on metabolism mediated by two cytochrome P450 (P450) enzymes, i.e., CYP3A4 and CYP2C9. Most interactions with concomitantly administered drugs can be rationalized in terms of inhibition of these P450 enzymes. The increased bosentan concentrations observed in the presence of cyclosporin A, rifampicin, or sildenafil, however, are incompatible with this paradigm and prompted the search for alternative mechanisms governing these interactions. In the present article, we identify bosentan and its active plasma metabolite, Ro 48-5033 (4-(2-hydroxy-1,1-dimethyl-ethyl)-N-[6-(2-hydroxy-ethoxy)-5-(2-methoxy-phenoxy)-[2,2']bipyrimidinyl-4-yl]-benzenesulfonamide), as substrates of the human organic anion transporting polypeptides (OATP) OATP1B1 and OATP1B3. Bosentan uptake into Chinese hamster ovary cells expressing these OATP transporters was efficiently inhibited by cyclosporin A and rifampicin with IC(50) values significantly below their effective plasma concentrations in humans. The phosphodiesterase-5 inhibitor sildenafil was also shown to interfere with OATP-mediated transport, however, at concentrations above those achieved in therapeutic use. Therefore, inhibition of bosentan hepatic uptake may represent an alternative/complementary mechanism to rationalize some of the pharmacokinetic interactions seen in therapeutic use. A similar picture has been drawn for drugs like pitavastatin and fexofenadine, drugs that are mainly excreted in unchanged form. Bosentan elimination, in contrast, is entirely dependent on metabolism. Therefore, the described interactions with rifampicin, cyclosporin A, and, to a lesser extent, sildenafil represent evidence that inhibition of hepatic uptake may become the rate-limiting step in the overall elimination process even for drugs whose elimination is entirely dependent on metabolism.
Collapse
|
|
18 |
229 |
19
|
Mohapatra DP, Nau C. Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 2005; 280:13424-32. [PMID: 15691846 DOI: 10.1074/jbc.m410917200] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The vanilloid receptor TRPV1 is a polymodal nonselective cation channel of nociceptive sensory neurons involved in the perception of inflammatory pain. TRPV1 exhibits desensitization in a Ca2+-dependent manner upon repeated activation by capsaicin or protons. The cAMP-dependent protein kinase (PKA) decreases desensitization of TRPV1 by directly phosphorylating the channel presumably at sites Ser116 and Thr370. In the present study we investigated the influence of protein phosphatase 2B (calcineurin) on Ca2+-dependent desensitization of capsaicin- and proton-activated currents. By using site-directed mutagenesis, we generated point mutations at PKA and protein kinase C consensus sites and studied wild type (WT) and mutant channels transiently expressed in HEK293t or HeLa cells under whole cell voltage clamp. We found that intracellular application of the cyclosporin A.cyclophilin A complex (CsA.CyP), a specific inhibitor of calcineurin, significantly decreased desensitization of capsaicin- or proton-activated TRPV1-WT currents. This effect was similar to that obtained by extracellular application of forskolin (FSK), an indirect activator of PKA. Simultaneous applications of CsA.CyP and FSK in varying concentrations suggested that these substances acted independently from each other. In mutation T370A, application of CsA.CyP did not reduce desensitization of capsaicin-activated currents as compared with WT and to mutant channels S116A and T144A. In a double mutation at candidate protein kinase C phosphorylation sites, application of CsA.CyP or FSK decreased desensitization of capsaicin-activated currents similar to WT channels. We conclude that Ca2+-dependent desensitization of TRPV1 might be in part regulated through channel dephosphorylation by calcineurin and channel phosphorylation by PKA possibly involving Thr370 as a key amino acid residue.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
225 |
20
|
McIntosh JA, Coelho PS, Farwell CC, Wang ZJ, Lewis JC, Brown TR, Arnold FH. Enantioselective intramolecular C-H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew Chem Int Ed Engl 2013; 52:9309-12. [PMID: 23893546 PMCID: PMC3988694 DOI: 10.1002/anie.201304401] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/12/2013] [Indexed: 01/12/2023]
|
Research Support, N.I.H., Extramural |
12 |
221 |
21
|
Sinclair E, Mayack DT, Roblee K, Yamashita N, Kannan K. Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 50:398-410. [PMID: 16435086 DOI: 10.1007/s00244-005-1188-z] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 08/15/2005] [Indexed: 05/06/2023]
Abstract
