1
|
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 2007; 35:W265-8. [PMID: 17485477 PMCID: PMC1933203 DOI: 10.1093/nar/gkm286] [Citation(s) in RCA: 1683] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long terminal repeat retrotransposons (LTR elements) are ubiquitous eukaryotic transposable elements. They play important roles in the evolution of genes and genomes. Ever-growing amount of genomic sequences of many organisms present a great challenge to fast identifying them. That is the first and indispensable step to study their structure, distribution, functions and other biological impacts. However, until today, tools for efficient LTR retrotransposon discovery are very limited. Thus, we developed LTR_FINDER web server. Given DNA sequences, it predicts locations and structure of full-length LTR retrotransposons accurately by considering common structural features. LTR_FINDER is a system capable of scanning large-scale sequences rapidly and the first web server for ab initio LTR retrotransposon finding. We illustrate its usage and performance on the genome of Saccharomyces cerevisiae. The web server is freely accessible at http://tlife.fudan.edu.cn/ltr_finder/.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
1683 |
2
|
Abstract
The bulk of the human genome is ultimately derived from transposable elements. Observations in the past year lead to some new and surprising ideas on functions and consequences of these elements and their remnants in our genome. The many new examples of human genes derived from single transposon insertions highlight the large contribution of selfish DNA to genomic evolution.
Collapse
|
Review |
26 |
669 |
3
|
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Künstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TAF, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backström N, Smeds L, Nabholz B, Itoh Y, Whitney O, Pfenning AR, Howard J, Völker M, Skinner BM, Griffin DK, Ye L, McLaren WM, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Olender T, Lancet D, Smit AFA, Hubley R, Konkel MK, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng Z, Eichler EE, Stapley J, Slate J, Ekblom R, Birkhead T, Burke T, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Lehrach H, Edwards SV, Yang SP, Li X, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, Wilson RK. The genome of a songbird. Nature 2010; 464:757-62. [PMID: 20360741 PMCID: PMC3187626 DOI: 10.1038/nature08819] [Citation(s) in RCA: 628] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/06/2010] [Indexed: 01/16/2023]
Abstract
The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
Collapse
|
Comparative Study |
15 |
628 |
4
|
Feschotte C, Jiang N, Wessler SR. Plant transposable elements: where genetics meets genomics. Nat Rev Genet 2002; 3:329-41. [PMID: 11988759 DOI: 10.1038/nrg793] [Citation(s) in RCA: 605] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transposable elements are the single largest component of the genetic material of most eukaryotes. The recent availability of large quantities of genomic sequence has led to a shift from the genetic characterization of single elements to genome-wide analysis of enormous transposable-element populations. Nowhere is this shift more evident than in plants, in which transposable elements were first discovered and where they are still actively reshaping genomes.
Collapse
|
Review |
23 |
605 |
5
|
Hsieh LC, Lin SI, Shih ACC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. PLANT PHYSIOLOGY 2009; 151:2120-32. [PMID: 19854858 PMCID: PMC2785986 DOI: 10.1104/pp.109.147280] [Citation(s) in RCA: 519] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/21/2009] [Indexed: 04/14/2023]
Abstract
Recent studies have demonstrated the important role of plant microRNAs (miRNAs) under nutrient deficiencies. In this study, deep sequencing of Arabidopsis (Arabidopsis thaliana) small RNAs was conducted to reveal miRNAs and other small RNAs that were differentially expressed in response to phosphate (Pi) deficiency. About 3.5 million sequence reads corresponding to 0.6 to 1.2 million unique sequence tags from each Pi-sufficient or Pi-deficient root or shoot sample were mapped to the Arabidopsis genome. We showed that upon Pi deprivation, the expression of miR156, miR399, miR778, miR827, and miR2111 was induced, whereas the expression of miR169, miR395, and miR398 was repressed. We found cross talk coordinated by these miRNAs under different nutrient deficiencies. In addition to miRNAs, we identified one Pi starvation-induced DICER-LIKE1-dependent small RNA derived from the long terminal repeat of a retrotransposon and a group of 19-nucleotide small RNAs corresponding to the 5' end of tRNA and expressed at a high level in Pi-starved roots. Importantly, we observed an increased abundance of TAS4-derived trans-acting small interfering RNAs (ta-siRNAs) in Pi-deficient shoots and uncovered an autoregulatory mechanism of PAP1/MYB75 via miR828 and TAS4-siR81(-) that regulates the biosynthesis of anthocyanin. This finding sheds light on the regulatory network between miRNA/ta-siRNA and its target gene. Of note, a substantial amount of miR399* accumulated under Pi deficiency. Like miR399, miR399* can move across the graft junction, implying a potential biological role for miR399*. This study represents a comprehensive expression profiling of Pi-responsive small RNAs and advances our understanding of the regulation of Pi homeostasis mediated by small RNAs.
