1
|
McLachlan JS, Hellmann JJ, Schwartz MW. A framework for debate of assisted migration in an era of climate change. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2007; 21:297-302. [PMID: 17391179 DOI: 10.1111/j.1523-1739.2007.00676.x] [Citation(s) in RCA: 311] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
|
|
18 |
311 |
2
|
Lou H, Ding M, Wu J, Zhang F, Chen W, Yang Y, Suo J, Yu W, Xu C, Song L. Full-Length Transcriptome Analysis of the Genes Involved in Tocopherol Biosynthesis in Torreya grandis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1877-1888. [PMID: 30735036 DOI: 10.1021/acs.jafc.8b06138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The seeds of Torreya grandis (Cephalotaxaceae) are rich in tocopherols, which are essential components of the human diet as a result of their function in scavenging reactive oxygen and free radicals. Different T. grandis cultivars (10 cultivars selected in this study were researched, and their information is shown in Table S1 of the Supporting Information) vary enormously in their tocopherol contents (0.28-11.98 mg/100 g). However, little is known about the molecular basis and regulatory mechanisms of tocopherol biosynthesis in T. grandis kernels. Here, we applied single-molecule real-time (SMRT) sequencing to T. grandis (X08 cultivar) for the first time and obtained a total of 97 211 full-length transcripts. We proposed the biosynthetic pathway of tocopherol and identified eight full-length transcripts encoding enzymes potentially involved in tocopherol biosynthesis in T. grandis. The results of the correlation analysis between the tocopherol content and gene expression level in the 10 selected cultivars and different kernel developmental stages of the X08 cultivar suggested that homogentisate phytyltransferase coding gene ( TgVTE2b) and γ-tocopherol methyltransferase coding gene ( TgVTE4) may be key players in tocopherol accumulation in the kernels of T. grandis. Subcellular localization assays showed that both TgVTE2b and TgVTE4 were localized to the chloroplast. We also identified candidate regulatory genes similar to WRI1 and DGAT1 in Arabidopsis that may be involved in the regulation of tocopherol biosynthesis. Our findings provide valuable genetic information for T. grandis using full-length transcriptomic analysis, elucidating the candidate genes and key regulatory genes involved in tocopherol biosynthesis. This information will be critical for further molecular-assisted screening and breeding of T. grandis genotypes with high tocopherol contents.
Collapse
|
|
6 |
24 |
3
|
Yu C, Zeng H, Wang Q, Chen W, Chen W, Yu W, Lou H, Wu J. Multi-omics analysis reveals the molecular responses of Torreya grandis shoots to nanoplastic pollutant. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129181. [PMID: 35643006 DOI: 10.1016/j.jhazmat.2022.129181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Micro/nanoplastic has become an emerging pollutant of global concern. At present, ecotoxic researches on micro/nanoplastics mostly focus on marine aquatic organisms and freshwater algae. Research on the ecological impacts of plastics on higher terrestrial plants, especially on forest plants, is relatively limited. Torreya grandis cv. Merrillii, a species of conifer in the family Taxaceae, is a unique and economically valuable tree species in China. The physiological and biochemical responses of T. grandis seedlings to polystyrene nanoplastics (PSNPs) with a diameter of 100 nm were systematically studied inthe present study. The results showed that nanoplastics enhanced the accumulation of the thiobarbituric acid reactive substance and the activities of catalase and peroxidase. The concentrations of iron, sulfur, and zinc were reduced after nanoplastic exposure. PSNP treatment had an important effect on a series of chemical and genetic indicators of T. grandis, includingantioxidants, small RNA, gene transcription, protein expressions, and metabolite accumulation. Multi-omic analysis revealed that PSNPs modulate terpenoid- and flavonoid-biosynthesis pathways by regulating small RNA transcription and protein expression. Our study provided novelty insights into the responses of forest plants to nanoplastic treatment.
