1
|
Lentz KN, Smith AD, Geisler SC, Cox S, Buontempo P, Skelton A, DeMartino J, Rozhon E, Schwartz J, Girijavallabhan V, O'Connell J, Arnold E. Structure of poliovirus type 2 Lansing complexed with antiviral agent SCH48973: comparison of the structural and biological properties of three poliovirus serotypes. Structure 1997; 5:961-78. [PMID: 9261087 DOI: 10.1016/s0969-2126(97)00249-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Polioviruses are human pathogens and the causative agents of poliomyelitis. Polioviruses are icosahedral single-stranded RNA viruses, which belong to the picornavirus family, and occur as three distinct serotypes. All three serotypes of poliovirus can infect primates, but only type 2 can infect mice. The crystal structures of a type 1 and a type 3 poliovirus are already known. Structural studies of poliovirus type 2 Lansing (PV2L) were initiated to try to enhance our understanding of the differences in host range specificity, antigenicity and receptor binding among the three serotypes of poliovirus. RESULTS The crystal structure of the mouse neurovirulent PV2L complexed with a potent antiviral agent, SCH48973, was determined at 2.9 A resolution. Structural differences among the three poliovirus serotypes occur primarily in the loop regions of the viral coat proteins (VPs), most notably in the loops of VP1 that cluster near the fivefold axes of the capsid, where the BC loop of PV2L is disordered. Unlike other known structures of enteroviruses, the entire polypeptide chain of PV2L VP4 is visible in the electron density and RNA bases are observed stacking with conserved aromatic residues (Tyr4020 and Phe4046) of VP4. The broad-spectrum antiviral agent SCH48973 is observed binding in a pocket within the beta-barrel of VP1, in approximately the same location that natural 'pocket factors' bind to polioviruses. SCH48973 forms predominantly hydrophobic interactions with the pocket residues. CONCLUSIONS Some of the conformational changes required for infectivity and involved in the control of capsid stability and neurovirulence in mice may occur in the vicinity of the fivefold axis of the poliovirus, where there are significant structural differences among the three poliovirus serotypes in the surface exposed loops of VP1 (BC, DE, and HI). A surface depression is located at the fivefold axis of PV2L that is not present in the other two poliovirus serotypes. The observed interaction of RNA with VP4 supports the observation that loss of VP4 ultimately leads to the loss of viral RNA. A model is proposed that suggests dual involvement of the virion fivefold and pseudo-threefold axes in receptor-mediated initiation of infection by picornaviruses.
Collapse
|
Comparative Study |
28 |
86 |
2
|
Richards MH, Getts MT, Podojil JR, Jin YH, Kim BS, Miller SD. Virus expanded regulatory T cells control disease severity in the Theiler's virus mouse model of MS. J Autoimmun 2011; 36:142-54. [PMID: 21273044 PMCID: PMC3046315 DOI: 10.1016/j.jaut.2010.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 12/22/2010] [Accepted: 12/22/2010] [Indexed: 11/17/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) serves as virus-induced model of chronic progressive multiple sclerosis. Infection of susceptible SJL/J mice leads to life-long CNS virus persistence and a progressive autoimmune demyelinating disease mediated by myelin-specific T cells activated via epitope spreading. In contrast, virus is rapidly cleared by a robust CTL response in TMEV-IDD-resistant C57BL/6 mice. We investigated whether differential induction of regulatory T cells (Tregs) controls susceptibility to TMEV-IDD. Infection of disease-susceptible SJL/J, but not B6 mice, leads to rapid activation and expansion of Tregs resulting in an unfavorable CNS ratio of Treg:Teffector cells. In addition, anti-CD25-induced inactivation of Tregs in susceptible SJL/J, but not resistant B6, mice results in significantly decreased clinical disease concomitant with enhanced anti-viral CD4(+), CD8(+) and antibody responses resulting in decreased CNS viral titers. This is the first demonstration that virus-induced Treg activation regulates susceptibility to autoimmune disease differentially in susceptible and resistant strains of mice and provides a new mechanistic explanation for the etiology of infection-induced autoimmunity.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Cardiovirus Infections/immunology
- Cardiovirus Infections/metabolism
- Cardiovirus Infections/pathology
- Cardiovirus Infections/prevention & control
- Cell Proliferation
- Central Nervous System/immunology