Collapse
|
research-article |
16 |
519 |
6
|
Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P, Toshiki T, Chantal T, Corinne R, Toshio K, Eappen A, Mari K, Natuo K, Jean-Luc T, Bernard M, Gérard C, Paul S, Malcolm F, Jean-Claude P, Pierre C. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 2000; 18:81-4. [PMID: 10625397 DOI: 10.1038/71978] [Citation(s) in RCA: 516] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have developed a system for stable germline transformation in the silkworm Bombyx mori L. using piggyBac, a transposon discovered in the lepidopteran Trichoplusia ni. The transformation constructs consist of the piggyBac inverted terminal repeats flanking a fusion of the B. mori cytoplasmic actin gene BmA3 promoter and the green fluorescent protein (GFP). A nonautonomous helper plasmid encodes the piggyBac transposase. The reporter gene construct was coinjected into preblastoderm eggs of two strains of B. mori. Approximately 2% of the individuals in the G1 broods expressed GFP. DNA analyses of GFP-positive G1 silkworms revealed that multiple independent insertions occurred frequently. The transgene was stably transferred to the next generation through normal Mendelian inheritance. The presence of the inverted terminal repeats of piggyBac and the characteristic TTAA sequence at the borders of all the analyzed inserts confirmed that transformation resulted from precise transposition events. This efficient method of stable gene transfer in a lepidopteran insect opens the way for promising basic research and biotechnological applications.
Collapse
|
|
25 |
516 |
7
|
Jordan IK, Rogozin IB, Glazko GV, Koonin EV. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 2003; 19:68-72. [PMID: 12547512 DOI: 10.1016/s0168-9525(02)00006-9] [Citation(s) in RCA: 416] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transposable elements (TEs) are abundant in mammalian genomes and have potentially contributed to their hosts' evolution by providing novel regulatory or coding sequences. We surveyed different classes of regulatory region in the human genome to assess systematically the potential contribution of TEs to gene regulation. Almost 25% of the analyzed promoter regions contain TE-derived sequences, including many experimentally characterized cis-regulatory elements. Scaffold/matrix attachment regions (S/MARs) and locus control regions (LCRs) that are involved in the simultaneous regulation of multiple genes also contain numerous TE-derived sequences. Thus, TEs have probably contributed substantially to the evolution of both gene-specific and global patterns of human gene regulation.
Collapse
|
Review |
22 |
416 |
8
|
Ma J, Devos KM, Bennetzen JL. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 2004; 14:860-9. [PMID: 15078861 PMCID: PMC479113 DOI: 10.1101/gr.1466204] [Citation(s) in RCA: 365] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Accepted: 01/27/2004] [Indexed: 11/25/2022]
Abstract
We initially analyzed 11 families of low- and middle-copy-number long terminal repeat (LTR) retrotransposons in rice to determine how their structures have diverged from their predicted ancestral forms. These elements, many highly fragmented, were identified on the basis of sequence homology and structural characteristics. The 11 families, totaling 1000 elements, have copy numbers ranging from 1 to 278. Less than one-quarter of these elements are intact, whereas the remaining are solo LTRs and variously truncated fragments. We also analyzed two highly repetitive families (Osr8 and Osr30) of LTR retrotransposons and observed the same results. Our data indicate that unequal homologous recombination and illegitimate recombination are primarily responsible for LTR-retrotransposon removal. Further analysis suggests that most of the detectable LTR retrotransposons in rice inserted less than 8 million years ago, and have now lost over two-thirds of their encoded sequences. Hence, we predict that the half-life of LTR-retrotransposon sequences in rice is less than 6 million years. Moreover, our data demonstrate that at least 22% (97 Mb) of the current rice genome is comprised of LTR-retrotransposon sequences, and that more than 190 Mb of LTR-retrotransposon sequences have been deleted from the rice genome in the last 8 million years.