Collapse
|
|
3 |
18 |
4
|
Ge XJ, Zhou XL, Li ZC, Hsu TW, Schaal BA, Chiang TY. Low genetic diversity and significant population structuring in the relict Amentotaxus argotaenia complex (Taxaceae) based on ISSR fingerprinting. JOURNAL OF PLANT RESEARCH 2005; 118:415-22. [PMID: 16247653 DOI: 10.1007/s10265-005-0235-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 09/06/2005] [Indexed: 05/05/2023]
Abstract
Amentotaxus, a genus of the Taxaceae, represents an ancient lineage that has long existed in Eurasia. All Amentotaxus species experienced frequent population expansion and contraction over periodical glaciations in Tertiary and Quaternary. Among them, Amentotaxus argotaenia complex consists of three morphologically alike species, A. argotaenia, Amentotaxus yunnanensis, and Amentotaxus formosana. This complex is distributed in the subtropical region of mainland China and Taiwan where many Pleistocene refugia have been documented. In this study, genetic diversity and population structuring within and between species were investigated based on the inter-simple sequence repeats (ISSR) fingerprinting. Mean genetic diversity within populations was estimated in three ways: (1) the percentage of polymorphic loci out of all loci (P) (2) Nei's unbiased expected heterozygosity (He), and (3) Shannon's index of phenotypic diversity. For a total of 310 individuals of 15 populations sampled from the three species, low levels of ISSR genetic variation within populations were detected, with P=4.66-16.58%, He=0.0176-0.0645 and Hpop=0.0263-0.0939, agreeing with their seriously threatened status. AMOVA analyses revealed that the differences between species only accounted for 27.38% of the total variation, whereas differences among populations and within populations were 57.70 and 14.92%, respectively, indicating substantial isolation between the patch-like populations. A neighbor-joining tree identified a close affinity between A. yunnanensis and A. formosana. Genetic drift due to small population size, plus limited current gene flow, resulted in significant genetic structuring. Low levels of intra-populational genetic variation and considerable inter-populational divergence were also attributable to demographic bottlenecks during and/or after the Pleistocene glaciations.
Collapse
|
|
20 |
17 |
5
|
Li CY, Chiang TY, Chiang YC, Hsu HM, Ge XJ, Huang CC, Chen CT, Hung KH. Cross-Species, Amplifiable EST-SSR Markers for Amentotaxus Species Obtained by Next-Generation Sequencing. Molecules 2016; 21:67. [PMID: 26751439 PMCID: PMC6273106 DOI: 10.3390/molecules21010067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 01/02/2023] Open
Abstract
Amentotaxus, a genus of Taxaceae, is an ancient lineage with six relic and endangered species. Four Amentotaxus species, namely A. argotaenia, A. formosana, A. yunnanensis, and A. poilanei, are considered a species complex because of their morphological similarities. Small populations of these species are allopatrically distributed in Asian forests. However, only a few codominant markers have been developed and applied to study population genetic structure of these endangered species. In this study, we developed and characterized polymorphic expressed sequence tag-simple sequence repeats (EST-SSRs) from the transcriptome of A. formosana. We identified 4955 putative EST-SSRs from 68,281 unigenes as potential molecular markers. Twenty-six EST-SSRs were selected for estimating polymorphism and transferability among Amentotaxus species, of which 23 EST-SSRs were polymorphic within Amentotaxus species. Among these, the number of alleles ranged from 1-4, the polymorphism information content ranged from 0.000-0.692, and the observed and expected heterozygosity were 0.000-1.000 and 0.080-0.740, respectively. Population genetic structure analyses confirmed that A. argotaenia and A. formosana were separate species and A. yunnanensis and A. poilanei were the same species. These novel EST-SSRs can facilitate further population genetic structure research of Amentotaxus species.