- Central Nervous System/pathology
- Central Nervous System/virology
- Demyelinating Diseases/immunology
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/pathology
- Demyelinating Diseases/prevention & control
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Glucocorticoid-Induced TNFR-Related Protein
- Humans
- Interleukin-2 Receptor alpha Subunit/immunology
- Interleukin-2 Receptor alpha Subunit/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Transgenic
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Receptors, Nerve Growth Factor/immunology
- Receptors, Tumor Necrosis Factor/immunology
- Severity of Illness Index
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Theilovirus/drug effects
- Theilovirus/immunology
Collapse
|
Research Support, N.I.H., Extramural |
14 |
55 |
3
|
Barker-Haliski ML, Dahle EJ, Heck TD, Pruess TH, Vanegas F, Wilcox KS, White HS. Evaluating an etiologically relevant platform for therapy development for temporal lobe epilepsy: effects of carbamazepine and valproic acid on acute seizures and chronic behavioral comorbidities in the Theiler's murine encephalomyelitis virus mouse model. J Pharmacol Exp Ther 2015; 353:318-29. [PMID: 25755209 PMCID: PMC4407718 DOI: 10.1124/jpet.114.222513] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/06/2015] [Indexed: 01/26/2023] Open
Abstract
Central nervous system infections can underlie the development of epilepsy, and Theiler's murine encephalomyelitis virus (TMEV) infection in C57BL/6J mice provides a novel model of infection-induced epilepsy. Approximately 50-65% of infected mice develop acute, handling-induced seizures during the infection. Brains display acute neuropathology, and a high number of mice develop spontaneous, recurrent seizures and behavioral comorbidities weeks later. This study characterized the utility of this model for drug testing by assessing whether antiseizure drug treatment during the acute infection period attenuates handling-induced seizures, and whether such treatment modifies associated comorbidities. Male C57BL/6J mice infected with TMEV received twice-daily valproic acid (VPA; 200 mg/kg), carbamazepine (CBZ; 20 mg/kg), or vehicle during the infection (days 0-7). Mice were assessed twice daily during the infection period for handling-induced seizures. Relative to vehicle-treated mice, more CBZ-treated mice presented with acute seizures; VPA conferred no change. In mice displaying seizures, VPA, but not CBZ, reduced seizure burden. Animals were then randomly assigned to acute and long-term follow-up. VPA was associated with significant elevations in acute (day 8) glial fibrillary acidic protein (astrocytes) immunoreactivity, but did not affect NeuN (neurons) immunoreactivity. Additionally, VPA-treated mice showed improved motor performance 15 days postinfection (DPI). At 36 DPI, CBZ-treated mice traveled significantly less distance through the center of an open field, indicative of anxiety-like behavior. CBZ-treated mice also presented with significant astrogliosis 36 DPI. Neither CBZ nor VPA prevented long-term reductions in NeuN immunoreactivity. The TMEV model thus provides an etiologically relevant platform to evaluate potential treatments for acute seizures and disease modification.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
37 |
4
|
Abstract
The pathogenesis of Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is still controversial. Our hypothesis is that primary infection of oligodendrocytes (OLGs) is not a crucial event in the pathogenesis of demyelination in this model. In fact, it has been proposed that myelin may be destroyed, as an innocent bystander, following an antiviral delayed-type hypersensitivity (DTH) response. This hypothesis would not need widespread oligodendroglial infection, because virus present in other cells would be sufficient to trigger a DTH response. The present study demonstrates that cultured OLGs and astrocytes from susceptible strains of mice (SJL and DBA) and immortalized OLGs can be infected with TMEV in vitro. Infection of OLGs, however, is at very low levels and does not result in overt cytolytic effect. In contrast, infection of immortalized OLGs is very efficient and results in clear cytolysis. Because an important characteristic of DTH responses is the liberation of potentially injurious cytokines into adjacent tissues, we also examined the effects of mouse recombinant tumor necrosis factor-alpha (TNF-alpha), interleukin-1 alpha (IL-1 alpha), and interferon-gamma (IFN-gamma) on cultured OLGs and immortalized OLGs. We found that TNF-alpha caused