Collapse
|
letter |
21 |
365 |
9
|
Abstract
Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated - both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.
Collapse
|
Review |
8 |
353 |
10
|
Sijen T, Plasterk RHA. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 2003; 426:310-4. [PMID: 14628056 DOI: 10.1038/nature02107] [Citation(s) in RCA: 337] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 09/23/2003] [Indexed: 11/08/2022]
Abstract
Transposable elements are stretches of DNA that can move and multiply within the genome of an organism. The Caenorhabditis elegans genome contains multiple Tc1 transposons that jump in somatic cells, but are silenced in the germ line. Many mutants that have lost this silencing have also lost the ability to execute RNA interference (RNAi), a process whereby genes are suppressed by exposure to homologous double-stranded RNA (dsRNA). Here we show how RNAi causes transposon silencing in the nematode germ line. We find evidence for transposon-derived dsRNAs, in particular to the terminal inverted repeats, and show that these RNAs may derive from read-through transcription of entire transposable elements. Small interfering RNAs of Tc1 were detected. When a germline-expressed reporter gene is fused to a stretch of Tc1 sequence, this transgene is silenced in a manner dependent on functional mutator genes (mut-7, mut-16 and pk732). These results indicate that RNAi surveillance is triggered by fortuitous read-through transcription of dispersed Tc1 copies, which can form dsRNA as a result of 'snap-back' of the terminal inverted repeats. RNAi mediated by this dsRNA silences transposase gene expression.
Collapse
MESH Headings
- Alleles
- Animals
- Animals, Genetically Modified
- Caenorhabditis elegans/genetics
- DNA Transposable Elements/genetics
- Genes, Helminth/genetics
- Germ Cells/metabolism
- Nuclease Protection Assays
- Promoter Regions, Genetic/genetics
- RNA Editing
- RNA Interference
- RNA Splicing
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Terminal Repeat Sequences/genetics
- Transcription, Genetic/genetics
- Transgenes/genetics
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
337 |
11
|
Jeang KT, Xiao H, Rich EA. Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 1999; 274:28837-40. [PMID: 10506122 DOI: 10.1074/jbc.274.41.28837] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
Review |
26 |
332 |
12
|
Takeda S, Maeda M, Morikawa S, Taniguchi Y, Yasunaga JI, Nosaka K, Tanaka Y, Matsuoka M. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer 2004; 109:559-67. [PMID: 14991578 DOI: 10.1002/ijc.20007] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To clarify the status of tax gene, we analyzed human T-cell leukemia virus type-I (HTLV-I) associated cell lines and fresh adult T-cell leukemia (ATL) cells. We compared 2 types of HTLV-I associated cell lines: one was derived from leukemic cells (leukemic cell line) and the other from nonleukemic cells (nonleukemic cell line). Although all nonleukemic cell lines expressed Tax, it could not be detected in 3 of 5 leukemic cell lines, in which nonsense mutation or deletion (60 bp) of tax genes, and DNA methylation in 5'-LTR were identified as the responsible changes. We found such genetic changes of the tax gene in 5 of 47 fresh ATL cases (11%). The tax gene transcripts could be detected in 14 of 41 fresh ATL cases (34%) by RT-PCR. In ATL cases with genetic changes that could not produce Tax protein, the tax gene was frequently transcribed, suggesting that such cells do not need the transcriptional silencing. Although DNA methylation of 5'-LTR was detected in the fresh ATL cases (19 of 28 cases; 68%), the complete methylation associated with transcriptional silencing was observed only in 4 cases. Since partial methylation could not silence the transcription, and the tax gene transcription was not detected in 27 of 41 cases (66%), the epigenetic change(s) other than DNA methylation is considered to play an important role in the silencing.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
271 |
13
|
Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, Westerman RP, SanMiguel PJ, Bennetzen JL. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 2009; 5:e1000732. [PMID: 19936065 PMCID: PMC2774510 DOI: 10.1371/journal.pgen.1000732] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 10/19/2009] [Indexed: 11/29/2022] Open
Abstract
