1
|
Schröder NWJ, Morath S, Alexander C, Hamann L, Hartung T, Zähringer U, Göbel UB, Weber JR, Schumann RR. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 2003; 278:15587-94. [PMID: 12594207 DOI: 10.1074/jbc.m212829200] [Citation(s) in RCA: 478] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipoteichoic acid (LTA) derived from Streptococcus pneumoniae, purified employing a chloroform/methanol protocol, and from Staphylococcus aureus, prepared by the recently described butanol extraction procedure, was investigated regarding its interaction with lipopolysaccharide (LPS)-binding protein (LBP), CD14, Toll-like receptors (TLRs)-2 and -4, and MD-2. LTA from both organisms induced cytokine synthesis in human mononuclear phagocytes. Activation was LBP- and CD14-dependent, and formation of complexes of LTA with LBP and soluble CD14 as well as catalytic transfer of LTA to CD14 by LBP was verified by PhastGel(TM) native gel electrophoresis. Human embryonic kidney (HEK) 293/CD14 cells and Chinese hamster ovary (CHO) cells were responsive to LTA only after transfection with TLR-2. Additional transfection with MD-2 did not affect stimulation of these cells by LTA. Our data suggest that innate immune recognition of LTA via LBP, CD14, and TLR-2 represents an important mechanism in the pathogenesis of systemic complications in the course of infectious diseases brought about by the clinically most important Gram-positive pathogens. However, the involvement of TLR-4 and MD-2 in this process was ruled out.
Collapse
|
|
22 |
478 |
2
|
Abstract
Lipoteichoic acid (LTA) is a surface-associated adhesion amphiphile from Gram-positive bacteria and regulator of autolytic wall enzymes (muramidases). It is released from the bacterial cells mainly after bacteriolysis induced by lysozyme, cationic peptides from leucocytes, or beta-lactam antibiotics. It binds to target cells either non-specifically, to membrane phospholipids, or specifically, to CD14 and to Toll-like receptors. LTA bound to targets can interact with circulating antibodies and activate the complement cascade to induce a passive immune kill phenomenon. It also triggers the release from neutrophils and macrophages of reactive oxygen and nitrogen species, acid hydrolases, highly cationic proteinases, bactericidal cationic peptides, growth factors, and cytotoxic cytokines, which may act in synergy to amplify cell damage. Thus, LTA shares with endotoxin (lipopolysaccharide) many of its pathogenetic properties. In animal studies, LTA has induced arthritis, nephritis, uveitis, encephalomyelitis, meningeal inflammation, and periodontal lesions, and also triggered cascades resulting in septic shock and multiorgan failure. Binding of LTA to targets can be inhibited by antibodies, phospholipids, and specific antibodies to CD14 and Toll, and in vitro its release can be inhibited by non-bacteriolytic antibiotics and by polysulphates such as heparin, which probably interfere with the activation of autolysis. From all this evidence, LTA can be considered a virulence factor that has an important role in infections and in postinfectious sequelae caused by Gram-positive bacteria. The future development of effective antibacteriolitic drugs and multidrug strategies to attenuate LTA-induced secretion of proinflammatory agonists is of great importance to combat septic shock and multiorgan failure caused by Gram-positive bacteria.
Collapse
|
Review |
23 |
292 |
3
|
De Kimpe SJ, Kengatharan M, Thiemermann C, Vane JR. The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proc Natl Acad Sci U S A 1995; 92:10359-63. [PMID: 7479784 PMCID: PMC40796 DOI: 10.1073/pnas.92.22.10359] [Citation(s) in RCA: 251] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although the incidence of Gram-positive sepsis has risen strongly, it is unclear how Gram-positive organisms (without endotoxin) initiate septic shock. We investigated whether two cell wall components from Staphylococcus aureus, peptidoglycan (PepG) and lipoteichoic acid (LTA), can induce the inflammatory response and multiple organ dysfunction syndrome (MODS) associated with septic shock caused by Gram-positive organisms. In cultured macrophages, LTA (10 micrograms/ml), but not PepG (100 micrograms/ml), induces the release of nitric oxide measured as nitrite. PepG, however, caused a 4-fold increase in the production of nitrite elicited by LTA. Furthermore, PepG antibodies inhibited the release of nitrite elicited by killed S. aureus. Administration of both PepG (10 mg/kg; i.v.) and LTA (3 mg/kg; i.v.) in anesthetized rats resulted in the release of tumor necrosis factor alpha and interferon gamma and MODS, as indicated by a decrease in arterial oxygen pressure (lung) and an increase in plasma concentrations of bilirubin and alanine aminotransferase (liver), creatinine and urea (kidney), lipase (pancreas), and creatine kinase (heart or skeletal muscle). There was also the expression of inducible nitric oxide synthase in these organs, circulatory failure, and 50% mortality. These effects were not observed after administration of PepG or LTA alone. Even a high dose of LTA (10 mg/kg) causes only circulatory failure but no MODS. Thus, our results demonstrate that the two bacterial wall components, PepG and LTA, work together to cause systemic inflammation and multiple systems failure associated with Gram-positive organisms.