immortalized OLG cytotoxicity in a time- and dose-dependent manner. In contrast, no cytotoxicity was observed on primary OLGs with any of the above cytokines. To determine whether functional effects could be demonstrated on primary OLGs by either virus or cytokines, we measured mRNA expression of different myelin proteins in primary and immortalized OLGs exposed to virus or TNF-alpha. Neither the BeAn strain or the GDVII strain of TMEV interfered with myelin protein mRNA expression in primary OLGs, whereas GDVII virus dramatically reduced myelin OLG glycoprotein (MOG) mRNA in immortalized OLGs. Interestingly, although even high concentrations of TNF-alpha (10,000 U/ml) did not produce primary OLG cytotoxicity, they resulted in a significant reduction in mRNA for both myelin basic protein (MBP) and MOG in these cells. TNF-alpha (at 500 U/ml) also specifically reduced MOG mRNA in immortalized OLGs. Because immortalized OLGs are considered to be arrested at an early stage of maturation, our results suggest that immature OLGs are susceptible to both virus- and cytokine-dependent cytotoxicity, whereas mature OLGs are resistant to cytolysis by either TMEV or cytokines. TNF-alpha, however, is capable of reducing mRNA expression of myelin proteins in primary OLGs; therefore, it may participate in the induction of demyelination, as suggested by the DTH-mediated hypothesis.
Collapse
MESH Headings
- Animals
- Astrocytes/cytology
- Astrocytes/immunology
- Astrocytes/virology
- Autoradiography
- Cell Line, Transformed/cytology
- Cell Line, Transformed/immunology
- Cell Line, Transformed/virology
- Cells, Cultured/immunology
- Cells, Cultured/virology
- Cytokines/pharmacology
- Cytotoxicity Tests, Immunologic
- Gene Expression/physiology
- Mice
- Mice, Inbred DBA
- Myelin Proteins/genetics
- Myelin Proteins/immunology
- Oligodendroglia/cytology
- Oligodendroglia/immunology
- Oligodendroglia/virology
- Polymerase Chain Reaction
- Precipitin Tests
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- RNA, Viral/analysis
- Theilovirus/drug effects
- Theilovirus/growth & development
- Theilovirus/immunology
- Tumor Necrosis Factor-alpha/pharmacology
- Viral Plaque Assay
- Viral Proteins/isolation & purification
Collapse
|
|
29 |
27 |
5
|
Wootla B, Denic A, Watzlawik JO, Warrington AE, Rodriguez M. Antibody-Mediated Oligodendrocyte Remyelination Promotes Axon Health in Progressive Demyelinating Disease. Mol Neurobiol 2016; 53:5217-28. [PMID: 26409478 PMCID: PMC5012151 DOI: 10.1007/s12035-015-9436-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/10/2015] [Indexed: 02/03/2023]
Abstract
Demyelination underlies early neurological symptoms in multiple sclerosis (MS); however, axonal damage is considered critical for permanent chronic deficits. The precise mechanisms by which axonal injury occurs in MS are unclear; one hypothesis is the absence or failure of remyelination, suggesting that promoting remyelination may protect axons from death. This report provides direct evidence that promoting oligodendrocyte remyelination protects axons and maintains transport function. Persistent Theiler's virus infection of Swiss Jim Lambert (SJL)/J mice was used as a model of MS to assess the effects of remyelination on axonal injury following demyelination in the spinal cord. Remyelination was induced using an oligodendrocyte/myelin-specific recombinant human monoclonal IgM, rHIgM22. The antibody is endowed with strong anti-apoptotic and pro-proliferative effects on oligodendrocyte progenitor cells. We used (1)H-magnetic resonance spectroscopy (MRS) at the brainstem to measure N-acetyl-aspartate (NAA) as a surrogate of neuronal health and spinal cord integrity. We found increased brainstem NAA concentrations at 5 weeks post-treatment with rHIgM22, which remained stable out to 10 weeks. Detailed spinal cord morphology studies revealed enhanced remyelination in the rHIgM22-treated group but not in the isotype control antibody- or saline-treated groups. Importantly, we found rHIgM22-mediated remyelination protected small- and medium-caliber mid-thoracic spinal cord axons from damage despite similar demyelination and inflammation across all experimental groups. The most direct confirmation of remyelination-mediated protection of descending neurons was an improvement in retrograde transport. Treatment with rHIgM22 significantly increased the number of retrograde-labeled neurons in the brainstem, indicating that preserved axons are functionally competent. This is direct validation that remyelination preserves spinal cord axons and protects functional axon integrity.
