1
|
Abstract
The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
1572 |
2
|
Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium 2008; 38:233-52. [PMID: 16098585 DOI: 10.1016/j.ceca.2005.06.028] [Citation(s) in RCA: 559] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 12/12/2022]
Abstract
The TRP ("transient receptor potential") family of ion channels now comprises more than 30 cation channels, most of which are permeable for Ca2+, and some also for Mg2+. On the basis of sequence homology, the TRP family can be divided in seven main subfamilies: the TRPC ('Canonical') family, the TRPV ('Vanilloid') family, the TRPM ('Melastatin') family, the TRPP ('Polycystin') family, the TRPML ('Mucolipin') family, the TRPA ('Ankyrin') family, and the TRPN ('NOMPC') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading to a plethora of data on the roles of TRPs in a variety of tissues and species, including mammals, insects, and yeast. The present review summarizes the most pertinent recent evidence regarding the structural and functional properties of TRP channels, focusing on the regulation and physiology of mammalian TRPs.
Collapse
|
Review |
17 |
559 |
3
|
Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, Garrity PA. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 2010; 464:597-600. [PMID: 20237474 PMCID: PMC2845738 DOI: 10.1038/nature08848] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 01/21/2010] [Indexed: 02/07/2023]
Abstract
Chemical nociception, the detection of tissue-damaging chemicals, is important for animal survival and causes human pain and inflammation, but its evolutionary origins are largely unknown. Reactive electrophiles are a class of noxious compounds humans find pungent and irritating, such as allyl isothiocyanate (in wasabi) and acrolein (in cigarette smoke). Diverse animals, from insects to humans, find reactive electrophiles aversive, but whether this reflects conservation of an ancient sensory modality has been unclear. Here we identify the molecular basis of reactive electrophile detection in flies. We demonstrate that Drosophila TRPA1 (Transient receptor potential A1), the Drosophila melanogaster orthologue of the human irritant sensor, acts in gustatory chemosensors to inhibit reactive electrophile ingestion. We show that fly and mosquito TRPA1 orthologues are molecular sensors of electrophiles, using a mechanism conserved with vertebrate TRPA1s. Phylogenetic analyses indicate that invertebrate and vertebrate TRPA1s share a common ancestor that possessed critical characteristics required for electrophile detection. These findings support emergence of TRPA1-based electrophile detection in a common bilaterian ancestor, with widespread conservation throughout vertebrate and invertebrate evolution. Such conservation contrasts with the evolutionary divergence of canonical olfactory and gustatory receptors and may relate to electrophile toxicity. We propose that human pain perception relies on an ancient chemical sensor conserved across approximately 500 million years of animal evolution.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
254 |
4
|
Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S. STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 2008; 32:439-48. [PMID: 18995841 PMCID: PMC2586614 DOI: 10.1016/j.molcel.2008.09.020] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 06/14/2008] [Accepted: 09/26/2008] [Indexed: 12/27/2022]
Abstract
The receptor-evoked Ca(2+) signal includes activation of the store-operated channels (SOCs) TRPCs and the Orais. Although both are gated by STIM1, it is not known how STIM1 gates the channels and whether STIM1 gates the TRPCs and Orais by the same mechanism. Here, we report the molecular mechanism by which STIM1 gates TRPC1, which involves interaction between two conserved, negatively charged aspartates in TRPC1((639)DD(640)) with the positively charged STIM1((684)KK(685)) in STIM1 polybasic domain. Charge swapping and functional analysis revealed that exact orientation of the charges on TRPC1 and STIM1 are required, but all positive-negative charge combinations on TRPC1 and STIM1, except STIM1((684)EE(685))+TRPC1((639)RR(640)), are functional as long as they are reciprocal, indicating that STIM1 gates TRPC1 by intermolecular electrostatic interaction. Similar gating was observed with TRPC3((697)DD(698)). STIM1 gates Orai1 by a different mechanism since the polybasic and S/P domains of STIM1 are not required for activation of Orai1 by STIM1.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
248 |
5
|
Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A, English A, Naylor J, Ciurtin C, Majeed Y, Milligan CJ, Bahnasi YM, Al-Shawaf E, Porter KE, Jiang LH, Emery P, Sivaprasadarao A, Beech DJ. TRPC channel activation by extracellular thioredoxin. Nature 2008; 451:69-72. [PMID: 18172497 PMCID: PMC2645077 DOI: 10.1038/nature06414] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 10/24/2007] [Indexed: 02/08/2023]
Abstract
Mammalian homologues of Drosophila melanogaster transient receptor potential (TRP) are a large family of multimeric cation channels that act, or putatively act, as sensors of one or more chemical factor. Major research objectives are the identification of endogenous activators and the determination of cellular and tissue functions of these channels. Here we show the activation of TRPC5 (canonical TRP 5) homomultimeric and TRPC5-TRPC1 heteromultimeric channels by extracellular reduced thioredoxin, which acts by breaking a disulphide bridge in the predicted extracellular loop adjacent to the ion-selectivity filter of TRPC5. Thioredoxin is an endogenous redox protein with established intracellular functions, but it is also secreted and its extracellular targets are largely unknown. Particularly high extracellular concentrations of thioredoxin are apparent in rheumatoid arthritis, an inflammatory joint disease that disables millions of people worldwide. We show that TRPC5 and TRPC1 are expressed in secretory fibroblast-like synoviocytes from patients with rheumatoid arthritis, that endogenous TRPC5-TRPC1 channels of the cells are activated by reduced thioredoxin, and that blockade of the channels enhances secretory activity and prevents the suppression of secretion by thioredoxin. The data indicate the presence of a previously unrecognized ion-channel activation mechanism that couples extracellular thioredoxin to cell function.
Collapse
|
research-article |
17 |
227 |
6
|
Kang L, Gao J, Schafer WR, Xie Z, Xu XZS. C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron 2010; 67:381-91. [PMID: 20696377 PMCID: PMC2928144 DOI: 10.1016/j.neuron.2010.06.032] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2010] [Indexed: 11/30/2022]
Abstract
Mechanotransduction channels mediate several common sensory modalities such as hearing, touch, and proprioception; however, very little is known about the molecular identities of these channels. Many TRP family channels have been implicated in mechanosensation, but none have been demonstrated to form a mechanotransduction channel, raising the question of whether TRP proteins simply play indirect roles in mechanosensation. Using Caenorhabditis elegans as a model, here we have recorded a mechanosensitive conductance in a ciliated mechanosensory neuron in vivo. This conductance develops very rapidly upon mechanical stimulation with its latency and activation time constant reaching the range of microseconds, consistent with mechanical gating of the conductance. TRP-4, a TRPN (NOMPC) subfamily channel, is required for this conductance. Importantly, point mutations in the predicted pore region of TRP-4 alter the ion selectivity of the conductance. These results indicate that TRP-4 functions as an essential pore-forming subunit of a native mechanotransduction channel.
Collapse
|
Comparative Study |
15 |
185 |
7
|
Kwon Y, Hofmann T, Montell C. Integration of phosphoinositide- and calmodulin-mediated regulation of TRPC6. Mol Cell 2007; 25:491-503. [PMID: 17317623 PMCID: PMC1855209 DOI: 10.1016/j.molcel.2007.01.021] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 12/07/2006] [Accepted: 01/12/2007] [Indexed: 11/18/2022]
Abstract
Multiple TRP channels are regulated by phosphoinositides (PIs). However, it is not known whether PIs bind directly to TRP channels. Furthermore, the mechanisms through which PIs regulate TRP channels are obscure. To analyze the role of PI/TRP interactions, we used a biochemical approach, focusing on TRPC6. TRPC6 bound directly to PIs, and with highest potency to phosphatidylinositol 3,4,5-trisphosphate (PIP(3)). We found that PIP(3) binding disrupted the association of calmodulin (CaM) with TRPC6. We identified the PIP(3)-binding site and found that mutations that increased or decreased the affinity of the PIP(3)/TRPC6 interaction enhanced or reduced the TRPC6-dependent current, respectively. PI-mediated disruption of CaM binding appears to be a theme that applies to other TRP channels, such as TRPV1, as well as to the voltage-gated channels KCNQ1 and Ca(v)1.2. We propose that regulation of CaM binding by PIs provides a mode for integration of channel regulation by Ca(2+) and PIs.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
172 |
8
|
Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K. TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 2006; 281:13588-13595. [PMID: 16537542 DOI: 10.1074/jbc.m512205200] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Canonical transient receptor potential proteins (TRPC) have been proposed to form homo- or heteromeric cation channels in a variety of tissues, including the vascular endothelium. Assembly of TRPC multimers is incompletely understood. In particular, heteromeric assembly of distantly related TRPC isoforms is still a controversial issue. Because we have previously suggested TRPC proteins as the basis of the redox-activated cation conductance of porcine aortic endothelial cells (PAECs), we set out to analyze the TRPC subunit composition of endogenous endothelial TRPC channels and report here on a redox-sensitive TRPC3-TRPC4 channel complex. The ability of TRPC3 and TRPC4 proteins to associate and to form a cation-conducting pore complex was supported by four lines of evidence as follows: 1) Co-immunoprecipitation experiments in PAECs and in HEK293 cells demonstrated the association of TRPC3 and TRPC4 in the same complex. 2) Fluorescence resonance energy transfer analysis demonstrated TRPC3-TRPC4 association, involving close proximity between the N terminus of TRPC4 and the C terminus of TRPC3 subunits. 3) Co-expression of TRPC3 and TRPC4 in HEK293 cells generated a channel that displayed distinct biophysical and regulatory properties. 4) Expression of dominant-negative TRPC4 proteins suppressed TRPC3-related channel activity in the HEK293 expression system and in native endothelial cells. Specifically, an extracellularly hemagglutinin (HA)-tagged TRPC4 mutant, which is sensitive to blockage by anti-HA-antibody, was found to transfer anti-HA sensitivity to both TRPC3-related currents in the HEK293 expression system and the redox-sensitive cation conductance of PAECs. We propose TRPC3 and TRPC4 as subunits of native endothelial cation channels that are governed by the cellular redox state.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
165 |
9
|
Becker EBE, Oliver PL, Glitsch MD, Banks GT, Achilli F, Hardy A, Nolan PM, Fisher EMC, Davies KE. A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci U S A 2009; 106:6706-11. [PMID: 19351902 PMCID: PMC2666615 DOI: 10.1073/pnas.0810599106] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Indexed: 11/18/2022] Open
Abstract
The hereditary ataxias are a complex group of neurological disorders characterized by the degeneration of the cerebellum and its associated connections. The molecular mechanisms that trigger the loss of Purkinje cells in this group of diseases remain incompletely understood. Here, we report a previously undescribed dominant mouse model of cerebellar ataxia, moonwalker (Mwk), that displays motor and coordination defects and loss of cerebellar Purkinje cells. Mwk mice harbor a gain-of-function mutation (T635A) in the Trpc3 gene encoding the nonselective transient receptor potential cation channel, type C3 (TRPC3), resulting in altered TRPC3 channel gating. TRPC3 is highly expressed in Purkinje cells during the phase of dendritogenesis. Interestingly, growth and differentiation of Purkinje cell dendritic arbors are profoundly impaired in Mwk mice. Our findings define a previously unknown role for TRPC3 in both dendritic development and survival of Purkinje cells, and provide a unique mechanism underlying cerebellar ataxia.
Collapse
|
research-article |
16 |
164 |
10
|
Pani B, Ong HL, Liu X, Rauser K, Ambudkar IS, Singh BB. Lipid rafts determine clustering of STIM1 in endoplasmic reticulum-plasma membrane junctions and regulation of store-operated Ca2+ entry (SOCE). J Biol Chem 2008; 283:17333-40. [PMID: 18430726 PMCID: PMC2427359 DOI: 10.1074/jbc.m800107200] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/18/2008] [Indexed: 11/06/2022] Open
Abstract
Store depletion induces STIM1 to aggregate and relocate into clusters at ER-plasma membrane junctions where it functionally interacts with and activates plasma membrane channels that mediate store-operated Ca(2+) entry (SOCE). Thus, the site of peripheral STIM1 clusters is critical for the regulation of SOCE. However, what determines the location of the STIM1 clusters in the ER-PM junctional regions, and whether these represent specific sites in the cell is not yet known. Here we report that clustering of STIM1 in the subplasma membrane region of the cell and activation of TRPC1-dependent SOCE are determined by lipid raft domains (LRD). We show that store depletion increased partitioning of TRPC1 and STIM1 into plasma membrane LRD. TRPC1 and STIM1 associated with each other within the LRD, and this association was dynamically regulated by the status of the ER Ca(2+) store. Peripheral STIM1 clustering was independent of TRPC1. However, sequestration of membrane cholesterol attenuated thapsigargin-induced clustering of STIM1 as well as SOCE in HSG and HEK293 cells. Recruitment and association of STIM1 and TRPC1 in LRD was also decreased. Additionally STIM1(D76A), which is peripherally localized and constitutively activates SOCE in unstimulated cells, displayed a relatively higher partitioning into LRD and interaction with TRPC1, as compared with STIM1. Disruption of membrane rafts decreased peripheral STIM1(D76A) puncta, its association with TRPC1 and the constitutive SOCE. Together, these data demonstrate that intact LRD determine targeting of STIM1 clusters to ER-plasma membrane junctions following store depletion. This facilitates the functional interaction of STIM1 with TRPC1 and activation of SOCE.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