Collapse
|
research-article |
30 |
251 |
4
|
Vreugdenhil ACE, Rousseau CH, Hartung T, Greve JWM, van 't Veer C, Buurman WA. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1399-405. [PMID: 12538700 DOI: 10.4049/jimmunol.170.3.1399] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chylomicrons have been shown to protect against endotoxin-induced lethality. LPS-binding protein (LBP) is involved in the inactivation of bacterial toxin by lipoproteins. The current study examined the interaction among LBP, chylomicrons, and bacterial toxin. LBP was demonstrated to associate with chylomicrons and enhance the amount of LPS binding to chylomicrons in a dose-dependent fashion. In addition, LBP accelerated LPS binding to chylomicrons. This LBP-induced interaction of LPS with chylomicrons prevented endotoxin toxicity, as demonstrated by reduced cytokine secretion by PBMC. When postprandial circulating concentrations of chylomicrons were compared with circulating levels of low density lipoprotein, very low density lipoprotein, and high density lipoprotein, chylomicrons exceeded the other lipoproteins in LPS-inactivating capacity. Furthermore, highly purified lipoteichoic acid, an immunostimulatory component of Gram-positive bacteria, was detoxified by incubation with LBP and chylomicrons. In conclusion, our results indicate that LBP associates with chylomicrons and enables chylomicrons to rapidly bind bacterial toxin, thereby preventing cell activation. Besides a role in the detoxification of bacterial toxin present in the circulation, we believe that LBP-chylomicron complexes may be part of a local defense mechanism of the intestine against translocated bacterial toxin.
Collapse
|
|
22 |
148 |
5
|
Han SH, Kim JH, Martin M, Michalek SM, Nahm MH. Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect Immun 2003; 71:5541-8. [PMID: 14500472 PMCID: PMC201083 DOI: 10.1128/iai.71.10.5541-5548.2003] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of gram-positive sepsis, and lipoteichoic acid (LTA) may be important in causing gram-positive bacterial septic shock. Even though pneumococcal LTA is structurally distinct from the LTA of other gram-positive bacteria, the immunological properties of pneumococcal LTA have not been well characterized. We have investigated the ability of LTAs to stimulate human monocytes by using highly pure and structurally intact preparations of pneumococcal LTA and its two structural variants. The variants were pneumococcal LTA with only one acyl chain (LTA-1) and completely deacylated LTA (LTA-0). The target cells used in the study were peripheral blood mononuclear cells (PBMCs) and two model cell lines (CHO/CD14/TLR2 and CHO/CD14/TLR4) that express human CD25 protein in response to Toll-like receptor 2 (TLR2) and TLR4 stimulation, respectively. Intact pneumococcal LTA and LTA-1 stimulated PBMC and CHO/CD14/TLR2 cells in a dose-dependent manner but did not stimulate CHO/CD14/TLR4 cells. Pneumococcal LTA was about 100-fold less potent than Staphylococcus aureus LTA in stimulating the CHO/CD14/TLR2 cells and PBMCs. LTA-0 (or pneumococcal teichoic acid) stimulated neither CHO/CD14/TLR2 nor CHO/CD14/TLR4 cells even at high concentrations. Excess teichoic acid, LTA-0, antibodies to phosphocholine, or antibodies to TLR4 did not inhibit the LTA-induced TLR2 stimulation. However, antibodies to CD14, TLR1, or TLR2 suppressed tumor necrosis factor alpha (TNF-alpha) production by PBMCs in response to LTA or LTA-1. These results suggest that pneumococcal LTA with one or both acyl chains stimulates PBMCs primarily via TLR2 with the help of CD14 and TLR1.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
141 |
6
|
Abstract
The role of the M protein in adherence of group A streptococci to human epithelial cells was directly tested by using an isogenic pair of M+ and M- strains. There was no difference between these strains in the number of streptococcal units that adhered to buccal or tonsillar epithelial cells, indicating the following: (i) that adhesins that are not dependent upon M protein expression are present on the surface of group A streptococci and (ii) that the M protein is not the primary streptococcal adherence ligand. However, the M+ strain adhered to tonsillar epithelial cells as aggregates. This aggregation was dependent on the presence of the M protein, since the isogenic M- strain did not clump. The coaggregation of streptococci suggests that the M protein plays an important role in promoting the formation of microcolonies after initial attachment. Binding to fibronectin, a potential epithelial cell receptor for group A streptococci, was also the same for the isogenic M+ and M- strains as well as for an isogenic strain with a regulatory mutation that decreases the expression of M protein. In summary, the M protein is not the primary streptococcal adhesin, nor is it required to orient the streptococcal adhesin and/or fibronectin receptor.
Collapse
|
research-article |
34 |
115 |
7
|
Brun P, Castagliuolo I, Pinzani M, Palù G, Martines D. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2005; 289:G571-8. [PMID: 15860640 DOI: 10.1152/ajpgi.00537.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activated hepatic stellate cells (HSCs) secrete extracellular matrix components during hepatic fibrosis, but recent studies have shown that HSCs can also release a variety of proinflammatory cytokines. Moreover, bacterial endotoxemia is not only associated with systemic complications in the late stages of liver failure but is also a direct cause of liver damage, activating resident inflammatory cells. In this study, we investigated whether HSCs can respond directly to bacterial cell wall products acquiring a new phenotype. RT-PCR and immunocytochemistry assays were used to show that murine HSCs expressed specific mRNA transcripts and proteins for LPS and lipoteichoic acid (LTA) receptor systems and peptidoglycan recognition proteins. Exposing HSCs to bacterial endotoxins led to phosphorylation of mitogen-activated protein kinase ERK1 and the development of a proinflammatory phenotype. After exposure to LPS, LTA, or N-acetyl muramyl peptide, transforming growth factor-beta1, IL-6, and monocyte chemoattractant protein-1 (MCP-1) mRNA specific transcripts and proteins increased significantly in HSCs, as assayed by quantitative real-time RT-PCR and ELISA. These LPS-mediated effects in HSCs were receptor dependent, because LPS-induced ERK1 phosphorylation, IL-6, and MCP-1 mRNA and protein level upregulation were significantly less pronounced in HSCs isolated from C3H/HeJ mice lacking Toll-like receptor 4. In conclusion, our results show that murine HSCs express functional receptors for bacterial endotoxins, and HSCs exposed to bacterial products develop a strong proinflammatory phenotype. We speculate that high levels of bacterial endotoxins in the portal vein may directly induce a proinflammatory phenotype in HSCs that contributes to liver damage.