Collapse
|
Review |
9 |
23 |
6
|
Lledó A, Borrell J, Guaza C. Dexamethasone regulation of interleukin-1-receptors in the hippocampus of Theiler's virus-infected mice: effects on virus-mediated demyelination. Eur J Pharmacol 1999; 372:75-83. [PMID: 10374717 DOI: 10.1016/s0014-2999(99)00187-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Intracerebral (i.c.) inoculation of susceptible strains of mice with Theiler's murine encephalomyelitis virus (TMEV) results in immune-mediated demyelinating disease. Interleukin-1 receptors are expressed in the brain of mice, in particular in the hippocampus, and have been implicated in neuroimmunoendocrine interactions. In the present study we investigated the regulation of interleukin-1 receptors in the hippocampus of a susceptible (SJL/J) and a resistant (BALB/c) strain of mice infected with TMEV, at different time intervals of the disease. Our results show that interleukin-1 receptors in the hippocampus were decreased in TMEV-infected mice at early times post-infection (10 and 14 days p.i.). The reduction in interleukin-1 receptors only occurred in the susceptible strain of mice (SJL/J), whereas interleukin-1 binding in the hippocampus of TMEV-infected resistant mice (BALB/c) showed values similar to those in control animals. The TMEV-induced down-regulation of interleukin-1 receptors was secondary to a marked decrease in the affinity of the receptor (control: Kd = 10.5 pM; TMEV: Kd = 1.30 pM) accompanied by a decrease in receptor number (control: Bmax = 2.189 fmol/mg protein; TMEV: B max = 0.84 fmol/mg protein). We also investigated the effects of glucocorticoid treatment on the regulation of hippocampal interleukin-1 receptors of TMEV-infected mice. Dexamethasone treatment in the early phase (500 microg/kg or 1 mg/kg during days 5-10 p.i.) of the disease significantly reversed the deficits in hippocampal interleukin-1 receptors observed at 10 days p.i. in SJL/J mice, and suppressed neurological signs of demyelination. These results suggest that: (i) the reduction of interleukin-1 receptors may be a consequence, at least in part, of local production of interleukin-1 at early times during TMEV infection; (ii) interleukin-1 seems to be a critical factor for the susceptibility to TMEV-induced demyelination and (iii) the protective effect of dexamethasone appears to be related to its ability to reverse the reduction in interleukin-1 receptors during the early disease. These results suggest that interleukin-1 is a pivotal mediator in TMEV-induced demyelination.
