1
|
|
Review |
51 |
507 |
2
|
Abe E, Marians RC, Yu W, Wu XB, Ando T, Li Y, Iqbal J, Eldeiry L, Rajendren G, Blair HC, Davies TF, Zaidi M. TSH Is a Negative Regulator of Skeletal Remodeling. Cell 2003; 115:151-62. [PMID: 14567913 DOI: 10.1016/s0092-8674(03)00771-2] [Citation(s) in RCA: 437] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The established function of thyroid stimulating hormone (TSH) is to promote thyroid follicle development and hormone secretion. The osteoporosis associated with hyperthyroidism is traditionally viewed as a secondary consequence of altered thyroid function. We provide evidence for direct effects of TSH on both components of skeletal remodeling, osteoblastic bone formation, and osteoclastic bone resorption, mediated via the TSH receptor (TSHR) found on osteoblast and osteoclast precursors. Even a 50% reduction in TSHR expression produces profound osteoporosis (bone loss) together with focal osteosclerosis (localized bone formation). TSH inhibits osteoclast formation and survival by attenuating JNK/c-jun and NFkappaB signaling triggered in response to RANK-L and TNFalpha. TSH also inhibits osteoblast differentiation and type 1 collagen expression in a Runx-2- and osterix-independent manner by downregulating Wnt (LRP-5) and VEGF (Flk) signaling. These studies define a role for TSH as a single molecular switch in the independent control of both bone formation and resorption.
Collapse
|
|
22 |
437 |
3
|
Larsen PR, Silva JE, Kaplan MM. Relationships between circulating and intracellular thyroid hormones: physiological and clinical implications. Endocr Rev 1981; 2:87-102. [PMID: 6271545 DOI: 10.1210/edrv-2-1-87] [Citation(s) in RCA: 334] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
Review |
44 |
334 |
4
|
Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 2001; 22:631-56. [PMID: 11588145 DOI: 10.1210/edrv.22.5.0444] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
TSH via cAMP, and various growth factors, in cooperation with insulin or IGF-I stimulate cell cycle progression and proliferation in various thyrocyte culture systems, including rat thyroid cell lines (FRTL-5, WRT, PC Cl3) and primary cultures of rat, dog, sheep and human thyroid. The available data on cell signaling cascades, cell cycle kinetics, and cell cycle-regulatory proteins are thoroughly and critically reviewed in these experimental systems. In most FRTL-5 cells, TSH (cAMP) merely acts as a priming/competence factor amplifying PI3K and MAPK pathway activation and DNA synthesis elicited by insulin/IGF-I. In WRT cells, TSH and insulin/IGF-I can independently activate Ras and PI3K pathways and DNA synthesis. In dog thyroid primary cultures, TSH (cAMP) does not activate Ras and PI3K, and cAMP must be continuously elevated by TSH to directly control the progression through G(1) phase. This effect is exerted, at least in part, via the cAMP-dependent activation of the required cyclin D3, itself synthesized in response to insulin/IGF-I. This and other discrepancies show that the mechanistic logics of cell cycle stimulation by cAMP profoundly diverge in these different in vitro models of the same cell. Therefore, although these different thyrocyte systems constitute interesting models of the wide diversity of possible mechanisms of cAMP-dependent proliferation in various cell types, extrapolation of in vitro mechanistic data to TSH-dependent goitrogenesis in man can only be accepted in the cases where independent validation is provided.
Collapse
|
Evaluation Study |
24 |
308 |
5
|
Hanon EA, Lincoln GA, Fustin JM, Dardente H, Masson-Pévet M, Morgan PJ, Hazlerigg DG. Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr Biol 2008; 18:1147-52. [PMID: 18674911 DOI: 10.1016/j.cub.2008.06.076] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 11/28/2022]
Abstract
In mammals, day-length-sensitive (photoperiodic) seasonal breeding cycles depend on the pineal hormone melatonin, which modulates secretion of reproductive hormones by the anterior pituitary gland [1]. It is thought that melatonin acts in the hypothalamus to control reproduction through the release of neurosecretory signals into the pituitary portal blood supply, where they act on pituitary endocrine cells [2]. Contrastingly, we show here that during the reproductive response of Soay sheep exposed to summer day lengths, the reverse applies: Melatonin acts directly on anterior-pituitary cells, and these then relay the photoperiodic message back into the hypothalamus to control neuroendocrine output. The switch to long days causes melatonin-responsive cells in the pars tuberalis (PT) of the anterior pituitary to increase production of thyrotrophin (TSH). This acts locally on TSH-receptor-expressing cells in the adjacent mediobasal hypothalamus, leading to increased expression of type II thyroid hormone deiodinase (DIO2). DIO2 initiates the summer response by increasing hypothalamic tri-iodothyronine (T3) levels. These data and recent findings in quail [3] indicate that the TSH-expressing cells of the PT play an ancestral role in seasonal reproductive control in vertebrates. In mammals this provides the missing link between the pineal melatonin signal and thyroid-dependent seasonal biology.