151 |
11
|
Soboloff J, Spassova M, Xu W, He LP, Cuesta N, Gill DL. Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 smooth muscle cells. J Biol Chem 2005; 280:39786-94. [PMID: 16204251 DOI: 10.1074/jbc.m506064200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitously expressed canonical transient receptor potential (TRPC) ion channels are considered important in Ca2+ signal generation, but their mechanisms of activation and roles remain elusive. Whereas most studies have examined overexpressed TRPC channels, we used molecular, biochemical, and electrophysiological approaches to assess the expression and function of endogenous TRPC channels in A7r5 smooth muscle cells. Real time PCR and Western analyses reveal TRPC6 as the only member of the diacylglycerol-responsive TRPC3/6/7 subfamily of channels expressed at significant levels in A7r5 cells. TRPC1, TRPC4, and TRPC5 were also abundant. An outwardly rectifying, nonselective cation current was activated by phospholipase C-coupled vasopressin receptor activation or by the diacylglycerol analogue, oleoyl-2-acetyl-sn-glycerol (OAG). Introduction of TRPC6 small interfering RNA sequences into A7r5 cells by electroporation led to 90% reduction of TRPC6 transcript and 80% reduction of TRPC6 protein without any detectable compensatory changes in the expression of other TRPC channels. The OAG-activated nonselective cation current was similarly reduced by TRPC6 RNA interference. Intracellular Ca2+ measurements using fura-2 revealed that thapsigargin-induced store-operated Ca2+ entry was unaffected by TRPC6 knockdown, whereas vasopressin-induced Ca2+ entry was suppressed by more than 50%. In contrast, OAG-induced Ca2+ transients were unaffected by TRPC6 knockdown. Nevertheless, OAG-induced Ca2+ entry bore the hallmarks of TRPC6 function; it was inhibited by protein kinase C and blocked by the Src-kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Importantly, OAG-induced Ca2+ entry was blocked by the potent L-type Ca2+ channel inhibitor, *nimodipine. Thus, TRPC6 activation probably results primarily in Na ion entry and depolarization, leading to activation of L-type channels as the mediators of Ca2+ entry. Calculations reveal that even 90% reduction of TRPC6 channels would allow depolarization sufficient to activate L-type channels. This tight coupling between TRPC6 and L-type channels is probably important in mediating smooth muscle cell membrane potential and muscle contraction.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
131 |
12
|
Xu SZ, Muraki K, Zeng F, Li J, Sukumar P, Shah S, Dedman AM, Flemming PK, McHugh D, Naylor J, Cheong A, Bateson AN, Munsch CM, Porter KE, Beech DJ. A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility. Circ Res 2006; 98:1381-9. [PMID: 16675717 PMCID: PMC2648505 DOI: 10.1161/01.res.0000225284.36490.a2] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a screen of potential lipid regulators of transient receptor potential (TRP) channels, we identified sphingosine-1-phosphate (S1P) as an activator of TRPC5. We explored the relevance to vascular biology because S1P is a key cardiovascular signaling molecule. TRPC5 is expressed in smooth muscle cells of human vein along with TRPC1, which forms a complex with TRPC5. Importantly, S1P also activates the TRPC5-TRPC1 heteromultimeric channel. Because TRPC channels are linked to neuronal growth cone extension, we considered a related concept for smooth muscle. We find S1P stimulates smooth muscle cell motility, and that this is inhibited by E3-targeted anti-TRPC5 antibody. Ion permeation involving TRPC5 is crucial because S1P-evoked motility is also suppressed by the channel blocker 2-aminoethoxydiphenyl borate or a TRPC5 ion-pore mutant. S1P acts on TRPC5 via two mechanisms, one extracellular and one intracellular, consistent with its bipolar signaling functions. The extracellular effect appears to have a primary role in S1P-evoked cell motility. The data suggest S1P sensing by TRPC5 calcium channel is a mechanism contributing to vascular smooth muscle adaptation.