Collapse
|
research-article |
9 |
13 |
6
|
Liu L, Wang Z, Su Y, Wang T. Characterization and Analysis of the Full-Length Transcriptomes of Multiple Organs in Pseudotaxus chienii (W.C.Cheng) W.C.Cheng. Int J Mol Sci 2020; 21:ijms21124305. [PMID: 32560294 PMCID: PMC7352595 DOI: 10.3390/ijms21124305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/06/2023] Open
Abstract
Pseudotaxus chienii, a rare tertiary relict species with economic and ecological value, is a representative of the monotypic genus Pseudotaxus that is endemic to China. P. chienii can adapt well to habitat isolation and ecological heterogeneity under a variety of climate and soil conditions, and is able to survive in harsh environments. However, little is known about the molecular and genetic resources of this long-lived conifer. Herein, we sequenced the transcriptomes of four organs of P. chienii using the PacBio Isoform Sequencing and Illumina RNA Sequencing platforms. Based on the PacBio Iso-Seq data, we obtained 44,896, 58,082, 50,485, and 67,638 full-length unigenes from the root, stem, leaf, and strobilus, respectively, with a mean length of 2692 bp, and a mean N50 length of 3010.75 bp. We then comprehensively annotated these unigenes. The number of organ-specific expressed unigenes ranged from 4393 in leaf to 9124 in strobilus, suggesting their special roles in physiological processes, organ development, and adaptability in the different four organs. A total of 16,562 differentially expressed genes (DEGs) were identified among the four organs and clustered into six subclusters. The gene families related to biotic/abiotic factors, including the TPS, CYP450, and HSP families, were characterized. The expression levels of most DEGs in the phenylpropanoid biosynthesis pathway and plant–pathogen interactions were higher in the root than in the three other organs, suggesting that root constitutes the main organ of defensive compound synthesis and accumulation and has a stronger ability to respond to stress. The sequences were analyzed to predict transcription factors, long non-coding RNAs, and alternative splicing events. The expression levels of most DEGs of C2H2, C3H, bHLH, and bZIP families in the root and stem were higher than those in the leaf and strobilus, indicating that these TFs may play a crucial role in the survival of the root and stem. These results comprise the first comprehensive gene expression profiles obtained for different organs of P. chienii. Our findings will facilitate further studies on the functional genomics, adaptive evolution, and phylogeny of P. chienii, and lay the foundation for the development of conservation strategies for this endangered conifer.
Collapse
|
Journal Article |
5 |
3 |
7
|
Elpe C, Knopf P, Stützel T, Schulz C. Diversity and evolution of leaf anatomical characters in Taxaceae s.l.-fluorescence microscopy reveals new delimitating characters. JOURNAL OF PLANT RESEARCH 2018; 131:125-141. [PMID: 28819805 DOI: 10.1007/s10265-017-0973-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Taxaceae s.l. comprise six genera (including Cephalotaxus) and about 35 species; The present study aims to give new insights into the evolution of this family, especially into the phylogenetic position of Cephalotaxus. Moreover, only little is known about comparative leaf anatomy of this family and this study aims to expose and interpret the diversity and evolution of leaf anatomical characters and to assess their applicability to identify taxa at the generic and species level. A detailed phylogeny was reconstructed, using both maximum likelihood and Bayesian inference, with a combined dataset of four molecular markers from the plastid and nuclear genomes. Leaf sections from 132 specimens, representing 32 species and four varieties (fresh and herbarium material) were inspected, using fluorescence microscopy. Ancestral characters were reconstructed using Mesquite. The phylogenetic analyses provided full support for Cephalotaxus as sister group to Taxaceae s.str. Within the latter, two monophyletic tribes Taxeae (comprising Austrotaxus, Pseudotaxus, and Taxus) and Torreyeae (comprising Amentotaxus and Torreya) were fully supported. Fluorescence microscopy was shown to be very useful for identifying leaf tissues and their constitution. We were able to show that particularly sclerified tissues have highest potential for the discrimination of both freshly collected samples and rehydrated herbarium specimens at the generic and species level. A correlation between the presence of different sclereid types could be shown and sclereids were hypothesized to pose a primitive trait in the evolution of Taxaceae s.l. New identification keys were generated on the basis of leaf anatomical characters. The microscopic method presented here is applicable for further studies within gymnosperms and probably in angiosperms, as well.