Collapse
|
|
17 |
298 |
6
|
Meites J, Bruni JF, Van Vugt DA, Smith AF. Relation of endogenous opioid peptides and morphine to neuroendocrine functions. Life Sci 1979; 24:1325-36. [PMID: 225614 DOI: 10.1016/0024-3205(79)90001-8] [Citation(s) in RCA: 294] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
|
46 |
294 |
7
|
|
Review |
44 |
294 |
8
|
Abstract
The discovery of the adipocyte-produced hormone leptin has greatly changed the field of obesity research and our understanding of energy homeostasis. It is now accepted that leptin is the afferent loop informing the hypothalamus about the state of fat stores, with hypothalamic efferents regulating appetite and energy expenditure. In addition, leptin has a role as a metabolic adaptator in overweight and fasting states. New and previously unsuspected neuroendocrine roles have emerged for leptin. In reproduction, leptin is implicated in fertility regulation, and it is a permissive factor for puberty. Relevant gender-based differences in leptin levels exist, with higher levels in women at birth, which persist throughout life. In adult life, there is experimental evidence that leptin is a permissive factor for the ovarian cycle, with a regulatory role exerted at the hypothalamic, pituitary, and gonadal levels, and with unexplained changes in pregnancy and postpartum. Leptin is present in human milk and may play a role in the adaptive responses of the newborn. Leptin plays a role in the neuroendocrine control of GH secretion, through a complex interaction at hypothalamic levels with GHRH and somatostatin. Leptin participates in the expression of CRH in the hypothalamus, interacts at the adrenal level with ACTH, and is regulated by glucocorticoids. Since leptin and cortisol show an inverse circadian rhythm, it has been suggested that a regulatory feedback is present. Finally, regulatory actions on TRH-TSH and PRL secretion have been found. Thus leptin reports the state of fat stores to the hypothalamus and other neuroendocrine areas, and the neuroendocrine systems adapt their function to the current status of energy homeostasis and fat stores.
Collapse
|
Review |
26 |
245 |
9
|
Dumitrescu AM, Liao XH, Weiss RE, Millen K, Refetoff S. Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice. Endocrinology 2006; 147:4036-43. [PMID: 16709608 DOI: 10.1210/en.2006-0390] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations of the X-linked thyroid hormone (TH) transporter (monocarboxylate transporter, MCT8) produce in humans unusual abnormalities of thyroid function characterized by high serum T3 and low T4 and rT3. The mechanism of these changes remains obscure and raises questions regarding the regulation of intracellular availability and metabolism of TH. To study the pathophysiology of MCT8 deficiency, we generated Mct8 knockout mice. Male mice deficient in Mct8 (Mct8(-/y)) replicate the thyroid abnormalities observed in affected men. TH deprivation and replacement with L-T3 showed that suppression of TSH required higher serum levels T3 in Mct8(-/y) than wild-type (WT) littermates, indicating hypothalamus and/or thyrotroph resistance to T3. Furthermore, T4 is required to maintain the high serum T3 level because the latter was not different between the two genotypes during administration of T3. Mct8(-/y) mice have 2.3-fold higher T3 content in liver associated with 6.1- and 3.1-fold increase in deiodinase 1 mRNA and enzymatic activity, respectively. The relative T3 excess in liver of Mct8(-/y) mice produced a decrease in serum cholesterol (79 +/- 18 vs. 137 +/- 38 mg/dl in WT) and an increase in alkaline phosphatase (107 +/- 23 vs. 58 +/- 3 U/liter in WT) levels. In contrast, T3 content in cerebrum was 1.8-fold lower in Mct8(-/y) mice, associated with a 1.6- and 10.6-fold increase in D2 mRNA and enzymatic activity, respectively, as previously observed in TH-deprived WT mice. We conclude that cell-specific differences in intracellular TH content due to differences in contribution of the various TH transporters are responsible for the unusual clinical presentation of this defect, in contrast to TH deficiency.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
237 |
10
|
|
Review |
44 |
230 |
11
|
|
Review |
54 |
218 |
12
|
Ono H, Hoshino Y, Yasuo S, Watanabe M, Nakane Y, Murai A, Ebihara S, Korf HW, Yoshimura T. Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc Natl Acad Sci U S A 2008; 105:18238-42. [PMID: 19015516 PMCID: PMC2587639 DOI: 10.1073/pnas.0808952105] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Indexed: 12/15/2022] Open
Abstract