Recent comprehensive sequence analysis of the maize genome now permits detailed discovery and description of all transposable elements (TEs) in this complex nuclear environment. Reiteratively optimized structural and homology criteria were used in the computer-assisted search for retroelements, TEs that transpose by reverse transcription of an RNA intermediate, with the final results verified by manual inspection. Retroelements were found to occupy the majority (>75%) of the nuclear genome in maize inbred B73. Unprecedented genetic diversity was discovered in the long terminal repeat (LTR) retrotransposon class of retroelements, with >400 families (>350 newly discovered) contributing >31,000 intact elements. The two other classes of retroelements, SINEs (four families) and LINEs (at least 30 families), were observed to contribute 1,991 and ∼35,000 copies, respectively, or a combined ∼1% of the B73 nuclear genome. With regard to fully intact elements, median copy numbers for all retroelement families in maize was 2 because >250 LTR retrotransposon families contained only one or two intact members that could be detected in the B73 draft sequence. The majority, perhaps all, of the investigated retroelement families exhibited non-random dispersal across the maize genome, with LINEs, SINEs, and many low-copy-number LTR retrotransposons exhibiting a bias for accumulation in gene-rich regions. In contrast, most (but not all) medium- and high-copy-number LTR retrotransposons were found to preferentially accumulate in gene-poor regions like pericentromeric heterochromatin, while a few high-copy-number families exhibited the opposite bias. Regions of the genome with the highest LTR retrotransposon density contained the lowest LTR retrotransposon diversity. These results indicate that the maize genome provides a great number of different niches for the survival and procreation of a great variety of retroelements that have evolved to differentially occupy and exploit this genomic diversity. Although TEs are a major component of all studied plant genomes, and are the most significant contributors to genome structure and evolution in almost all eukaryotes that have been investigated, their properties and reasons for existence are not well understood in any eukaryotic genome. In order to begin a comprehensive study of TE contributions to the structure, function, and evolution of both genes and genomes, we first identified all of the TEs in maize and then investigated whether there were non-random patterns in their dispersal. We used homology and TE structure criteria in an effort to discover all of the retroelements in the recently sequenced genome from maize inbred B73. We found that the retroelements are incredibly diverse in maize, with many hundreds of families that show different insertion and/or retention specificities across the maize chromosomes. Most of these element families are present in low copy numbers and had been missed by previous searches that relied on a high-copy-number criterion. Different element families exhibited very different biases for accumulation across the chromosomes, indicating that they can detect and utilize many different chromatin environments.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
250 |
14
|
McCarthy EM, McDonald JF. LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 2003; 19:362-7. [PMID: 12584121 DOI: 10.1093/bioinformatics/btf878] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Long terminal repeat (LTR) retrotransposons constitute a substantial fraction of most eukaryotic genomes and are believed to have a significant impact on genome structure and function. Conventional methods used to search for LTR retrotransposons in genome databases are labor intensive. We present an efficient, reliable and automated method to identify and analyze members of this important class of transposable elements. RESULTS We have developed a new data-mining program, LTR_STRUC (LTR retrotransposon structure program) which identifies and automatically analyzes LTR retrotransposons in genome databases by searching for structural features characteristic of such elements. LTR_STRUC has significant advantages over conventional search methods in the case of LTR retrotransposon families having low sequence homology to known queries or families with atypical structure (e.g. non-autonomous elements lacking canonical retroviral ORFs) and is thus a discovery tool that complements established methods. LTR_STRUC finds LTR retrotransposons using an algorithm that encompasses a number of tasks that would otherwise have to be initiated individually by the user. For each LTR retrotransposon found, LTR_STRUC automatically generates an analysis of a variety of structural features of biological interest. AVAILABILITY The LTR_STRUC program is currently available as a console application free of charge to academic users from the authors.