Collapse
|
|
7 |
3 |
8
|
Ho CS, Chen CT, Ko YZ, Ge XJ, Hung KH, Hsu TW, Chiang YC. Isolation and characterization of 15 microsatellite loci in four endangered Amentotaxus species (Taxaceae). AMERICAN JOURNAL OF BOTANY 2012; 99:e157-e159. [PMID: 22447985 DOI: 10.3732/ajb.1100452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY Fifteen microsatellite loci were developed in an endangered species, Amentotaxus formosana, and were tested in an additional three species, A. argotaenia, A. yunnanensis, and A. poilanei, to evaluate the population structure for conservation efforts and reconstruct the phylogeographic patterns of this ancient lineage. METHODS AND RESULTS Polymorphic primer sets were developed from A. formosana; the number of alleles ranged from two to 10, with an observed heterozygosity ranging from 0 to 0.60. All of the loci were found to be interspecifically amplifiable. CONCLUSIONS These polymorphic and transferable loci will be potentially useful for future studies that will focus on identifying distinct genetic units within species and establishing the phylogeographic patterns and the process of speciation among closely related species.
Collapse
|
|
13 |
2 |
9
|
Wu ZY, Liu JF, Hong W, Pan DM, Zheng SQ. [Genetic diversity of natural and planted Glyptostrobus pensilis populations: a comparative study]. YING YONG SHENG TAI XUE BAO = THE JOURNAL OF APPLIED ECOLOGY 2011; 22:873-879. [PMID: 21774306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Glyptostrobus pensilis is a rare and endangered relict species in China. To make a comparative study on the genetic diversity and genetic structure of natural and planted G. pensilis populations would have significance in the conservation and proliferation of the species. Samples from the main distribution regions of G. pensilis were analyzed by ISSR (inter simple sequence repeats) molecular marker. A total of 95 discernible DNA fragments were detected with 10 ISSR primers, of which, polymorphic loci occupied 39.0%, suggesting that the genetic variation in the test G. pensilis populations was at a very low level, compared with other endangered gymnosperm. The genetic differential index (G(st) = 0.3982) and the gene flow (N(m) = 0.3778) indicated that there existed genetic differentiation among populations but the differentiation dominated within populations. There was a significant positive correlation between genetic distance and geographical distance. The mean values of polymorphic loci (P), Nei's gene index (H(e)), and Shannon information index (I) of natural populations (P = 39.9%, H(e) = 0.1499, I = 0.2202) were much higher than those of planted G. pensilis populations (P = 30.7%, H(e) = 0.1265, I = 0.1759), and the coefficient of gene differentiation (G(st)) and genetic distance (D) of natural populations (G(st) = 0.4513, D = 0.0301) were also much higher than those of the planted populations (G(st) = 0.3025, D = 0.0192).
Collapse
|
Comparative Study |
14 |
|
10
|
Suo J, Liu Y, Yan J, Li Q, Chen W, Liu Z, Zhang Z, Hu Y, Yu W, Yan J, Song L, Wu J. Sucrose promotes cone enlargement via the TgNGA1-TgWRKY47-TgEXPA2 module in Torreya grandis. THE NEW PHYTOLOGIST 2024; 243:1823-1839. [PMID: 39005107 DOI: 10.1111/nph.19972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Cone enlargement is a crucial process for seed production and reproduction in gymnosperms. Most of our knowledge of cone development is derived from observing anatomical structure during gametophyte development. Therefore, the exact molecular mechanism underlying cone enlargement after fertilization is poorly understood. Here, we demonstrate that sucrose promotes cone enlargement in Torreya grandis, a gymnosperm species with relatively low rates of cone enlargement, via the TgNGA1-TgWRKY47-TgEXPA2 pathway. Cell expansion plays a significant role in cone enlargement in T. grandis. 13C labeling and sucrose feeding experiments indicated that sucrose-induced changes in cell size and number contribute to cone enlargement in this species. RNA-sequencing analysis, transient overexpression in T. grandis cones, and stable overexpression in tomato (Solanum lycopersicum) suggested that the expansin gene TgEXPA2 positively regulates cell expansion in T. grandis cones. The WRKY transcription factor TgWRKY47 directly enhances TgEXPA2 expression by binding to its promoter. Additionally, the NGATHA transcription factor TgNGA1 directly interacts with TgWRKY47. This interaction suppresses the DNA-binding ability of TgWRKY47, thereby reducing its transcriptional activation on TgEXPA2 without affecting the transactivation ability of TgWRKY47. Our findings establish a link between sucrose and cone enlargement in T. grandis and elucidate the potential underlying molecular mechanism.