Local thyroid hormone catabolism within the mediobasal hypothalamus (MBH) by thyroid hormone-activating (DIO2) and -inactivating (DIO3) enzymes regulates seasonal reproduction in birds and mammals. Recent functional genomics analysis in birds has shown that long days induce thyroid-stimulating hormone production in the pars tuberalis (PT) of the pituitary gland, which triggers DIO2 expression in the ependymal cells (EC) of the MBH. In mammals, nocturnal melatonin secretion provides an endocrine signal of the photoperiod to the PT that contains melatonin receptors in high density, but the interface between the melatonin signal perceived in the PT and the thyroid hormone levels in the MBH remains unclear. Here we provide evidence in mice that TSH participates in this photoperiodic signal transduction. Although most mouse strains are considered to be nonseasonal, a robust photoperiodic response comprising induced expression of TSHB (TSH beta subunit), CGA (TSH alpha subunit), and DIO2, and reduced expression of DIO3, was observed in melatonin-proficient CBA/N mice. These responses could not be elicited in melatonin-deficient C57BL/6J, but treatment of C57BL/6J mice with exogenous melatonin elicited similar effects on the expression of the above-mentioned genes as observed in CBA/N after transfer to short-day conditions. The EC was found to express TSH receptor (TSHR), and ICV injection of TSH induced DIO2 expression. Finally, we show that melatonin administration did not affect the expression of TSHB, DIO2, and DIO3 in TSHR-null mice. Taken together, our findings suggest that melatonin-dependent regulation of thyroid hormone levels in the MBH appears to involve TSH in mammals.
Collapse
|
research-article |
17 |
216 |
13
|
|
Review |
52 |
193 |
14
|
Postiglione MP, Parlato R, Rodriguez-Mallon A, Rosica A, Mithbaokar P, Maresca M, Marians RC, Davies TF, Zannini MS, De Felice M, Di Lauro R. Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci U S A 2002; 99:15462-7. [PMID: 12432093 PMCID: PMC137739 DOI: 10.1073/pnas.242328999] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Indexed: 11/18/2022] Open
Abstract
The thyroid-stimulating hormone/thyrotropin (TSH) is the most relevant hormone in the control of thyroid gland physiology in adulthood. TSH effects on the thyroid gland are mediated by the interaction with a specific TSH receptor (TSHR). We studied the role of TSHTSHR signaling on gland morphogenesis and differentiation in the mouse embryo using mouse lines deprived either of TSH (pit(dw)pit(dw)) or of a functional TSHR (tshr(hyt)tshr(hyt) and TSHR-knockout lines). The results reported here show that in the absence of either TSH or a functional TSHR, the thyroid gland develops to a normal size, whereas the expression of thyroperoxidase and the sodium/iodide symporter are reduced greatly. Conversely, no relevant changes are detected in the amounts of thyroglobulin and the thyroid-enriched transcription factors TTF-1, TTF-2, and Pax8. These data suggest that the major role of the TSH/TSHR pathway is in controlling genes involved in iodide metabolism such as sodium/iodide symporter and thyroperoxidase. Furthermore, our data indicate that in embryonic life TSH does not play an equivalent role in controlling gland growth as in the adult thyroid.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Cell Differentiation
- Crosses, Genetic
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Forkhead Transcription Factors
- Gene Expression Regulation, Developmental/physiology
- Gestational Age
- Humans
- Hypothyroidism/embryology
- Hypothyroidism/genetics
- Iodide Peroxidase/biosynthesis
- Iodide Peroxidase/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Morphogenesis
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Organ Size
- PAX8 Transcription Factor
- Paired Box Transcription Factors
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Thyrotropin/deficiency
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/physiology
- Recombinant Fusion Proteins/physiology
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Signal Transduction/physiology
- Symporters/biosynthesis
- Symporters/genetics
- Thyroglobulin/biosynthesis
- Thyroglobulin/genetics
- Thyroid Gland/embryology
- Thyroid Gland/growth & development
- Thyroid Gland/pathology
- Thyroid Nuclear Factor 1
- Thyrotropin/deficiency
- Thyrotropin/genetics
- Thyrotropin/physiology
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
Collapse
|
research-article |
23 |
168 |
15
|