Collapse
|
|
22 |
249 |
15
|
Izsvák Z, Ivics Z, Plasterk RH. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 2000; 302:93-102. [PMID: 10964563 DOI: 10.1006/jmbi.2000.4047] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sleeping Beauty (SB), a member of the Tc1/mariner superfamily of transposable elements, is the only active DNA-based transposon system of vertebrate origin that is available for experimental manipulation. We have been using the SB element as a research tool to investigate some of the cis and trans-requirements of element mobilization, and mechanisms that regulate transposition in vertebrate species. In contrast to mariner transposons, which are regulated by overexpression inhibition, the frequency of SB transposition was found to be roughly proportional to the amount of transposase present in cells. Unlike Tc1 and mariner elements, SB contains two binding sites within each of its terminal inverted repeats, and we found that the presence of both of these sites is a strict requirement for mobilization. In addition to the size of the transposon itself, the length as well as sequence of the DNA outside the transposon have significant effects on transposition. As a general rule, the closer the transposon ends are, the more efficient transposition is from a donor molecule. We have found that SB can transform a wide range of vertebrate cells from fish to human. However, the efficiency and precision of transposition varied significantly among cell lines, suggesting potential involvement of host factors in SB transposition. A positive-negative selection assay was devised to enrich populations of cells harboring inserted transposons in their chromosomes. Using this assay, of the order of 10,000 independent transposon insertions can be generated in human cells in a single transfection experiment. Sleeping Beauty can be a powerful alternative to other vectors that are currently used for the production of transgenic animals and for human gene therapy.
Collapse
|
|
25 |
249 |
16
|
Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 2007; 8:241-59. [PMID: 17506661 DOI: 10.1146/annurev.genom.8.080706.092416] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic genomes contain vast amounts of repetitive DNA derived from transposable elements (TEs). Large-scale sequencing of these genomes has produced an unprecedented wealth of information about the origin, diversity, and genomic impact of what was once thought to be "junk DNA." This has also led to the identification of two new classes of DNA transposons, Helitrons and Polintons, as well as several new superfamilies and thousands of new families. TEs are evolutionary precursors of many genes, including RAG1, which plays a role in the vertebrate immune system. They are also the driving force in the evolution of epigenetic regulation and have a long-term impact on genomic stability and evolution. Remnants of TEs appear to be overrepresented in transcription regulatory modules and other regions conserved among distantly related species, which may have implications for our understanding of their impact on speciation.