Collapse
|
|
1 |
|
11
|
Zhu R, Gao N, Luo J, Shi W. Genome and Transcriptome Analysis of the Torreya grandis WRKY Gene Family during Seed Development. Genes (Basel) 2024; 15:267. [PMID: 38540326 PMCID: PMC10970084 DOI: 10.3390/genes15030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 06/15/2024] Open
Abstract
Torreya grandis, an economically significant evergreen tree species exclusive to subtropical China, is highly valued for its seeds. However, the seed development process of T. grandis remains relatively unexplored. Given the pivotal role WRKY transcription factors (TFs) play in coordinating diverse cellular and biological activities, as well as crucial signaling pathways essential for plant growth and development, and the lack of comprehensive investigation into their specific functions in T. grandis, our study investigated its genome and successfully isolated 78 WRKY genes and categorized them into three distinct clades. A conserved motif analysis unveiled the presence of the characteristic WRKY domain in each identified TgWRKY protein. The examination of gene structures revealed variable numbers of introns (ranging from zero to eight) and exons (ranging from one to nine) among TgWRKY genes. A chromosomal distribution analysis demonstrated the presence of TgWRKY across eight chromosomes in T. grandis. Tissue-specific expression profiling unveiled distinctive patterns of these 78 TgWRKY genes across various tissues. Remarkably, a co-expression analysis integrating RNA-seq data and morphological assessments pinpointed the pronounced expression of TgWRKY25 during the developmental stages of T. grandis seeds. Moreover, a KEGG enrichment analysis, focusing on genes correlated with TgWRKY25 expression, suggested its potential involvement in processes such as protein processing in the endoplasmic reticulum, starch, and sucrose metabolism, thereby modulating seed development in T. grandis. These findings not only underscore the pivotal role of WRKY genes in T. grandis seed development but also pave the way for innovative breeding strategies.
Collapse
|
research-article |
1 |
|
12
|
Kou Y, Fan D, Cheng S, Yang Y, Wang M, Wang Y, Zhang Z. Peripatric speciation within Torreya fargesii (Taxaceae) in the Hengduan Mountains inferred from multi-loci phylogeography. BMC Ecol Evol 2023; 23:74. [PMID: 38087226 PMCID: PMC10714551 DOI: 10.1186/s12862-023-02183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The Hengduan Mountains (HDM) are one of the major global biodiversity hotspots in the world. Several evolutionary scenarios, especially in-situ diversification, have been proposed to account for the high species richness of temperate plants. However, peripatric speciation, an important mode of allopatric speciation, has seldom been reported in this region. RESULTS Here, two chloroplast DNA regions and 14 nuclear loci were sequenced for 112 individuals from 10 populations of Torreya fargesii var. fargesii and 63 individuals from 6 populations of T. fargesii var. yunnanensis. Population genetic analyses revealed that the two varieties are well differentiated genetically (FST, 0.5765) and have uneven genetic diversity (π, 0.00221 vs. 0.00073 on an average of nuclear loci). The gene genealogical relationship showed that T. fargesii var. yunnanensis is inferred as derived from T. fargesii var. fargesii, which was further supported by the coalescent simulations (DIYABC, fastsimcoal2 and IMa2). By the coalescent simulations, the divergence time (~ 2.50-3.65 Ma) and the weak gene flow between the two varieties were detected. The gene flow was asymmetrical and only occurred in later stages of divergence, which is caused by second contact due to the population expansion (~ 0.61 Ma) in T. fargesii var. fargesii. In addition, niche modeling indicated that the two varieties are differentiated geographically and ecologically and have unbalanced distribution range. CONCLUSIONS Overall, T. fargesii var. fargesii is always parapatric with respect to T. fargesii var. yunnanensis, and the latter derived from the former in peripatry of the HDM following a colonization from central China during the late Pliocene. Our findings demonstrate that peripatric speciation following dispersal events may be an important evolutionary scenario for the formation of biodiversity hotspot of the HDM.