Concentrations of perfluorooctanesulfonate (PFOS) and several other perfluoroalkyl surfactants (PASs) were determined in nine major water bodies (n = 51) of New York State (NYS). These PASs were also measured in the livers of two species of sport fish (n = 66) from 20 inland lakes in NYS. Finally, perfluorinated compounds were measured in the livers of 10 species of waterfowl (n = 87) from the Niagara River region in NYS. PFOS, perfluorooctanoic acid (PFOA), and perfluorohexanesulfonate (PFHS) were ubiquitous in NYS waters. PFOA was typically found at higher concentrations than were PFOS and PFHS. Elevated concentrations of PFOS were found in surface waters of Lake Onondaga, and elevated concentrations of PFOA were found in the Hudson River. PFOS was the most abundant perfluorinated compound in all fish and bird samples. PFOS concentrations in the livers of fishes ranged from 9 to 315 ng/g wet weight. PFOS, PFOA, and PFOSA (perfluorooctanesulfonamide) concentrations in smallmouth and largemouth bass (taken together) caught in remote mountain lakes with no known point sources of PAS contamination were 14 to 207, < 1.5 to 6.1, and < 1.5 to 9.8 ng/g wet weight, respectively. PFOS concentrations in the livers of birds ranged from 11 to 882 ng/g wet weight. PFOS concentrations were 2.5-fold greater (p = 0.001) in piscivorous birds than in non-piscivorous birds. However, PFOA, PFOSA, and PFHS were not found in bird livers. Overall, average concentrations of PFOS in fish were 8850-fold greater than those in surface water. An average biomagnification factor of 8.9 was estimated for PFOS in common merganser relative to that in fish. This study highlights the significance of dietary fish in PFOS accumulation in the food chain. Furthermore, our results provide information on the distribution of PASs in natural waters, fish, and several bird species in NYS.
Collapse
|
Comparative Study |
19 |
218 |
22
|
Lovell PJ, Bromidge SM, Dabbs S, Duckworth DM, Forbes IT, Jennings AJ, King FD, Middlemiss DN, Rahman SK, Saunders DV, Collin LL, Hagan JJ, Riley GJ, Thomas DR. A novel, potent, and selective 5-HT(7) antagonist: (R)-3-(2-(2-(4-methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl) phen ol (SB-269970). J Med Chem 2000; 43:342-5. [PMID: 10669560 DOI: 10.1021/jm991151j] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
25 |
212 |
23
|
Lee EF, Czabotar PE, Smith BJ, Deshayes K, Zobel K, Colman PM, Fairlie WD. Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ 2007; 14:1711-3. [PMID: 17572662 DOI: 10.1038/sj.cdd.4402178] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
Letter |
18 |
210 |
24
|
Achari A, Somers DO, Champness JN, Bryant PK, Rosemond J, Stammers DK. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. NATURE STRUCTURAL BIOLOGY 1997; 4:490-7. [PMID: 9187658 DOI: 10.1038/nsb0697-490] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sulfonamides were amongst the first clinically useful antibacterial agents to be discovered. The identification of sulfanilamide as the active component of the dye Prontosil rubrum led to the synthesis of clinically useful analogues. Today sulfamethoxazole (in combination with trimethoprim), is used to treat urinary tract infections caused by bacteria such as Escherichia coli and is also a first-line treatment for pneumonia caused by the fungus Pneumocystis carinii, a common condition in AIDS patients. The site of action is the de novo folate biosynthesis enzyme dihydropteroate synthase (DHPS) where sulfonamides act as analogues of one of the substrates, para-aminobenzoic acid (pABA). We report here the crystal structure of E.coli DHPS at 2.0 A resolution refined to an R-factor of 0.185. The single domain of 282 residues forms an eight-stranded alpha/beta-barrel. The 7,8-dihydropterin pyrophosphate (DHPPP) substrate binds in a deep cleft in the barrel, whilst sulfanilamide binds closer to the surface. The DHPPP ligand site is highly conserved amongst prokaryotic and eukaryotic DHPSs.
Collapse
|
|
28 |
201 |
25
|
Abstract
Drug metabolism input to the discovery process had historically been on an empirical case-by-case basis, since, detailed descriptors of the effect on pharmacokinetics of a change in structure or physicochemical property were not available. Considerable advances have been made in recent years, such that basic rules can be applied to predict the behavior of a compound in man based on physicochemistry and structure. This is particularly true in the areas of absorption, distribution, and clearance. In particular, knowledge of the reactions catalyzed by the enzymes of drug metabolism, including the cytochrome P450 super family, can be used in the design of new chemical entities, together with the usual pharmacological-derived SAR. The combination of both pharmacokinetics and pharmacodynamics at the discovery stage leads to drugs with optimum performance characteristics. Such drugs are easier to develop, representing a huge saving in resources. Moreover, the marketed compound is much more likely to find high clinical utilization. This review uses dofetilide, fluconazole, and amlodipine to highlight the multifaceted consequences of changing chemical structure, in terms of drug disposition, and reinforces these principles with examples from the literature.
Collapse
|
Review |
29 |
196 |