Collapse
|
research-article |
19 |
128 |
13
|
Feng Z, Li W, Ward A, Piggott BJ, Larkspur ER, Sternberg PW, Shawn Xu XZ. A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 2006; 127:621-33. [PMID: 17081982 PMCID: PMC2859215 DOI: 10.1016/j.cell.2006.09.035] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 07/16/2006] [Accepted: 09/15/2006] [Indexed: 11/21/2022]
Abstract
Nicotine, the primary addictive substance in tobacco, induces profound behavioral responses in mammals, but the underlying genetic mechanisms are not well understood. Here we develop a C. elegans model of nicotine-dependent behavior. We show that worms exhibit behavioral responses to nicotine that parallel those observed in mammals, including acute response, tolerance, withdrawal, and sensitization. These nicotine responses require nicotinic acetylcholine receptor (nAChR) family genes that are known to mediate nicotine dependence in mammals, suggesting functional conservation of nAChRs in nicotine responses. Importantly, we find that mutant worms lacking TRPC (transient receptor potential canonical) channels are defective in their response to nicotine and that such a defect can be rescued by a human TRPC channel, revealing an unexpected role for TRPC channels in regulating nicotine-dependent behavior. Thus, C. elegans can be used to characterize known genes as well as to identify new genes regulating nicotine responses.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
122 |
14
|
Dietrich A, Kalwa H, Rost BR, Gudermann T. The diacylgylcerol-sensitive TRPC3/6/7 subfamily of cation channels: functional characterization and physiological relevance. Pflugers Arch 2005; 451:72-80. [PMID: 15971081 DOI: 10.1007/s00424-005-1460-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Among the "classical" or "canonical" transient receptor potential (TRPC) family, the TRPC3, -6, and -7 channels share 75% amino acid identity and are gated by exposure to diacylglycerol. TRPC3, TRPC6, and TRPC7 interact physically and coassemble to form functional tetrameric channels. This review focuses on the TRPC3/6/7 subfamily and describes their functional properties and regulation as homomers obtained from overexpression studies in cell lines. It also summarizes their heteromultimerization potential in vitro and in vivo and presents initial data concerning their physiological functions analyzed in isolated tissues with downregulated channel activity and gene-deficient mouse models.
Collapse
|
|
20 |
121 |
15
|
Schaefer M. Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch 2005; 451:35-42. [PMID: 15971080 DOI: 10.1007/s00424-005-1467-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Accepted: 05/07/2005] [Indexed: 12/29/2022]
Abstract
Mammalian homologues of the Drosophila melanogaster transient receptor potential (TRP) channels are the second largest cation channel family within the superfamily of hexahelical cation channels. Most mammalian TRP channels function as homooligomers and mediate mono- or divalent cation entry upon activation by a variety of stimuli. Because native TRP channels may be multimeric proteins of possibly complex composition, it is difficult to compare cation conductances in native tissues to those of clearly defined homomeric TRP channel complexes in living cells. Therefore, the possibility of heteromeric TRP channel assembly has been investigated in recent years by several groups. As a major conclusion of these studies, most heteromeric TRP channel complexes appear to consist of subunit combinations only within relatively narrow confines of phylogenetic subfamilies. Although the general capability of heteromer formation between closely related TRP channel subunits is now clearly established, we are only beginning to understand whether these heteromeric complexes are of physiological significance. This review summarizes the current knowledge on the promiscuity and specificity of the assembly of channel complexes composed of TRPC-, TRPV- and TRPM-subunits of mammalian TRP channels.