Collapse
|
Review |
18 |
247 |
17
|
Yant SR, Wu X, Huang Y, Garrison B, Burgess SM, Kay MA. High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 2005; 25:2085-94. [PMID: 15743807 PMCID: PMC1061620 DOI: 10.1128/mcb.25.6.2085-2094.2005] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Sleeping Beauty (SB) transposon is an emerging tool for transgenesis, gene discovery, and therapeutic gene delivery in mammals. Here we studied 1,336 SB insertions in primary and cultured mammalian cells in order to better understand its target site preferences. We report that, although widely distributed, SB integration recurrently targets certain genomic regions and shows a small but significant bias toward genes and their upstream regulatory sequences. Compared to those of most integrating viruses, however, the regional preferences associated with SB-mediated integration were much less pronounced and were not significantly influenced by transcriptional activity. Insertions were also distinctly nonrandom with respect to intergenic sequences, including a strong bias toward microsatellite repeats, which are predominantly enriched in noncoding DNA. Although we detected a consensus sequence consistent with a twofold dyad symmetry at the target site, the most widely used sites did not match this consensus. In conjunction with an observed SB integration preference for bent DNA, these results suggest that physical properties may be the major determining factor in SB target site selection. These findings provide basic insights into the transposition process and reveal important distinctions between transposon- and virus-based integrating vectors.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
245 |
18
|
Wagner KU, McAllister K, Ward T, Davis B, Wiseman R, Hennighausen L. Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Res 2001; 10:545-53. [PMID: 11817542 DOI: 10.1023/a:1013063514007] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cre-loxP based gene deletion approaches hold great promise to enhance our understanding of molecular pathways controlling mammary development and breast cancer. We reported earlier the generation of transgenic mice that express the Cre recombinase under the control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). These mice have become a valuable research tool to delete genes specifically in the mammary gland, other secretory organs, and the female germline. We have now characterized in depth the expression of the MMTV-Cre transgene using the ROSA26-lox-Stop-lox-LacZ reporter strain to determine the temporal and spatial activation of Cre on the level of single cells. Our results show that MMTV-mediated Cre-activation is restricted to specific cell types of various secretory tissues and the hematopoietic system. Secondly, the timing of Cre expression varies between tissues and cell types. Some tissues express Cre during embryonic development, while other selected cell types highly activate Cre around puberty, suggesting a strong influence of steroid hormones on the transcriptional activation of the MMTV-LTR. Thirdly, Cre expression in the female germline is restricted to individual mouse lines and is therefore dependent on the site of integration of the transgene. Information provided by this study will guide the researcher to those cell types and developmental stages at which a phenotype can be expected upon deletion of relevant genes.
Collapse
|
|
24 |
237 |
19
|
Legras JL, Karst F. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol Lett 2003; 221:249-55. [PMID: 12725935 DOI: 10.1016/s0378-1097(03)00205-2] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A new primer pair (delta12-delta21) for polymerase chain reaction-based yeast typing was designed using the yeast genome sequence. The specificity of this primer pair was checked by the comparison of the electrophoresis pattern with a virtual profile calculated from Blast data. The analysis of 53 commercial and laboratory Saccharomyces cerevisiae yeast strains showed a clear improvement of interdelta analysis using the newly designed primers.
Collapse
|
|
22 |
233 |
20
|
Tsai IJ, Bensasson D, Burt A, Koufopanou V. Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. Proc Natl Acad Sci U S A 2008; 105:4957-62. [PMID: 18344325 PMCID: PMC2290798 DOI: 10.1073/pnas.0707314105] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Indexed: 01/12/2023] Open
Abstract
Most microbes have complex life cycles with multiple modes of reproduction that differ in their effects on DNA sequence variation. Population genomic analyses can therefore be used to estimate the relative frequencies of these different modes in nature. The life cycle of the wild yeast Saccharomyces paradoxus is complex, including clonal reproduction, outcrossing, and two different modes of inbreeding. To quantify these different aspects we analyzed DNA sequence variation in the third chromosome among 20 isolates from two populations. Measures of mutational and recombinational diversity were used to make two independent estimates of the population size. In an obligately sexual population these values should be approximately equal. Instead there is a discrepancy of about three orders of magnitude between our two estimates of population size, indicating that S. paradoxus goes through a sexual cycle approximately once in every 1,000 asexual generations. Chromosome III also contains the mating type locus (MAT), which is the most outbred part in the entire genome, and by comparing recombinational diversity as a function of distance from MAT we estimate the frequency of matings to be approximately 94% from within the same tetrad, 5% with a clonemate after switching the mating type, and 1% outcrossed. Our study illustrates the utility of population genomic data in quantifying life cycles.