Filetti S, Bidart JM, Arturi F, Caillou B, Russo D, Schlumberger M. Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism. Eur J Endocrinol 1999; 141:443-57. [PMID: 10576759 DOI: 10.1530/eje.0.1410443] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The recent cloning of the gene encoding the sodium/iodide symporter (NIS) has enabled better characterization of the molecular mechanisms underlying iodide transport, thus opening the way to clarifying its role in thyroid diseases. Several studies, at both the mRNA and the protein expression levels, have demonstrated that TSH, the primary regulator of iodide uptake, upregulates NIS gene expression and NIS protein abundance, both in vitro and in vivo. However, other factors, including iodide, retinoic acid, transforming growth factor-beta, interleukin-1alpha and tumour necrosis factor alpha, may participate in the regulation of NIS expression. Investigation of NIS mRNA expression in different thyroid tissues has revealed increased levels of expression in Graves' disease and toxic adenomas, whereas a reduction or loss of NIS transcript was detected in differentiated thyroid carcinomas, despite the expression of other specific thyroid markers. NIS mRNA was also detected in non-thyroid tissues able to concentrate radioiodine, including salivary glands, stomach, thymus and breast. The production of specific antibodies against the NIS has facilitated study of the expression of the symporter protein. Despite of the presence of high levels of human (h)NIS mRNA, normal thyroid glands exhibit a heterogeneous expression of NIS protein, limited to the basolateral membrane of the thyrocytes. By immunohistochemistry, staining of hNIS protein was stronger in Graves' and toxic adenomas and reduced in thyroid carcinomas. Measurement of iodide uptake by thyroid cancer cells is the cornerstone of the follow-up and treatment of patients with thyroid cancer. However, radioiodide uptake is found only in about 67% of patients with persistent or recurrent disease. Several studies have demonstrated a decrease in or a loss of NIS expression in primary human thyroid carcinomas, and immunohistochemical studies have confirmed this considerably decreased expression of the NIS protein in thyroid cancer tissues, suggesting that the low expression of NIS may represent an early abnormality in the pathway of thyroid cell transformation, rather than being a consequence of cancer progression. The relationship between radioiodine uptake and NIS expression by thyroid cancer cells require further study. New strategies, based on manipulation of NIS expression, to obtain NIS gene reactivation or for use as NIS gene therapy in the treatment of radiosensitive cancer, are also being investigated.
Collapse
|
Review |
26 |
164 |
16
|
|
|
46 |
161 |
17
|
Abstract
Peptide and protein hormones usually considered as being of pituitary origin have been detected within the central nervous system by means of radioimmunoassay, bioassay, and immunocytochemical techniques. Intracerebral administration of some of these hormones or fragments thereof elicit behavioral responses, suggesting that they may have a physiological role similar to that described for other peptidergic neurotransmitter or neuromodulator substances. Evidence available for some of these hormones indicates that they are synthesized within the central nervous system and that their regulation may differ from that of their pituitary counterparts.
Collapse
|
|
46 |
154 |
18
|
Persani L. Clinical review: Central hypothyroidism: pathogenic, diagnostic, and therapeutic challenges. J Clin Endocrinol Metab 2012; 97:3068-78. [PMID: 22851492 DOI: 10.1210/jc.2012-1616] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CONTEXT Central hypothyroidism (CH) is a particular hypothyroid condition due to an insufficient stimulation by TSH of an otherwise normal thyroid gland. This condition raises several challenges for clinicians; therefore, a review of the most relevant findings on CH epidemiology, pathogenesis, and clinical management has been performed. METHODOLOGY The relevant papers were selected by a PubMed search using appropriate key words. MAIN FINDINGS CH can be the consequence of various disorders affecting either the pituitary gland or the hypothalamus, but most frequently affecting both of them. CH is about 1000-fold rarer than primary hypothyroidism. Except for the neonatal CH due to biallelic TSHβ mutations, the thyroid hormone defect is rarely as profound as can be observed in some primary forms. In contrast with primary hypothyroidism, CH is most frequently characterized by low/normal TSH levels, and adequate thyroid hormone replacement is associated with the suppression of residual TSH secretion. Thus, CH often represents a clinical challenge because physicians cannot rely on the systematic use of the "reflex TSH strategy." The clinical management of CH is further complicated by the frequent combination with other pituitary deficiencies and their substitution.