Collapse
|
|
20 |
114 |
8
|
Neher JJ, Neniskyte U, Hornik T, Brown GC. Inhibition of UDP/P2Y6 purinergic signaling prevents phagocytosis of viable neurons by activated microglia in vitro and in vivo. Glia 2014; 62:1463-75. [PMID: 24838858 PMCID: PMC4336556 DOI: 10.1002/glia.22693] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/25/2022]
Abstract
Microglia activated through Toll-like receptor (TLR)-2 or -4 can cause neuronal death by phagocytosing otherwise-viable neurons—a form of cell death called “phagoptosis.” UDP release from neurons has been shown to provoke microglial phagocytosis of neurons via microglial P2Y6 receptors, but whether inhibition of this process affects neuronal survival is unknown. We tested here whether inhibition of P2Y6 signaling could prevent neuronal death in inflammatory conditions, and whether UDP signaling can induce phagoptosis of stressed but viable neurons. We find that delayed neuronal loss and death in mixed neuronal/glial cultures induced by the TLR ligands lipopolysaccharide (LPS) or lipoteichoic acid was prevented by: apyrase (to degrade nucleotides), Reactive Blue 2 (to inhibit purinergic signaling), or MRS2578 (to specifically block P2Y6 receptors). In each case, inflammatory activation of microglia was not affected, and the rescued neurons remained viable for at least 7 days. Blocking P2Y6 receptors with MRS2578 also prevented phagoptosis of neurons induced by 250 nM amyloid beta 1–42, 5 μM peroxynitrite, or 50 μM 3-morpholinosydnonimine (which releases reactive oxygen and nitrogen species). Furthermore, the P2Y6 receptor agonist UDP by itself was sufficient to stimulate microglial phagocytosis and to induce rapid neuronal loss that was prevented by eliminating microglia or inhibiting phagocytosis. In vivo, injection of LPS into rat striatum induced microglial activation and delayed neuronal loss and blocking P2Y6 receptors with MRS2578 prevented this neuronal loss. Thus, blocking UDP/P2Y6 signaling is sufficient to prevent neuronal loss and death induced by a wide range of stimuli that activate microglial phagocytosis of neurons.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
113 |
9
|
Hermann C, Spreitzer I, Schröder NWJ, Morath S, Lehner MD, Fischer W, Schütt C, Schumann RR, Hartung T. Cytokine induction by purified lipoteichoic acids from various bacterial species--role of LBP, sCD14, CD14 and failure to induce IL-12 and subsequent IFN-gamma release. Eur J Immunol 2002; 32:541-51. [PMID: 11828371 DOI: 10.1002/1521-4141(200202)32:2<541::aid-immu541>3.0.co;2-p] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have recently shown that highly purified lipoteichoic acid (LTA) represents a major immunostimulatory principle of Staphylococcus aureus. In order to test whether this translates to other bacterial species, we extracted and purified LTA from 12 laboratory-grown species. All LTA induced the release of TNF-alpha, IL-1beta, IL-6 and IL-10 in human whole blood. Soluble CD14 (sCD14) inhibited monokine induction by LTA but failed to confer LTA responsiveness for IL-6 and IL-8 release of human umbilical vein endothelial cells (HUVEC). In a competitive LPS-binding protein (LBP) binding assay, the IC(50) of the tested LTA preparations was up to 3,230-fold higher than for LPS. LBP enhanced TNF-alpha release of human peripheral blood mononuclear cells (PBMC) upon LPS but not LTA stimulation. These data demonstrate a differential role for the serum proteins LBP and sCD14 in the recognition of LPS and LTA. Different efficacies of various anti-CD14 antibodies against LPS vs. LTA-induced cytokine release suggest that the recognition sites of CD14 for LPS and LTA are distinct with a partial overlap. While the maximal achievable monokine release in response to LTA was comparable to LPS, all LTA induced significantly less IL-12 and IFN-gamma. IL-12 substitution increased LTA-inducible IFN-gamma release up to 180-fold, suggesting a critical role of poor LTA-inducible IL-12 for IFN-gamma formation. Pretreatment with IFN-gamma rendered galactosamine-sensitized mice sensitive to challenge with LTA. In conclusion, LTA compared to LPS, are weak inducers of IL-12 and subsequent IFN-gamma formation which might explain their lower toxicity in vivo.
Collapse
|
Comparative Study |
23 |
97 |
10
|
Tuomanen E, Rich R, Zak O. Induction of pulmonary inflammation by components of the pneumococcal cell surface. THE AMERICAN REVIEW OF RESPIRATORY DISEASE 1987; 135:869-74. [PMID: 3565933 DOI: 10.1164/arrd.1987.135.4.869] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Using a rabbit model of experimental pneumonitis, the components on the surface of the pneumococcus that incite pulmonary inflammation were identified. Rabbits were challenged intratracheally with live pneumococci, capsular polysaccharide, purified cell walls, or cell wall subcomponents. Leukocytosis and elevation of protein concentration was quantitated in bronchial lavage fluid during the first 24 h after challenge. Of the pneumococcal surface components tested, cell wall preparations had the highest specific activity in inducing inflammation; abnormalities in bronchial lavage fluid cytochemistry appeared rapidly and in a dose-dependent manner. Cell wall building blocks and the products of penicillin-induced hydrolysis of the cell wall were also highly inflammatory, indicating that inflammation can be generated by disruption of the cell wall during lysis of bacteria by beta-lactam antibiotics. Administration of inhibitors of arachidonic acid metabolism suggested that inhibition of the lipoxygenase pathway reduced inflammation associated with cell walls. We propose that pulmonary inflammation during pneumococcal pneumonia arises in large part from the interaction of the bacterial cell wall with complement and noncomplement-mediated host defenses.