Collapse
|
|
20 |
105 |
16
|
Flemming PK, Dedman AM, Xu SZ, Li J, Zeng F, Naylor J, Benham CD, Bateson AN, Muraki K, Beech DJ. Sensing of lysophospholipids by TRPC5 calcium channel. J Biol Chem 2005; 281:4977-82. [PMID: 16368680 DOI: 10.1074/jbc.m510301200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPC calcium channels are emerging as a ubiquitous feature of vertebrate cells, but understanding of them is hampered by limited knowledge of the mechanisms of activation and identity of endogenous regulators. We have revealed that one of the TRPC channels, TRPC5, is strongly activated by common endogenous lysophospholipids including lysophosphatidylcholine (LPC) but, by contrast, not arachidonic acid. Although TRPC5 was stimulated by agonists at G-protein-coupled receptors, TRPC5 activation by LPC occurred downstream and independently of G-protein signaling. The effect was not due to the generation of reactive oxygen species or because of a detergent effect of LPC. LPC activated TRPC5 when applied to excised membrane patches and thus has a relatively direct action on the channel structure, either because of a phospholipid binding site on the channel or because of sensitivity of the channel to perturbation of the bilayer by certain lipids. Activation showed dependence on side-chain length and the chemical head-group. The data revealed a previously unrecognized lysophospholipid-sensing capability of TRPC5 that confers the property of a lipid ionotropic receptor.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
101 |
17
|
Patterson RL, van Rossum DB, Nikolaidis N, Gill DL, Snyder SH. Phospholipase C-γ: diverse roles in receptor-mediated calcium signaling. Trends Biochem Sci 2005; 30:688-97. [PMID: 16260143 DOI: 10.1016/j.tibs.2005.10.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 08/23/2005] [Accepted: 10/13/2005] [Indexed: 01/25/2023]
Abstract
Ca2+ is a universal signal: the dynamic changes in its release and entry trigger a plethora of cellular responses. Central to this schema are members of the phospholipase C (PLC) superfamily, which relay information from the activated receptor to downstream signal cascades by production of second-messenger molecules. Recent studies reveal that, in addition to its enzymatic activity, PLC-gamma regulates Ca2+ entry via the formation of an intermolecular lipid-binding domain with canonical transient receptor potential 3 (TRPC3) ion channels. This complex, in turn, controls TRPC3 trafficking and cell-surface expression. Thus, TRPC3 ion channels are functionally linked to both lipase-dependent and -independent activities of PLC-gamma. Understanding the underlying molecular mechanisms that regulate this complex will probably clarify the processes of receptor-activated Ca2+ entry.
Collapse
|
|
20 |
94 |
18
|
Lichtenegger M, Tiapko O, Svobodova B, Stockner T, Glasnov TN, Schreibmayer W, Platzer D, de la Cruz GG, Krenn S, Schober R, Shrestha N, Schindl R, Romanin C, Groschner K. An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nat Chem Biol 2018; 14:396-404. [PMID: 29556099 PMCID: PMC5903546 DOI: 10.1038/s41589-018-0015-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/12/2018] [Indexed: 12/30/2022]
Abstract
Transient receptor potential canonical (TRPC) channels TRPC3, TRPC6 and TRPC7 are able to sense the lipid messenger diacylglycerol (DAG). The DAG-sensing and lipid-gating processes in these ion channels are still unknown. To gain insights into the lipid-sensing principle, we generated a DAG photoswitch, OptoDArG, that enabled efficient control of TRPC3 by light. A structure-guided mutagenesis screen of the TRPC3 pore domain unveiled a single glycine residue behind the selectivity filter (G652) that is exposed to lipid through a subunit-joining fenestration. Exchange of G652 with larger residues altered the ability of TRPC3 to discriminate between different DAG molecules. Light-controlled activation-deactivation cycling of TRPC3 channels by an OptoDArG-mediated optical 'lipid clamp' identified pore domain fenestrations as pivotal elements of the channel´s lipid-sensing machinery. We provide evidence for a novel concept of lipid sensing by TRPC channels based on a lateral fenestration in the pore domain that accommodates lipid mediators to control gating.
Collapse
|
research-article |
7 |
89 |
19
|
Ambudkar IS. Ca2+ signaling microdomains:platforms for the assembly and regulation of TRPC channels. Trends Pharmacol Sci 2005; 27:25-32. [PMID: 16337693 DOI: 10.1016/j.tips.2005.11.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 10/05/2005] [Accepted: 11/21/2005] [Indexed: 12/23/2022]
Abstract
The transient receptor potential canonical family (TRPC1-TRPC7) of ion channel proteins, which are activated in response to agonist-stimulated phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] hydrolysis, are proposed components of the elusive store-operated Ca(2+) (SOC) channel. TRPC channels display distinct properties and interact to form homomeric or heteromeric channels that differ in their function and regulation. Although the exact function of TRPC channels and how they are regulated has not been established, increasing data suggest that they are localized and regulated within Ca(2+) signaling microdomains. TRPC channels contribute to store-operated and store-independent Ca(2+) entry mechanisms, both of which are activated by agonist-stimulated PtdIns(4,5)P(2) hydrolysis. Elucidation of how cells achieve specificity and precise temporal and spatial coordination of channel activation is crucial for understanding the molecular basis of agonist-mediated stimulation of Ca(2+) entry and identifying downstream physiological functions. This review will address the assembly and localization of TRPC channels and how these processes impact their function.