Collapse
|
Meta-Analysis |
13 |
154 |
19
|
Marians RC, Ng L, Blair HC, Unger P, Graves PN, Davies TF. Defining thyrotropin-dependent and -independent steps of thyroid hormone synthesis by using thyrotropin receptor-null mice. Proc Natl Acad Sci U S A 2002; 99:15776-81. [PMID: 12432094 PMCID: PMC137792 DOI: 10.1073/pnas.242322099] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thyrotropin (TSH) receptor (TSHR) is a member of the heterotrimeric G protein-coupled family of receptors whose main function is to regulate thyroid cell proliferation as well as thyroid hormone synthesis and release. In this study, we generated a TSHR knockout (TSHR-KO) mouse by homologous recombination for use as a model to study TSHR function. TSHR-KO mice presented with developmental and growth delays and were profoundly hypothyroid, with no detectable thyroid hormone and elevated TSH. Heterozygotes were apparently unaffected. Knockout mice died within 1 week of weaning unless fed a diet supplemented with thyroid powder. Mature mice were fertile on the thyroid-supplemented diet. Thyroid glands of TSHR-KO mice produced uniodinated thyroglobulin, but the ability to concentrate and organify iodide could be restored to TSHR-KO thyroids when cultured in the presence of the adenylate cyclase agonist forskolin. Consistent with this observation was the lack of detectable sodium-iodide symporter expression in TSHR-KO thyroid glands. Hence, by using the TSHR-KO mouse, we provided in vivo evidence, demonstrating that TSHR expression was required for expression of sodium-iodide symporter but was not required for thyroglobulin expression, suggesting that the thyroid hormone synthetic pathway of the mouse could be dissociated into TSHR-dependent and -independent steps.
Collapse
|
research-article |
23 |
147 |
20
|
|
Review |
33 |
142 |
21
|
Liu J, Erlichman B, Weinstein LS. The stimulatory G protein alpha-subunit Gs alpha is imprinted in human thyroid glands: implications for thyroid function in pseudohypoparathyroidism types 1A and 1B. J Clin Endocrinol Metab 2003; 88:4336-41. [PMID: 12970307 DOI: 10.1210/jc.2003-030393] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The stimulatory G protein alpha-subunit G(s)alpha couples receptors to adenylyl cyclase and is required for hormone-stimulated cAMP generation. In Albright hereditary osteodystrophy, heterozygous G(s)alpha null mutations only lead to PTH, TSH, and gonadotropin resistance when inherited maternally [pseudohypoparathyroidism type 1A; (PHP1A)]. Maternal-specific expression of G(s)alpha in specific hormone targets could explain this observation. Using hot-stop PCR analysis on total RNA from six normal human thyroid specimens, we showed that the majority of the G(s)alpha mRNA (72 +/- 3%) was derived from the maternal allele. This is consistent with the presence of TSH resistance in patients with maternal G(s)alpha null mutations (PHP1A) and the absence of TSH resistance in patients with paternal G(s)alpha mutations (pseudopseudohypoparathyroidism). Patients with PTH resistance in the absence of Albright hereditary osteodystrophy (PHP1B) have an imprinting defect of the G(s)alpha gene resulting in both alleles having a paternal epigenotype, which would lead to a more moderate level of thyroid-specific G(s)alpha deficiency. We found evidence of borderline TSH resistance in 10 of 22 PHP1B patients. This study provides further evidence for tissue-specific imprinting of G(s)alpha in humans and provides a potential mechanism for mild to moderate TSH resistance in PHP1A and borderline resistance in some patients with PHP1B.