Collapse
|
research-article |
2 |
|
13
|
Li JH, Jin ZX, Li JM. [Genetic diversity of endangered plant Torreya jackii: a study with RAPD markers]. YING YONG SHENG TAI XUE BAO = THE JOURNAL OF APPLIED ECOLOGY 2007; 18:2661-2667. [PMID: 18333436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
With random amplified polymorphic DNA (RAPD) techniques, this paper studied the genetic diversity and genetic differentiation of Torreya jackii, an endangered plant endemic to China. In the 180 individuals of 9 T. jackii natural populations, 180 repetitive loci were detected by using 12 random primers, among which, 119 were polymorphic. At species level, the percentage of polymorphic loci (P) was 66.11%, and the genetic diversity estimated by Shannon information index (I) and Nei's index (h) was 0.3087 and 0.2015, respectively, suggesting that the genetic diversity at species level was relatively high. However, at population level, the genetic diversity was relatively low (P = 23.76% , I = 0.1221, and h = 0.0813). The analysis of molecular variance (AMOVA) showed that 42.57% of genetic variance was found within populations, and 57.43% of it was resided among populations. The coefficient of gene differentiation (G(st)) was 0.5965, indicating the high genetic differentiation among the populations of T. jackii, and the gene flow among the populations was quite low, being 0.3382. The bottleneck effect, population isolation, and low gene flow among populations would have contributed to such a population genetic structure in T. jackii. The averaged genetic distance among 9 T. jackii populations was 0.1630. By using the unweighted pair group method with arithmetic mean (UPGMA), the 9 populations could be divided into two groups, i. e., Zhejiang group and Fujian group. It was proposed that in the ex situ conservation of T. jackii, the gcrmplasm transferring among populations should be avoided.
Collapse
|
English Abstract |
18 |
|
14
|
Yan J, Liu Z, Wang T, Wang R, Wang S, Chen W, Suo J, Yan J, Wu J. TgLUT1 regulated by TgWRKY10 enhances the tolerance of Torreya grandis to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108436. [PMID: 38367388 DOI: 10.1016/j.plaphy.2024.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Drought stress is a major abiotic stress which severely reduces the plant growth and limits agricultural productivity. Previous studies have demonstrated that lutein directly synthesized by the carotenoid epsilon-ring hydroxylase gene (LUT1) played crucial roles in regulating drought response. Notwithstanding the myriad studies on LUT1's response to drought stress in certain plant species such as Arabidopsis, the precise function mechanisms within tree species remain ambiguously understood. Our study reveals that under drought stress, TgLUT1, a novel LUT gene instrumental in β-lutein biosynthesis, was markedly up-regulated in Torreya grandis. Subcellular localization assay indicated that TgLUT1 protein was localized to chloroplasts. Phenotypic analysis showed that overexpression of TgLUT1 enhanced the tolerance of tomato to drought stress. Overexpressing of TgLUT1 increased the values of maximal photochemical efficiency of photosystem II (Fv/Fm), net photosynthetic rate (Pn) and non-photochemical quenching (NPQ), and reduced the accumulation of hydrogen peroxide (H2O2), malondialdehyde (MDA) content and electrolyte leakage percentage in response to drought stress. Furthermore, overexpression of TgLUT1 decreased the stomatal conductance to reduce the water loss rate exposed to drought stress. In addition, yeast one-hybrid assay, dual luciferase assay system and qRT-PCR results showed that TgWRKY10 down-regulated by drought stress inhibited the expression of TgLUT1 by directly binding to the TgLUT1 promoter. Collectively, our results show that TgWRKY10, down-regulated by drought stress, negatively regulates the expression of TgLUT1 to modulate the drought stress response. This study contributes to a more comprehensive understanding of LUT1's function in the stress responses of economically significant forest plants.