Collapse
|
research-article |
17 |
229 |
21
|
Malik HS, Henikoff S, Eickbush TH. Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 2000; 10:1307-18. [PMID: 10984449 DOI: 10.1101/gr.145000] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phylogenetic analyses suggest that long-terminal repeat (LTR) bearing retrotransposable elements can acquire additional open-reading frames that can enable them to mediate infection. Whereas this process is best documented in the origin of the vertebrate retroviruses and their acquisition of an envelope (env) gene, similar independent events may have occurred in insects, nematodes, and plants. The origins of env-like genes are unclear, and are often masked by the antiquity of the original acquisitions and by their rapid rate of evolution. In this report, we present evidence that in three other possible transitions of LTR retrotransposons to retroviruses, an envelope-like gene was acquired from a viral source. First, the gypsy and related LTR retrotransposable elements (the insect errantiviruses) have acquired their envelope-like gene from a class of insect baculoviruses (double-stranded DNA viruses with no RNA stage). Second, the Cer retroviruses in the Caenorhabditis elegans genome acquired their envelope gene from a Phleboviral (single ambisense-stranded RNA viruses) source. Third, the Tas retroviral envelope (Ascaris lumricoides) may have been obtained from Herpesviridae (double-stranded DNA viruses, no RNA stage). These represent the only cases in which the env gene of a retrovirus has been traced back to its original source. This has implications for the evolutionary history of retroviruses as well as for the potential ability of all LTR-retrotransposable elements to become infectious agents.
Collapse
|
|
25 |
224 |
22
|
Yu D, Smith GA, Enquist LW, Shenk T. Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J Virol 2002; 76:2316-28. [PMID: 11836410 PMCID: PMC153828 DOI: 10.1128/jvi.76.5.2316-2328.2002] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The full-length genome of human cytomegalovirus strain AD169 was cloned as an infectious bacterial artificial chromosome (BAC) plasmid, pAD/Cre. The BAC vector, flanked by LoxP sites, was inserted immediately after the Us28 open reading frame without deletion of any viral sequences. The BAC vector contained the Cre recombinase-encoding gene disrupted by an intron under control of the simian virus 40 early promoter. When pAD/Cre was transfected into primary human foreskin fibroblast cells, Cre was expressed and mediated site-specific recombination between the two LoxP sites, excising the BAC DNA backbone. This gave rise to progeny virus that was wild type with the exception of an inserted 34-bp LoxP site. We performed site-directed mutagenesis on pAD/Cre to generate a series of viruses in which the TRL/IRL13 diploid genes were disrupted and subsequently repaired. The mutants reach the same titer as the wild-type virus, indicating that the TRL/IRL13 open reading frames are not required for virus growth in cell culture. The sequence of the TRL13 open reading frame in the low-passage Toledo strain of human cytomegalovirus is quite different from the corresponding region in the AD169 strain. One of multiple changes is a frameshift mutation. As a consequence, strain Toledo encodes a putative TRL13 protein whose C-terminal domain is larger (extending through the TRL14 coding region) and encodes in a reading frame different from that of strain AD169. We speculate that the strain AD169 coding region has drifted during passage in the laboratory. We propose that TRL13 has been truncated in strain AD169 and that the partially overlapping TRL14 open reading frame is not functional. This view is consistent with the presence of both TRL13 and -14 on all mRNAs that we have mapped from this region, an organization that would include the much longer strain Toledo TRL13 open reading frame on the mRNAs.
Collapse
|
research-article |
23 |
222 |
23
|
Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A. Evolution of DNA sequence nonhomologies among maize inbreds. THE PLANT CELL 2005; 17:343-60. [PMID: 15659640 PMCID: PMC548811 DOI: 10.1105/tpc.104.025627] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 11/17/2004] [Indexed: 05/18/2023]
Abstract
Allelic chromosomal regions totaling more than 2.8 Mb and located on maize (Zea mays) chromosomes 1L, 2S, 7L, and 9S have been sequenced and compared over distances of 100 to 350 kb between the two maize inbred lines Mo17 and B73. The alleles contain extended regions of nonhomology. On average, more than 50% of the compared sequence is noncolinear, mainly because of the insertion of large numbers of long terminal repeat (LTR)-retrotransposons. Only 27 LTR-retroelements are shared between alleles, whereas 62 are allele specific. The insertion of LTR-retrotransposons into the maize genome is statistically more recent for nonshared than shared ones. Most surprisingly, more than one-third of the genes (27/72) are absent in one of the inbreds at the loci examined. Such nonshared genes usually appear to be truncated and form clusters in which they are oriented in the same direction. However, the nonshared genome segments are gene-poor, relative to regions shared by both inbreds, with up to 12-fold difference in gene density. By contrast, miniature inverted terminal repeats (MITEs) occur at a similar frequency in the shared and nonshared fractions. Many times, MITES are present in an identical position in both LTRs of a retroelement, indicating that their insertion occurred before the replication of the retroelement in question. Maize ESTs and/or maize massively parallel signature sequencing tags were identified for the majority of the nonshared genes or homologs of them. In contrast with shared genes, which are usually conserved in gene order and location relative to rice (Oryza sativa), nonshared genes violate the maize colinearity with rice. Based on this, insertion by a yet unknown mechanism, rather than deletion events, seems to be the origin of the nonshared genes. The intergenic space between conserved genes is enlarged up to sixfold in maize compared with rice. Frequently, retroelement insertions create a different sequence environment adjacent to conserved genes.