Collapse
|
|
26 |
20 |
7
|
Denic A, Macura SI, Warrington AE, Pirko I, Grossardt BR, Pease LR, Rodriguez M. A single dose of neuron-binding human monoclonal antibody improves spontaneous activity in a murine model of demyelination. PLoS One 2011; 6:e26001. [PMID: 22022490 PMCID: PMC3192139 DOI: 10.1371/journal.pone.0026001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/15/2011] [Indexed: 11/18/2022] Open
Abstract
Our laboratory demonstrated that a natural human serum antibody, sHIgM12, binds to neurons in vitro and promotes neurite outgrowth. We generated a recombinant form, rHIgM12, with identical properties. Intracerebral infection with Theiler's Murine Encephalomyelitis Virus (TMEV) of susceptible mouse strains results in chronic demyelinating disease with progressive axonal loss and neurologic dysfunction similar to progressive forms of multiple sclerosis. To study the effects of rHIgM12 on the motor function of TMEV-infected mice, we monitored spontaneous nocturnal activity over many weeks. Nocturnal behavior is a sensitive measure of rodent neurologic function because maximal activity changes are expected to occur during the normally active night time monitoring period. Mice were placed in activity boxes eight days prior to treatment to collect baseline spontaneous activity. After treatment, activity in each group was continuously recorded over 8 weeks. We chose a long 8-week monitoring period for two reasons: (1) we previously demonstrated that IgM induced remyelination is present by 5 weeks post treatment, and (2) TMEV-induced demyelinating disease in this strain progresses very slowly. Due to the long observation periods and large data sets, differences among treatment groups may be difficult to appreciate studying the original unfiltered recordings. To clearly delineate changes in the highly fluctuating original data we applied three different methods: (1) binning, (2) application of Gaussian low-pass filters (GF) and (3) polynomial fitting. Using each of the three methods we showed that compared to control IgM and saline, early treatment with rHIgM12 induced improvement in both horizontal and vertical motor function, whereas later treatment improved only horizontal activity. rHIgM12 did not alter activity of normal, uninfected mice. This study supports the hypothesis that treatment with a neuron-binding IgM not only protects neurons in vitro, but also influences functional motor improvement.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
18 |
8
|
Tsunoda I, Libbey JE, Kobayashi-Warren M, Fujinami RS. IFN-gamma production and astrocyte recognition by autoreactive T cells induced by Theiler's virus infection: role of viral strains and capsid proteins. J Neuroimmunol 2006; 172:85-93. [PMID: 16375978 DOI: 10.1016/j.jneuroim.2005.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 11/02/2005] [Indexed: 02/05/2023]
Abstract
From mice infected with the DA strain of Theiler's murine encephalomyelitis virus (TMEV), CD8+ cytotoxic T lymphocytes (CTLs) could be detected after stimulation with TMEV infected antigen presenting cells (APCs). These CTLs killed not only TMEV infected but also uninfected syngeneic cells. Killing was associated with interferon (IFN)-gamma production in ELISPOT assays. The CTLs were efficiently induced by vaccinia virus encoding DA virus capsid proteins, but not by APCs infected with the GDVII strain of TMEV. The CTLs produced IFN-gamma in response to TMEV infected, but not uninfected, astrocytes. The CTLs could be maintained in the presence of interleukin (IL)-2. We hypothesized that, in DA virus infection, CD8+ CTLs specific for viral capsid protein could recognize self protein on oligodendrocytes by molecular mimicry, leading to demyelination.
Collapse
|
Comparative Study |
19 |
18 |
9
|
Welsh CJ, Sapatino BV, Rosenbaum BA, Smith R. Characteristics of cloned cerebrovascular endothelial cells following infection with Theiler's virus. I. Acute infection. J Neuroimmunol 1995; 62:119-25. [PMID: 7499499 DOI: 10.1016/0165-5728(95)00093-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present study describes the replication of Theiler's virus in cloned cerebrovascular endothelial cells (CVE) isolated from strains of mice that are either susceptible or resistant to Theiler's virus-induced demyelination (TVID). CVE isolated from all strains of mice were equally permissive to Theiler's virus infection. Interferon-gamma and tumor necrosis factor-alpha were found to inhibit the replication of Theiler's virus in CVE. A correlation between susceptibility to demyelination and the ability of Theiler's virus to induce MHC Class I on CVE was demonstrated.