Collapse
|
|
38 |
88 |
11
|
Berger AK, Yi H, Kearns DB, Mainou BA. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability. PLoS Pathog 2017; 13:e1006768. [PMID: 29211815 PMCID: PMC5734793 DOI: 10.1371/journal.ppat.1006768] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/18/2017] [Accepted: 11/23/2017] [Indexed: 12/24/2022] Open
Abstract
Enteric viruses encounter diverse environments as they migrate through the gastrointestinal tract to infect their hosts. The interaction of eukaryotic viruses with members of the host microbiota can greatly impact various aspects of virus biology, including the efficiency with which viruses can infect their hosts. Mammalian orthoreovirus, a human enteric virus that infects most humans during childhood, is negatively affected by antibiotic treatment prior to infection. However, it is not known how components of the host microbiota affect reovirus infectivity. In this study, we show that reovirus virions directly interact with Gram positive and Gram negative bacteria. Reovirus interaction with bacterial cells conveys enhanced virion thermostability that translates into enhanced attachment and infection of cells following an environmental insult. Enhanced virion thermostability was also conveyed by bacterial envelope components lipopolysaccharide (LPS) and peptidoglycan (PG). Lipoteichoic acid and N-acetylglucosamine-containing polysaccharides enhanced virion stability in a serotype-dependent manner. LPS and PG also enhanced the thermostability of an intermediate reovirus particle (ISVP) that is associated with primary infection in the gut. Although LPS and PG alter reovirus thermostability, these bacterial envelope components did not affect reovirus utilization of its proteinaceous cellular receptor junctional adhesion molecule-A or cell entry kinetics. LPS and PG also did not affect the overall number of reovirus capsid proteins σ1 and σ3, suggesting their effect on virion thermostability is not mediated through altering the overall number of major capsid proteins on the virus. Incubation of reovirus with LPS and PG did not significantly affect the neutralizing efficiency of reovirus-specific antibodies. These data suggest that bacteria enhance reovirus infection of the intestinal tract by enhancing the thermal stability of the reovirus particle at a variety of temperatures through interactions between the viral particle and bacterial envelope components.
Collapse
|
Comparative Study |
8 |
73 |
12
|
Kengatharan KM, De Kimpe SJ, Thiemermann C. Role of nitric oxide in the circulatory failure and organ injury in a rodent model of gram-positive shock. Br J Pharmacol 1996; 119:1411-21. [PMID: 8968550 PMCID: PMC1915817 DOI: 10.1111/j.1476-5381.1996.tb16053.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The pathological features of Gram-positive shock can be mimicked by the co-administration of two cell wall components of Staphylococcus aureus, namely lipoteichoic acid (LTA) and peptidoglycan (PepG). This is associated with the expression of the inducible isoform of nitric oxide synthase (iNOS) in various organs. We have investigated the effects of dexamethasone (which prevents the expression of iNOS protein) or aminoguanidine (an inhibitor of iNOS activity) on haemodynamics, multiple organ dysfunction syndrome (MODS) as well as iNOS activity elicited by LTA + PepG in anaesthetized rats. 2. Co-administration of LTA (3 mg kg-1, i.v.) and PepG (10 mg kg-1, i.v.) resulted in a significant increase in the plasma levels of tumour necrosis factor-alpha (TNF alpha, maximum at 90 min) as well as a biphasic fall in mean arterial blood pressure (MAP) from 120 +/- 3 mmHg (time 0) to 77 +/- 5 mmHg (at 6 h, n = 8; P < 0.05). This hypotension was associated with a significant tachycardia (4-6 h, P < 0.05) and a reduction of the pressor response elicited by noradrenaline (NA, 1 microgram kg-1, i.v., at 1-6 h; n = 8, P < 0.05). Furthermore, LTA + PepG caused time-dependent increases in the serum levels of markers of hepatocellular injury, glutamate-pyruvate-transminase (GPT) and glutamate-oxalacetate-transaminase (GOT). In addition, urea and creatinine (indicators of renal dysfunction) were increased. There was also a fall in arterial oxygen tension (PaO2), indicating respiratory dysfunction, and metabolic acidosis as shown by the significant drop in pH, PaCO2 and HCO3-. These effects caused by LTA + PepG were associated with the induction of iNOS activity in aorta, liver, kidney and lungs as well as increases in serum levels of nitrite+nitrate (total nitrite). 3. Pretreatment of rats with dexamethasone (3 mg kg-1, i.p.) at 120 min before LTA + PepG administration significantly attenuated these adverse effects as well as the increases in the plasma levels of TNF alpha caused by LTA + PepG. The protective effects of dexamethasone were associated with a prevention of the increase in iNOS activity (in aorta, liver, lung, kidney), the expression of iNOS protein (in lungs), as well as in the increase in the plasma levels of total nitrite. 4. Treatment of rats with aminoguanidine (5 mg kg-1 + 10 mg kg-1 h-1) starting at 120 min after LTA + PepG attenuated most of the adverse effects and gave a significant inhibition of iNOS activity (in various organs) as well as an inhibition of the increase in total plasma nitrite. However, aminoguanidine did not improve renal function although this agent caused a substantial inhibition of NOS activity in the kidney. 5. Thus, an enhanced formation of NO by iNOS importantly contributes to the circulatory failure, hepatocellular injury, respiratory dysfunction and the metabolic acidosis, but not the renal failure, caused by LTA + PepG in the anaesthetized rat.