Collapse
|
Comparative Study |
20 |
215 |
24
|
Huettel B, Kanno T, Daxinger L, Aufsatz W, Matzke AJM, Matzke M. Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis. EMBO J 2006; 25:2828-36. [PMID: 16724114 PMCID: PMC1500864 DOI: 10.1038/sj.emboj.7601150] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 04/27/2006] [Indexed: 11/09/2022] Open
Abstract
DRD1 is a SWI/SNF-like protein that cooperates with a plant-specific RNA polymerase, Pol IVb, to facilitate RNA-directed de novo methylation and silencing of homologous DNA. Screens to identify endogenous targets of this pathway in Arabidopsis revealed intergenic regions and plant genes located primarily in euchromatin. Many putative targets are near retrotransposon LTRs or other intergenic sequences that encode short RNAs, which might epigenetically regulate adjacent genes. Consistent with this, derepression of a solo LTR in drd1 and pol IVb mutants was accompanied by reduced cytosine methylation and transcriptional upregulation of neighboring sequences. The solo LTR and several other LTRs that flank reactivated targets are associated with euchromatic histone modifications but little or no H3K9 dimethylation, a hallmark of constitutive heterochromatin. By contrast, LTRs of retrotransposons that remain silent in the mutants despite reduced cytosine methylation lack euchromatic marks and have H3K9 dimethylation. We propose that DRD1 and Pol IVb establish a basal level of silencing that can potentially be reversed in euchromatin, and further reinforced in heterochromatin by other proteins that induce more stable modifications.
Collapse
|
research-article |
19 |
211 |
25
|
Cherry SR, Biniszkiewicz D, van Parijs L, Baltimore D, Jaenisch R. Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol 2000; 20:7419-26. [PMID: 11003639 PMCID: PMC86295 DOI: 10.1128/mcb.20.20.7419-7426.2000] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Achieving long-term retroviral expression in primary cells has been problematic. De novo DNA methylation of infecting proviruses has been proposed as a major cause of this transcriptional repression. Here we report the development of a mouse stem cell virus (MSCV) long terminal repeat-based retroviral vector that is expressed in both embryonic stem (ES) cells and hematopoietic stem (HS) cells. Infected HS cells and their differentiated descendants maintained long-term and stable retroviral expression after serial adoptive transfers. In addition, retrovirally infected ES cells showed detectable expression level of the green fluorescent protein (GFP). Moreover, GFP expression of integrated proviruses was maintained after in vitro differentiation of infected ES cells. Long-term passage of infected ES cells resulted in methylation-mediated silencing, while short-term expression was methylation independent. Tissues of transgenic animals, which we derived from ES cells carrying the MSCV-based provirus, did not express GFP. However, treatment with the demethylating agent 5-azadeoxycytidine reactivated the silent provirus, demonstrating that DNA methylation is involved in the maintenance of retroviral repression. Our results indicate that retroviral expression in ES cells is repressed by methylation-dependent as well as methylation-independent mechanisms.
Collapse
|
research-article |
25 |
208 |