Collapse
|
|
30 |
17 |
10
|
Cusick MF, Libbey JE, Trede NS, Fujinami RS. Targeting insulin-like growth factor 1 leads to amelioration of inflammatory demyelinating disease. PLoS One 2014; 9:e94486. [PMID: 24718491 PMCID: PMC3981810 DOI: 10.1371/journal.pone.0094486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/15/2014] [Indexed: 11/18/2022] Open
Abstract
In patients with multiple sclerosis (MS) and in mice with experimental autoimmune encephalomyelitis (EAE), proliferating autoreactive T cells play an important role in the pathogenesis of the disease. Due to the importance of these myelin-specific T cells, these cells have been therapeutic targets in a variety of treatments. Previously we found that Lenaldekar (LDK), a novel small molecule, could inhibit exacerbations in a preclinical model of MS when given at the start of an EAE exacerbation. In those studies, we found that LDK could inhibit human T cell recall responses and murine myelin responses in vitro. In these new studies, we found that LDK could inhibit myelin specific T cell responses through the insulin-like growth factor-1 receptor (IGF-1R) pathway. Alteration of this pathway led to marked reduction in T cell proliferation and expansion. Blocking this pathway could account for the observed decreases in clinical signs and inflammatory demyelinating disease, which was accompanied by axonal preservation. Our data indicate that IGF-1R could be a potential target for new therapies for the treatment of autoimmune diseases where autoreactive T cell expansion is a requisite for disease.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
8 |
11
|
Tennakoon DK, Smith R, Stewart MD, Spencer TE, Nayak M, Welsh CJ. Ovine IFN-tau modulates the expression of MHC antigens on murine cerebrovascular endothelial cells and inhibits replication of Theiler's virus. J Interferon Cytokine Res 2001; 21:785-92. [PMID: 11710989 DOI: 10.1089/107999001753238015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interferon-beta (IFN-beta) has been used successfully to treat patients with relapsing-remitting multiple sclerosis (MS). IFN-tau is a new class of type I IFN that is secreted by the trophoblast and is the signal for maternal recognition of pregnancy in sheep. IFN-tau has potent immunosuppressive and antiviral activities similar to other type I IFN but is less cytotoxic than IFN-alpha/beta. The current investigation concerns the effect of recombinant ovine IFN-tau (rOvIFN-tau) on the modulation of MHC class I and II expression on cloned mouse cerebrovascular endothelial (CVE) cells. IFN-tau induced tyrosine phosphorylation of Stat1 and upregulated the expression of MHC class I on CVE. One proposed action by which type I IFN reduce the relapse rate in MS is via interference with IFN-gamma-induced MHC class II expression. IFN-tau was shown to downregulate IFN-gamma-induced MHC class II expression on CVE and, hence, may be of potential therapeutic value in downregulating inflammation in the central nervous system (CNS). IFN-tau did not upregulate the expression of MHC class II on CVE. IFN-tau also inhibited the replication of Theiler's virus in CVE. These in vitro results suggest that IFN-tau may be of therapeutic value in the treatment of virus-induced demyelinating disease.
Collapse
|
|
24 |
7 |
12
|
Omura S, Sato F, Martinez NE, Range T, Ekshyyan L, Minagar A, Alexander JS, Tsunoda I. Immunoregulation of Theiler's virus-induced demyelinating disease by glatiramer acetate without suppression of antiviral immune responses. Arch Virol 2018; 163:1279-1284. [PMID: 29362931 PMCID: PMC6276114 DOI: 10.1007/s00705-018-3729-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/03/2018] [Indexed: 02/05/2023]
Abstract
While most disease-modifying drugs (DMDs) regulate multiple sclerosis (MS) by suppressing inflammation, they can potentially suppress antiviral immunity, causing progressive multifocal leukoencephalopathy (PML). The DMD glatiramer acetate (GA) has been used for MS patients who are at high risk of PML. We investigated whether GA is safe for use in viral infections by using a model of MS induced by infection with Theiler's murine encephalomyelitis virus (TMEV). Treatment of TMEV-infected mice with GA neither enhanced viral loads nor suppressed antiviral immune responses, while it resulted in an increase in the Foxp3/Il17a ratio and IL-4/IL-10 production. This is the first study to suggest that GA could be safe for MS patients with a proven viral infection.
Collapse
|
research-article |
7 |
7 |
13
|
Mutsvunguma LZ, Moetlhoa B, Edkins AL, Luke GA, Blatch GL, Knox C. Theiler's murine encephalomyelitis virus infection induces a redistribution of heat shock proteins 70 and 90 in BHK-21 cells, and is inhibited by novobiocin and geldanamycin. Cell Stress Chaperones 2011; 16:505-15. [PMID: 21445704 PMCID: PMC3156266 DOI: 10.1007/s12192-011-0262-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 11/26/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 μM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 μM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus.