Collapse
|
research-article |
29 |
71 |
13
|
Bornstein SR, Zacharowski P, Schumann RR, Barthel A, Tran N, Papewalis C, Rettori V, McCann SM, Schulze-Osthoff K, Scherbaum WA, Tarnow J, Zacharowski K. Impaired adrenal stress response in Toll-like receptor 2-deficient mice. Proc Natl Acad Sci U S A 2004; 101:16695-700. [PMID: 15546996 PMCID: PMC534518 DOI: 10.1073/pnas.0407550101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Septicemia is one of the major health concerns worldwide, and rapid activation of adrenal steroid release is a key event in the organism's first line of defense during this form of severe illness. The family of Toll-like receptors (TLRs) is critical in the early immune response upon bacterial infection, and TLR polymorphisms are frequent in humans. Here, we demonstrate that TLR-2 deficiency in mice is associated with reduced plasma corticosterone levels and marked cellular alterations in adrenocortical tissue. TLR-2-deficient mice have an impaired adrenal corticosterone release after inflammatory stress induced by bacterial cell wall compounds. This defect appears to be mediated by a decrease in systemic and intraadrenal cytokine expression, including IL-1, tumor necrosis factor alpha, and IL-6. Our data demonstrate a link between the innate immune system and the endocrine stress response. The critical role of TLR-2 in adrenal glucocorticoid regulation needs to be considered in patients with inflammatory disease.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
68 |
14
|
King AE, Fleming DC, Critchley HOD, Kelly RW. Regulation of natural antibiotic expression by inflammatory mediators and mimics of infection in human endometrial epithelial cells. Mol Hum Reprod 2002; 8:341-9. [PMID: 11912282 DOI: 10.1093/molehr/8.4.341] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The natural antibiotic molecules, beta-defensins 1 and 2 (HBD1/2) and secretory leukocyte protease inhibitor (SLPI), have an important role in mucosal defence and are present in the uterus. This study details their regulation in primary endometrial epithelial cells and in two endometrial cell lines (MFE/HES). Cells were treated with proinflammatory molecules and mimics of infection [lipopolysaccharide (LPS) and lipoteichoic acid (LTA)]. mRNA for HBD1, HBD2 and SLPI was detected in primary endometrial epithelial cells using real-time quantitative PCR. HBD1 mRNA was present at very low levels preventing conclusive study of its regulation. However, HBD2 mRNA expression was increased by interferon-gamma, interleukin (IL)-1beta alone and IL-1beta+tumour necrosis factor (TNF)-alpha. SLPI mRNA was not affected by proinflammatory mediators, although protein levels fell in the presence of IL-1beta+TNFalpha. LPS had little effect on antimicrobial expression. However, there was a trend towards increased expression with LTA treatment for 4-8 h. Antimicrobial expression in endometrial cell lines was similar to that in primary cells, although SLPI was increased by IL-1beta+TNFalpha treatment. These results suggest that in endometrium some natural antibiotics (e.g. SLPI) may be constitutively expressed providing a basal level of protection, while others (e.g. HBD2) are inducible allowing maximal antimicrobial activity during infection. Natural antimicrobials will have an important role in endometrium in protecting against infection.
Collapse
|
|
23 |
58 |
15
|
Lorenz E, Patel DD, Hartung T, Schwartz DA. Toll-like receptor 4 (TLR4)-deficient murine macrophage cell line as an in vitro assay system to show TLR4-independent signaling of Bacteroides fragilis lipopolysaccharide. Infect Immun 2002; 70:4892-6. [PMID: 12183533 PMCID: PMC128243 DOI: 10.1128/iai.70.9.4892-4896.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial lipopolysaccharides (LPS) activate cells of innate immunity, such as macrophages, by stimulating signaling through toll-like receptor 4 (TLR4). We and others have hypothesized that LPS derived from different bacterial species may function through TLR4-independent mechanisms. To test this hypothesis, we have generated using a nonviral transformation procedure a bone marrow-derived macrophage cell line called 10ScNCr/23 from mouse strain C57BL/10ScNCr. This mouse strain has a deletion of the TLR4 locus, causing the mouse strain to be nonresponsive to stimulation by LPS from Escherichia coli while responding normally to other bacterial substrates, such as lipoteichoic acid (LTA) from Staphylococcus aureus, which signal TLR4 independently. Stimulation with LTA induces five- and sixfold increases in 10ScNCr/23 cell line tumor necrosis factor alpha and macrophage inflammatory protein-2 (MIP-2) secretion, but no increases in either cytokine were found when cells were stimulated with E. coli LPS. Bacteroides fragilis-derived LPS, however, can effectively stimulate MIP-2 expression in the absence of functional TLR4 in the 10ScNCr/23 cell line. This gives rise to the notion that LPS from some bacterial species will utilize alternative receptors to stimulate the innate immune response.