Collapse
|
Review |
20 |
82 |
20
|
Abstract
Mammalian members of the classical transient receptor potential channel subfamily (TRPC) are Ca(2+)-permeable cation channels involved in receptor-mediated increases in intracellular Ca(2+). TRPC4 and TRPC5 form a group within the TRPC subfamily and are activated in a phospholipase C-dependent manner by an unidentified messenger. Unlike most other Ca(2+)-permeable channels, TRPC4 and -5 are potentiated by micromolar concentrations of La(3+) and Gd(3+). This effect results from an action of the cations at two glutamate residues accessible from the extracellular solution. Here, we show that TRPC4 and -5 respond to changes in extracellular pH. Lowering the pH increased both G protein-activated and spontaneous TRPC5 currents. Both effects were already observed with small reductions in pH (from 7.4 to 7.0) and increased up to pH 6.5. TRPC4 was also potentiated by decreases in pH, whereas TRPC6 was only inhibited, with a pIC(50) of 5.7. Mutation of the glutamate residues responsible for lanthanoid sensitivity of TRPC5 (E543Q and E595Q) modified the potentiation of TRPC5 by acid. Further evidence for a similarity in the actions of lanthanoids and H(+) on TRPC5 is the reduction in single channel conductance and dramatic increase in channel open probability in the presence of either H(+) or Gd(3+) that leads to larger integral currents. In conclusion, the high sensitivity of TRPC5 to H(+) indicates that, in addition to regulation by phospholipase C and other factors, the channel may act as a sensor of pH that links decreases in extracellular pH to Ca(2+) entry and depolarization.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
81 |
21
|
Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F, Hofnagel O, Gatsogiannis C, Raunser S. Electron cryo-microscopy structure of the canonical TRPC4 ion channel. eLife 2018; 7:e36615. [PMID: 29717981 PMCID: PMC5951680 DOI: 10.7554/elife.36615] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Canonical transient receptor channels (TRPC) are non-selective cation channels. They are involved in receptor-operated Ca2+ signaling and have been proposed to act as store-operated channels (SOC). Their malfunction is related to cardiomyopathies and their modulation by small molecules has been shown to be effective against renal cancer cells. The molecular mechanism underlying the complex activation and regulation is poorly understood. Here, we report the electron cryo-microscopy structure of zebrafish TRPC4 in its unliganded (apo), closed state at an overall resolution of 3.6 Å. The structure reveals the molecular architecture of the cation conducting pore, including the selectivity filter and lower gate. The cytoplasmic domain contains two key hubs that have been shown to interact with modulating proteins. Structural comparisons with other TRP channels give novel insights into the general architecture and domain organization of this superfamily of channels and help to understand their function and pharmacology.
Collapse
|
research-article |
7 |
80 |
22
|
Duan J, Li J, Chen GL, Ge Y, Liu J, Xie K, Peng X, Zhou W, Zhong J, Zhang Y, Xu J, Xue C, Liang B, Zhu L, Liu W, Zhang C, Tian XL, Wang J, Clapham DE, Zeng B, Li Z, Zhang J. Cryo-EM structure of TRPC5 at 2.8-Å resolution reveals unique and conserved structural elements essential for channel function. SCIENCE ADVANCES 2019; 5:eaaw7935. [PMID: 31355338 PMCID: PMC6656536 DOI: 10.1126/sciadv.aaw7935] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/18/2019] [Indexed: 05/21/2023]
Abstract
The transient receptor potential canonical subfamily member 5 (TRPC5), one of seven mammalian TRPC members, is a nonselective calcium-permeant cation channel. TRPC5 is of considerable interest as a drug target in the treatment of progressive kidney disease, depression, and anxiety. Here, we present the 2.8-Å resolution cryo-electron microscopy (cryo-EM) structure of the mouse TRPC5 (mTRPC5) homotetramer. Comparison of the TRPC5 structure to previously determined structures of other TRPC and TRP channels reveals differences in the extracellular pore domain and in the length of the S3 helix. The disulfide bond at the extracellular side of the pore and a preceding small loop are essential elements for its proper function. This high-resolution structure of mTRPC5, combined with electrophysiology and mutagenesis, provides insight into the lipid modulation and gating mechanisms of the TRPC family of ion channels.