Collapse
|
Clinical Trial |
22 |
137 |
22
|
Kogai T, Taki K, Brent GA. Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr Relat Cancer 2006; 13:797-826. [PMID: 16954431 DOI: 10.1677/erc.1.01143] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The sodium/iodide symporter (NIS) mediates iodide uptake in the thyroid gland and lactating breast. NIS mRNA and protein expression are detected in most thyroid cancer specimens, although functional iodide uptake is usually reduced resulting in the characteristic finding of a 'cold' or non-functioning lesion on a radioiodine image. Iodide uptake after thyroid stimulating hormone (TSH) stimulation, however, is sufficient in most differentiated thyroid cancer to utilize beta-emitting radioactive iodide for the treatment of residual and metastatic disease. Elevated serum TSH, achieved by thyroid hormone withdrawal in athyreotic patients or after recombinant human thyrotropin administration, directly stimulates NIS gene expression and/or NIS trafficking to the plasma membrane, increasing radioiodide uptake. Approximately 10-20% differentiated thyroid cancers, however, do not express the NIS gene despite TSH stimulation. These tumors are generally associated with a poor prognosis. Reduced NIS gene expression in thyroid cancer is likely due in part, to impaired trans-activation at the proximal promoter and/or the upstream enhancer. Basal NIS gene expression is detected in about 80% breast cancer specimens, but the fraction with functional iodide transport is relatively low. Lactogenic hormones and various nuclear hormone receptor ligands increase iodide uptake in breast cancer cells in vitro, but TSH has no effect. A wide range of 'differentiation' agents have been utilized to stimulate NIS expression in thyroid and breast cancer using in vitro and in vivo models, and a few have been used in clinical studies. Retinoic acid has been used to stimulate NIS expression in both thyroid and breast cancer. There are similarities and differences in NIS gene regulation and expression in thyroid and breast cancer. The various agents used to enhance NIS expression in thyroid and breast cancer will be reviewed with a focus on the mechanism of action. Agents that promote tumor differentiation, or directly stimulate NIS gene expression, may result in iodine concentration in 'scan-negative' thyroid cancer and some breast cancer.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
135 |
23
|
|
Review |
52 |
130 |
24
|
Wehmann RE, Gregerman RI, Burns WH, Saral R, Santos GW. Suppression of thyrotropin in the low-thyroxine state of severe nonthyroidal illness. N Engl J Med 1985; 312:546-52. [PMID: 3881675 DOI: 10.1056/nejm198502283120904] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In a prospective study, we assessed the role of thyrotropin in the development of the low-thyroxine state that is associated with severe illness. We measured the serum thyrotropin and thyroid hormone concentrations longitudinally in 35 patients with hematopoietic cancer or aplastic anemia who were treated by bone-marrow transplantation. In 19 patients thyroxine declined sharply after bone-marrow transplantation and was associated with a reduction of the serum thyrotropin in the 17 patients tested, often to levels below the normal range. The serum triiodothyronine level, free thyroxine index, and free thyroxine level also declined in these patients. In the patients who recovered, clinical improvement was accompanied by the return of thyrotropin and thyroid hormone concentrations to their pretreatment ranges. These and related findings suggest that the low-thyroxine state of severe illness is the result of several events, one of which is failure of the normal negative-feedback control of the pituitary-thyroid axis due to illness-associated, decreased secretion of thyrotropin. The notion that such patients are "euthyroid" must be questioned, but the possible value of thyroid hormone-replacement therapy in these circumstances remains to be determined.
Collapse
|
|
40 |
130 |
25
|
Abstract
The TSH receptor (TSHR) is constitutively active and is further enhanced by TSH ligand binding or by stimulating TSHR antibodies (TSHR-Abs) as seen in Graves' disease. TSH is known to activate the thyroid epithelial cell via both Galphas-cAMP/protein kinase A/ERK and Galphaq-Akt/protein kinase C coupled signaling networks. The recent development of monoclonal antibodies to the TSHR has enabled us to investigate the hypothesis that different TSHR-Abs may have unique signaling imprints that differ from TSH ligand itself. We have, therefore, performed sequential studies, using rat thyrocytes (FRTL-5, passages 5-20) as targets, to examine the signaling pathways activated by a series of monoclonal TSHR-Abs in comparison with TSH itself. Activation of key signaling molecules was estimated by specific immunoblots and/or enzyme immunoassays. Continuing constitutive TSHR activity in thyroid cells, deprived of TSH and serum for 48 h, was demonstrated by pathway-specific chemical inhibition. Under our experimental conditions, TSH ligand and TSHR-stimulating antibodies activated both Galphas and Galphaq effectors. Importantly, some TSHR-blocking and TSHR-neutral antibodies were also able to generate signals, influencing primarily the Galphaq effectors and induced cell proliferation. Most strikingly, antibodies that used the Galphaq cascades used c-Raf-ERK-p90RSK as a unique signaling cascade not activated by TSH. Our study demonstrated that individual TSHR-Abs had unique molecular signatures which resulted in sequential preferences. Because downstream thyroid cell signaling by the TSHR is both ligand dependent and independent, this may explain why TSHR-Abs are able to have variable influences on thyroid cell biology.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
118 |