Collapse
|
research-article |
23 |
49 |
16
|
Nair S, Song Y, Meghji S, Reddi K, Harris M, Ross A, Poole S, Wilson M, Henderson B. Surface-associated proteins from Staphylococcus aureus demonstrate potent bone resorbing activity. J Bone Miner Res 1995; 10:726-34. [PMID: 7639108 DOI: 10.1002/jbmr.5650100509] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Staphylococcus aureus infections are associated with rapid bone destruction in conditions such as osteomyelitis, bacterial arthritis, and infected orthopedic implant failure. How this bacterium induces bone destruction has not been defined. In studies of the role of oral Gram-negative bacteria in periodontal pathology, we have established that cell surface-associated proteins (SAPs) are potent stimulators of bone resorption. The surface-associated components from S. aureus have now been isolated and demonstrated to be extremely potent stimulators of bone resorption in the murine calvarial bone resorption assay. Bone resorption appears to be due to proteins, is not the result of contamination with lipoteichoic acid or muramyl dipeptide, and is potently inhibited by indomethacin and can be completely blocked by high concentrations of interleukin-1 receptor antagonist or TN3-19.12, a neutralizing monoclonal antibody to murine TNF. The SAP fraction can stimulate fibroblasts or monocytes to release osteolytic cytokines, but only at high concentrations. Fractionation of the SAPs by high performance liquid chromatography demonstrated that a number of fractions were osteolytically active. The most active contained a heterodimeric protein of molecular weight 32-36 kD. The presence of this osteolytically active surface-associated fraction may account for the bone resorption associated with local infection with S. aureus.
Collapse
|
|
30 |
45 |
17
|
Kajikawa S, Kaga N, Futamura Y, Kakinuma C, Shibutani Y. Lipoteichoic acid induces preterm delivery in mice. J Pharmacol Toxicol Methods 1998; 39:147-54. [PMID: 9741389 DOI: 10.1016/s1056-8719(98)00015-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to determine whether or not lipoteichoic acid (LTA) could induce preterm delivery in mice. On days 15 and 17 of pregnancy, female C3H/HeN mice impregnated by male B6D2F1 mice were given intraperitoneal injections of LTA (12.5-75 mg/kg, single dose or repeated doses at a 3-h interval). We examined the changes in cervix, placental trophoblasts, and plasma and amniotic fluid concentrations of interleukin-1alpha (IL-1alpha), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) after dosing with LTA. In addition, the effect of LTA on the contraction of isolated uterine muscle from pregnant mice was also measured. The incidence of preterm delivery was highest (100%), when the pregnant animals were treated with 75 mg/kg LTA twice on day 15 of pregnancy or with 25 mg/kg LTA twice on day 17 of pregnancy. LTA-accelerated cervical ripening and placental abruption preceding the onset of preterm delivery, as well as increased plasma and amniotic fluid concentrations of IL-1alpha, IL-6, and TNF-alpha. Also, LTA increased contraction of uterine muscle strips. In conclusion, LTA induced preterm delivery in mice in the same manner as lipopolysaccharide (LPS), but the effective dose of LTA was larger than that of LPS.
Collapse
|
|
27 |
41 |
18
|
Nau R, Eiffert H. Minimizing the release of proinflammatory and toxic bacterial products within the host: A promising approach to improve outcome in life-threatening infections. ACTA ACUST UNITED AC 2005; 44:1-16. [PMID: 15780573 DOI: 10.1016/j.femsim.2005.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 01/06/2005] [Accepted: 01/13/2005] [Indexed: 01/04/2023]
Abstract
Various bacterial components (e.g., endotoxin, teichoic and lipoteichoic acids, peptidoglycans, DNA) induce or enhance inflammation by stimulating the innate immune system and/or are directly toxic in eukariotic cells (e.g., hemolysins). When antibiotics which inhibit bacterial protein synthesis kill bacteria, smaller quantities of proinflammatory or toxic compounds are released in vitro and in vivo than during killing of bacteria by beta-lactams and other cell-wall active drugs. In general, high antibiotic concentrations liberate lower quantities of bacterial proinflammatory or toxic compounds than concentrations close to the minimum inhibitory concentration. In animal models of Escherichia coli Pseudomonas aeruginosa and Staphylococcus aureus peritonitis/sepsis and of Streptococcus pneumoniae meningitis, a lower release of proinflammatory bacterial compounds was associated with a reduced mortality or neuronal injury. Pre-treatment with a bacterial protein synthesis inhibitor reduced the strong release of bacterial products usually observed during treatment with a beta-lactam antibiotic. Data available strongly encourage clinical trials comparing antibiotic regimens with different release of proinflammatory/toxic bacterial products. The benefit of the approach to reduce the liberation of bacterial products should be greatest in patients with a high bacterial load.
Collapse
|
|
20 |
36 |
19
|
Mundandhara SD, Becker S, Madden MC. Effects of diesel exhaust particles on human alveolar macrophage ability to secrete inflammatory mediators in response to lipopolysaccharide. Toxicol In Vitro 2005; 20:614-24. [PMID: 16360300 DOI: 10.1016/j.tiv.2005.10.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 10/11/2005] [Accepted: 10/28/2005] [Indexed: 11/29/2022]
Abstract
Ambient particulate matter (PM) has been shown to be associated with mortality and morbidity. Diesel exhaust particles (DEP) contribute to ambient PM. Alveolar macrophages (AM) are important targets for PM effects in the lung. The effects of DEP exposure on human AM response to lipopolysachharide (LPS; from gram-negative bacteria) challenge in vitro were determined by monitoring the production of interleukin 8 (IL-8), tumor necrosis factor-alpha (TNF-alpha) and prostaglandin E(2) (PGE(2)). The roles of organic compounds and carbonaceous core of DEP in response to LPS were evaluated by comparing the DEPs effect to that of carbon black (CB), a carbonaceous particle with few adsorbed organic compounds. AMs were exposed in vitro to Standard Reference Material (SRM) DEP 2975, SRM DEP 1650, SRM 1975 (a dichloromethane extract of SRM DEP 2975) and CB particles for 24 h. DEPs induced a decreased secretion of IL-8, TNF-alpha and PGE(2) in response to a subsequent LPS stimulation. DEPs also show suppressive effect on the release of inflammatory mediators when stimulated with lipoteichoic acid, a product of gram positive bacteria. In summary, in vitro exposure of human AM to DEPs significantly suppress AM responsiveness to gram-negative and positive bacterial products, which may be a contributing factor to the impairment of pulmonary defense.