Collapse
|
research-article |
14 |
6 |
14
|
Rubio N, Sanz-Rodriguez F. Overexpression of caspase 1 in apoptosis-resistant astrocytes infected with the BeAn Theiler's virus. J Neurovirol 2015; 22:316-26. [PMID: 26567013 DOI: 10.1007/s13365-015-0400-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/10/2015] [Accepted: 10/27/2015] [Indexed: 01/19/2023]
Abstract
In this study, we demonstrate the upregulation in the expression of caspases 1 and 11 by SJL/J mouse brain astrocytes infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV). The upregulation of both proteases hints at protection of astrocytic cells from apoptotic death. We therefore looked for the reason of the demonstrated absence of programmed cell death in BeAn-infected SJL/J astrocytes. Complementary RNA (cRNA) from mock- and TMEV-infected cells was hybridized to the whole murine genome U74v2 DNA microarray from Affymetrix. Those experiments demonstrated the upregulation of gene expression for caspases 1 and 11 in infected cells. We further confirmed and validated their messenger RNA (mRNA) increase by reverse transcriptase quantitative real-time PCR (qPCR). The presence of both enzymatically active caspases 1 and 11 was demonstrated in cell lysates using a colorimetric and fluorymetric assay, respectively. We also show that overexpressed caspase 11 activated caspase 1 after preincubation of cytosol in vitro following a time-dependent process. This induction was neutralized by an anti-caspase 11 polyclonal antibody. These results demonstrate the activation of the caspase 1 precursor by caspase 11 and suggest a new mechanism of protection of BeAn-infected astrocytes from apoptosis. The direct experimental evidence that the protection effect demonstrated in this article was mediated by caspase 1, is provided by the fact that its specific inhibitor Z-WEHD-FMK induced de novo apoptotic death.
Collapse
|
Journal Article |
10 |
2 |
15
|
Koh C, Inoue A, Yamazaki M, Kim BS. High-dose mouse immunoglobulin G administration suppresses Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Neuroimmunol 2000; 108:22-8. [PMID: 10900333 DOI: 10.1016/s0165-5728(00)00282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the effect of high-dose mouse IgG on TMEV-induced demyelinating disease (TMEV-IDD). We injected TMEV intracerebrally into susceptible SJL/J mice and induced TMEV-IDD. Mouse IgG were injected intraperitonealy, and clinical course and various immunological indicators were studied. The results show that TMEV-IDD was significantly suppressed both clinically and histologically (P<0.01) when IgG were administered in the effector phase. The delayed type hypersensitivity and T cell proliferative response specific for TMEV were decreased by this treatment. In an ELISPOT assay, the number of TNF-alpha producing lymphocytes in the spinal cords was low in high-dose IgG treated mice compared with PBS treated control mice. These data suggest that administration of IgG suppresses TMEV-IDD and may be promising treatment to prevent exacerbation of human multiple sclerosis.
Collapse
|
|
25 |
2 |
16
|
Kozhevnikova TN, Viktorova EG, Kozlov VG, Narovlianskiĭ AN, Sanin AV, Pronin AV, Ozherelkov SV. [Moraprenylphosphates suppress reproduction of Taylor murine encephalomyelitis virus and accumulation of VP3 viral protein in susceptible cell cultures BHK-21 and P388D1]. ZHURNAL MIKROBIOLOGII, EPIDEMIOLOGII I IMMUNOBIOLOGII 2007:26-30. [PMID: 17672126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Influence of moraprenylphosphates (phosphorylated polyprenol of plant origin) upon the accumulation of Taylor murine encephalomyelitis virus VP3 protein in the susceptible cell cultures was studied. It has been shown that moraprenylphosphates inhibited the accumulation of VP3 at early stages of infectious process. Moraprenylphosphates were found to decrease infectivity of the virus as well as virus-induced cellular apoptosis. Mechanisms of immunomodulating and antiviral activity of moraprenylphosphates and prospects of their use as antiviral drugs have been discussed.
Collapse
|
English Abstract |
18 |
|