Collapse
|
|
1 |
|
15
|
Li JH, Jiao J, Jiang K, Li YY. Development and characterization of microsatellites in Torreya jackii (Taxaceae), an endangered species in China. AMERICAN JOURNAL OF BOTANY 2011; 98:e349-e351. [PMID: 22140217 DOI: 10.3732/ajb.1100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY Polymorphic microsatellite loci were developed in Torreya jackii, an endangered species in China, to provide markers for further studies on the genetic diversity of this species. METHODS AND RESULTS Eight polymorphic loci and one monomorphic locus were developed and characterized in four T. jackii populations (Xianju, Songyang, Pujiang, and Tonglu) from Zhejiang Province, China. The number of alleles per locus ranged from one to eight across 80 T. jackii individuals. At the eight polymorphic loci, the observed heterozygosity ranged from 0.150 to 1.000 and the expected heterozygosity ranged from 0.185 to 0.796. CONCLUSIONS The microsatellite loci developed and characterized in this study will facilitate future analyses of the genetic diversity of T. jackii. Such information will aid in designing strategies to conserve this currently endangered species.
Collapse
|
|
14 |
|
16
|
Lou H, Zheng S, Chen W, Yu W, Jiang H, Farag MA, Xiao J, Wu J, Song L. Transcriptome-referenced association study provides insights into the regulation of oil and fatty acid biosynthesis in Torreya grandis kernel. J Adv Res 2024; 62:1-14. [PMID: 36639025 PMCID: PMC11331172 DOI: 10.1016/j.jare.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Torreya grandis is a gymnosperm belonging to Taxodiaceae. As an economically important tree, its kernels are edible and rich in oil with high unsaturated fatty acids, such as sciadonic acid. However, the kernels from different T. grandis landraces exhibit fatty acid and oil content variations. OBJECTIVES As a gymnosperm, does T. grandis have special regulation mechanisms for oil biosynthesis? The aim of this study was to dissect the genetic architecture of fatty acid and oil content and the underlying mechanism in T. grandis. METHODS We constructed a high integrity reference sequence of expressed regions of the genome in T. grandis and performed transcriptome-referenced association study (TRAS) for 10 fatty acid and oil traits of kernels in the 170 diverse T. grandis landraces. To confirm the TRAS result, we performed functional validation and molecular biology experiments for oil significantly associated genes. RESULTS We identified 41 SNPs from 34 transcripts significantly associated with 7 traits by TRAS (-log10 (P) greater than 6.0). Results showed that LOB domain-containing protein 40 (LBD40) and surfeit locus protein 1 (SURF1) may be indirectly involved in the regulation of oil and sciadonic acid biosynthesis, respectively. Moreover, overexpression of TgLBD40 significantly increased seed oil content. The nonsynonymous variant in the TgLBD40 coding region discovered by TRAS could alter the oil content in plants. Pearson's correlation analysis and dual-luciferase assay indicated that TgLBD40 positively enhanced oil accumulation by affecting oil biosynthesis pathway genes, such as TgDGAT1. CONCLUSION Our study provides new insights into the genetic basis of oil biosynthesis in T. grandis and demonstrates that integrating RNA sequencing and TRAS is a powerful strategy to perform association study independent of a reference genome for dissecting important traits in T. grandis.
Collapse
|
research-article |
1 |
|