Collapse
|
Journal Article |
20 |
35 |
20
|
Hsiao G, Huang HY, Fong TH, Shen MY, Lin CH, Teng CM, Sheu JR. Inhibitory mechanisms of YC-1 and PMC in the induction of iNOS expression by lipoteichoic acid in RAW 264.7 macrophages. Biochem Pharmacol 2004; 67:1411-9. [PMID: 15013857 DOI: 10.1016/j.bcp.2003.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 12/04/2003] [Indexed: 11/18/2022]
Abstract
In the present study, the signal pathways involved in NO formation and iNOS expression in RAW 264.7 macrophages stimulated by LTA were investigated. We also compared the relative inhibitory activities and mechanisms of PMC, a novel potent antioxidant of alpha-tocopherol derivatives, with those of YC-1, an sGC activator, on the induction of iNOS expression by LTA in cultured macrophages in vitro and LTA-induced hypotension in vivo. LTA induced concentration (0.1-50 microg/mL)- and time (4-24 hr)-dependent increases in nitrite (an indicator of NO biosynthesis) in macrophages. Both PMC (50 microM) and YC-1 (10 microM) inhibited NO production, iNOS protein, mRNA expression, and IkappaBalpha degradation upon stimulation by LTA (20 microg/mL) in macrophages. On the other hand, PMC (50 microM) almost completely suppressed JNK/SAPK activation, whereas YC-1 (10 microM) only partially inhibited its activation in LTA-stimulated macrophages. Moreover, PMC (10 mg/kg, i.v.) and YC-1 (5 mg/kg, i.v.) significantly inhibited the fall in MAP stimulated by LTA (10 mg/kg, i.v.) in rats. In conclusion, we demonstrate that YC-1 shows more-potent activity than PMC at abrogating the expression of iNOS in macrophages in vitro and reversing delayed hypotension in rats with endotoxic shock stimulated by LTA. The inhibitory mechanisms of PMC may be due to its antioxidative properties, with a resulting influence on JNK/SAPK and NF-kappaB activations. YC-1 may be mediated by increasing cyclic GMP, followed by, at least partly, inhibition of JNK/SAPK and NF-kappaB activations, thereby leading to inhibition of iNOS expression.
Collapse
|
|
21 |
30 |
21
|
Anderson JC. Mechanisms of staphylococcal virulence in relation to bovine mastitis. THE BRITISH VETERINARY JOURNAL 1976; 132:229-45. [PMID: 782656 DOI: 10.1016/s0007-1935(17)34682-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
Review |
49 |
29 |
22
|
Wagner JG, Driscoll KE, Roth RA. Inhibition of pulmonary neutrophil trafficking during endotoxemia is dependent on the stimulus for migration. Am J Respir Cell Mol Biol 1999; 20:769-76. [PMID: 10101010 DOI: 10.1165/ajrcmb.20.4.3481] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In rat models of Gram-negative pneumonia, pulmonary emigration of neutrophils (polymorphonuclear leukocytes [PMNs]) is blocked when rats are made endotoxemic by an intravenous administration of endotoxin (lipopolysaccharide [LPS]). To test whether dysfunctional PMN migratory responses in the endotoxemic rat are specific for airway endotoxin, we gave rats intrapulmonary stimuli known to elicit different adhesion pathways for pulmonary PMN migration. Sprague-Dawley rats were treated intravenously with either saline or LPS and then instilled intratracheally with either sterile saline, LPS from Escherichia coli, interleukin (IL)-1, hydrochloric acid (HCl), zymosan-activated serum (ZAS), or lipoteichoic acid (LTA). Three hours later, accumulation of PMNs and protein in bronchoalveolar lavage fluid (BALF) were assessed. BALF PMN accumulation in response to intratracheal treatment with LPS (100%), IL-1 (100%), ZAS (40%), and LTA (58%) was inhibited by endotoxemia. In rats given intratracheal HCl, BALF PMN numbers were unaffected by intravenous LPS. The pattern of inhibition of migration suggests that intravenous LPS only inhibits migration in response to stimuli for which migration is CD18-dependent. In contrast to PMN migration, BALF protein accumulation was inhibited by intravenous LPS only when IL-1 or LPS was used as the intratracheal stimulus. To characterize further the differential responses to the various airway stimuli, the appearance in BALF of tumor necrosis factor-alpha (TNF-alpha) and the PMN chemokine macrophage inflammatory protein (MIP)-2 was measured. Accumulation of PMNs in BALF correlated with the BALF concentrations of MIP-2 (r = 0.846, P < 0.05) and TNF (r = 0.911; P < 0.05). The ability of intravenous LPS to inhibit pulmonary PMN migration correlated weakly with MIP-2 (r = 0.659; P < 0.05) and with TNF (r = 0.413; P > 0.05) concentrations in BALF. However, this correlation was strengthened for TNF (r = 0.752; P < 0.05) when data from IL-1-treated animals were excluded. Thus, the presence in BALF of inflammatory mediators that are known to promote CD18-mediated migration correlates with endotoxemia-related inhibition of PMN migration. Furthermore, the pattern of inhibition of pulmonary PMN migration during endotoxemia is consistent with the CD18 requirement of each migratory stimulus.