Collapse
|
research-article |
6 |
75 |
23
|
Abstract
Transient receptor potential (TRP) channels are regulated by a wide variety of physical and chemical factors. Recently, several members of the TRP channel family were reported to be regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2), PIP(2)). This review will summarize the current knowledge on PIP(2) regulation of TRP channels and discuss the possibility that PIP(2) is a common regulator of mammalian TRP channels.
Collapse
|
Review |
19 |
74 |
24
|
Graham S, Ding M, Ding Y, Sours-Brothers S, Luchowski R, Gryczynski Z, Yorio T, Ma H, Ma R. Canonical transient receptor potential 6 (TRPC6), a redox-regulated cation channel. J Biol Chem 2010; 285:23466-76. [PMID: 20501650 PMCID: PMC2906337 DOI: 10.1074/jbc.m109.093500] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 05/21/2010] [Indexed: 12/26/2022] Open
Abstract
This study examined the effect of H(2)O(2) on the TRPC6 channel and its underlying mechanisms using a TRPC6 heterologous expression system. In TRPC6-expressing HEK293T cells, H(2)O(2) significantly stimulated Ca(2+) entry in a dose-dependent manner. Electrophysiological experiments showed that H(2)O(2) significantly increased TRPC6 channel open probability and whole-cell currents. H(2)O(2) also evoked a robust inward current in A7r5 vascular smooth muscle cells, which was nearly abolished by knockdown of TRPC6 using a small interfering RNA. Catalase substantially attenuated arginine vasopressin (AVP)-induced Ca(2+) entry in cells co-transfected with TRPC6 and AVP V1 receptor. N-Ethylmaleimide and thimerosal were able to simulate the H(2)O(2) response. Dithiothreitol or glutathione-reduced ethyl ester significantly antagonized the response. Furthermore, both N-ethylmaleimide- and H(2)O(2)-induced TRPC6 activations were only observed in the cell-attached patches but not in the inside-out patches. Moreover, 1-oleoyl-2-acetyl-sn-glycerol effect on TRPC6 was significantly greater in the presence of H(2)O(2). Biotinylation assays revealed a significant increase in cell surface TRPC6 in response to H(2)O(2). Similarly, in cells transfected with TRPC6-EGFP, confocal microscopy showed a significant increase in fluorescence intensity in the region of the cell membrane and adjacent to the membrane. AVP also increased the fluorescence intensity on the surface of the cells co-transfected with TRPC6-EGFP and V1 receptor, and this response was inhibited by catalase. These data indicate that H(2)O(2) activates TRPC6 channels via modification of thiol groups of intracellular proteins. This cysteine oxidation-dependent pathway not only stimulates the TRPC6 channel by itself but also sensitizes the channels to diacylglycerol and promotes TRPC6 trafficking to the cell surface.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
69 |
25
|
Mio K, Ogura T, Kiyonaka S, Hiroaki Y, Tanimura Y, Fujiyoshi Y, Mori Y, Sato C. The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J Mol Biol 2006; 367:373-83. [PMID: 17258231 DOI: 10.1016/j.jmb.2006.12.043] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 12/13/2006] [Accepted: 12/15/2006] [Indexed: 11/16/2022]
Abstract
Transient receptor potential (TRP) channels are intrinsic sensors adapted for response to all manner of stimuli both from inside and from outside the cell. Within the TRP superfamily, the canonical TRP-3 (TRPC3) has been widely studied and is involved in various biological processes such as neuronal differentiation, blood vessel constriction, and immune cell maturation. Upon stimulation of surface membrane receptors linked to phospholipase C, TRPC3 mediates transmembrane Ca(2+) influx from outside the cell to control Ca(2+) signaling, in concert with the Ca(2+) release from internal stores. The structural basis of TRP superfamily has, however, been poorly understood. Here we present a structure of the TRPC3 at 15 A resolution. This first 3D depiction of TRP superfamily was reconstructed from 135,909 particle images obtained with cryo-electron microscopy. The large intracellular domain represents a "nested-box" structure: a wireframe outer shell is functionable as sensors for activators and modulators, and a globular inner chamber may modulate ion flow, since it is aligned tandem along the central axis with the dense membrane-spanning core. The transmembrane domain demonstrates a pore-forming property. This structure implies that the TRP superfamily has diversely evolved as sensors specialized for various signals, rather than as simple ion-conducting apparatuses.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
68 |