Collapse
|
|
26 |
27 |
23
|
Eperon S, De Groote D, Werner-Felmayer G, Jungi TW. Human monocytoid cell lines as indicators of endotoxin: comparison with rabbit pyrogen and Limulus amoebocyte lysate assay. J Immunol Methods 1997; 207:135-45. [PMID: 9368640 DOI: 10.1016/s0022-1759(97)00112-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to develop an in vitro test system for pyrogenic substances. Three clones derived from human monocytoid cell lines, which were selected by their high sensitivity to lipopolysaccharide (LPS), were assessed for tumor necrosis factor (TNF) production. Their response to pyrogen-containing samples was compared with that in a Limulus amoebocyte lysate assay and the rabbit pyrogen test. We show here that the induction of TNF in these clones is a valid in vitro alternative to determine endotoxin in commercial preparations requiring pyrogenicity testing. Cell clones derived from Mono Mac 6 (MM6 2H8 and MM6 4B5) responded to sub-ng/ml concentrations of complete rough-strain and smooth-strain LPS, to ng/ml concentrations of diphosphoryl-lipid A, and to microgram/ml concentrations of monophosphoryl-lipid A and to detoxified LPS. Cells reacted to > or = 1 microgram/ml lipoteichoic acid by TNF production, and were relatively insensitive to toxic shock syndrome toxin-1 (TSST-1) and to muramyl dipeptide adjuvant peptide. The reaction pattern of a clone derived from THP-1 (THP-1 1G3) was in general, similar to that of the MM6 clones, except that THP-1 1G3 failed to react to diphosphoryl-lipid A. When tested on commercial samples destined for parenteral use, there was a close correlation between a sensitive Limulus amoebocyte lysate (LAL) test and the cell culture test on the one hand, and between the pyrogen test and the cell culture test on the other hand. The data suggest that this cell-based test is able to recognize pyrogens derived from gram-negative organisms in test samples with appropriate sensitivity and specificity. This test appears to be able to eliminate some of the false-positive data obtained in the LAL test.
Collapse
|
Comparative Study |
28 |
27 |
24
|
Himanen JP, Pyhälä L, Olander RM, Merimskaya O, Kuzina T, Lysyuk O, Pronin A, Sanin A, Helander IM, Sarvas M. Biological activities of lipoteichoic acid and peptidoglycan-teichoic acid of Bacillus subtilis 168 (Marburg). JOURNAL OF GENERAL MICROBIOLOGY 1993; 139:2659-65. [PMID: 8277249 DOI: 10.1099/00221287-139-11-2659] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To evaluate the suitability of Bacillus subtilis as a production host of heterologous proteins for pharmaceutical purposes, we assessed the biological activity of this bacterium and its major cell envelope components, lipoteichoic acid (LTA) and peptidoglycan-teichoic acid complex (PG-TA) in several eukaryotic effector assays. LTA and PG-TA were found to be non-toxic for mice and guinea-pigs in a short-term toxicity assay. PG-TA was weakly pyrogenic and weakly mitogenic. Both LTA and PG-TA acted as immunologic adjuvants in mice and when injected in mice, also caused an increase in the number of granulocyte-monocyte colony-forming cells in the bone marrow probably via stimulation of production of granulocyte-macrophage colony-stimulating factor.
Collapse
|
|
32 |
26 |
25
|
Piktel E, Wnorowska U, Cieśluk M, Deptula P, Pogoda K, Misztalewska-Turkowicz I, Paprocka P, Niemirowicz-Laskowska K, Wilczewska AZ, Janmey PA, Bucki R. Inhibition of inflammatory response in human keratinocytes by magnetic nanoparticles functionalized with PBP10 peptide derived from the PIP2-binding site of human plasma gelsolin. J Nanobiotechnology 2019; 17:22. [PMID: 30711007 PMCID: PMC6359803 DOI: 10.1186/s12951-019-0455-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Human plasma gelsolin (pGSN) is a multifunctional actin-binding protein involved in a variety of biological processes, including neutralization of pro-inflammatory molecules such as lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and modulation of host inflammatory response. It was found that PBP10, a synthetic rhodamine B-conjugated peptide, based on the phosphoinositide-binding site of pGSN, exerts bactericidal activity against Gram-positive and Gram-negative bacteria, interacts specifically with LPS and LTA, and limits microbial-induced inflammatory effects. The therapeutic efficiency of PBP10 when immobilized on the surface of iron oxide-based magnetic nanoparticles was not evaluated, to date. RESULTS Using the human keratinocyte cell line HaCaT stimulated by bacterially-derived LPS and LTA as an in vitro model of bacterial infection, we examined the anti-inflammatory effects of nanosystems consisting of iron oxide-based magnetic nanoparticles with aminosilane (MNP@NH2) or gold shells (MNP@Au) functionalized by a set of peptides, derived from the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding site of the human plasma protein gelsolin, which also binds LPS and LTA. Our results indicate that these nanosystems can kill both Gram-positive and Gram-negative bacteria and limit the production of inflammatory mediators, including nitric oxide (NO), reactive oxygen species (ROS), and interleukin-8 (IL-8) in the response to heat-killed microbes or extracted bacterial cell wall components. The nanoparticles possess the potential to improve therapeutic efficacy and are characterized by lower toxicity and improved hemocompatibility when compared to free peptides. Atomic force microscopy (AFM) showed that these PBP10-based nanosystems prevented changes in nanomechanical properties of cells that were otherwise stimulated by LPS. CONCLUSIONS Neutralization of endotoxemia-mediated cellular effects by gelsolin-derived peptides and PBP10-containing nanosystems might be considered as potent therapeutic agents in the improved therapy of bacterial infections and microbial-induced inflammation.
Collapse
|
research-article |
6 |
24 |