1
|
Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70:631-59. [PMID: 22782113 PMCID: PMC11113843 DOI: 10.1007/s00018-012-1070-x] [Citation(s) in RCA: 953] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 12/13/2022]
Abstract
The gastrointestinal epithelium forms the boundary between the body and external environment. It effectively provides a selective permeable barrier that limits the permeation of luminal noxious molecules, such as pathogens, toxins, and antigens, while allowing the appropriate absorption of nutrients and water. This selective permeable barrier is achieved by intercellular tight junction (TJ) structures, which regulate paracellular permeability. Disruption of the intestinal TJ barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases. In this context, much effort has been taken to understand the roles of extracellular factors, including cytokines, pathogens, and food factors, for the regulation of the intestinal TJ barrier. Here, I discuss the regulation of the intestinal TJ barrier together with its implications for the pathogenesis of diseases.
Collapse
|
Review |
12 |
953 |
2
|
Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 2003; 300:1430-4. [PMID: 12775840 PMCID: PMC3369828 DOI: 10.1126/science.1081919] [Citation(s) in RCA: 582] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori translocates the protein CagA into gastric epithelial cells and has been linked to peptic ulcer disease and gastric carcinoma. We show that injected CagA associates with the epithelial tight-junction scaffolding protein ZO-1 and the transmembrane protein junctional adhesion molecule, causing an ectopic assembly of tight-junction components at sites of bacterial attachment, and altering the composition and function of the apical-junctional complex. Long-term CagA delivery to polarized epithelia caused a disruption of the epithelial barrier function and dysplastic alterations in epithelial cell morphology. CagA appears to target H. pylori to host cell intercellular junctions and to disrupt junction-mediated functions.
Collapse
|
research-article |
22 |
582 |
3
|
Berkes J, Viswanathan VK, Savkovic SD, Hecht G. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 2003; 52:439-51. [PMID: 12584232 PMCID: PMC1773546 DOI: 10.1136/gut.52.3.439] [Citation(s) in RCA: 440] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effects of pathogenic organisms on host intestinal epithelial cells are vast. Innumerable signalling pathways are triggered leading ultimately to drastic changes in physiological functions. Here, the ways in which enteric bacterial pathogens utilise and impact on the three major physiological functions of the intestinal epithelium are discussed: alterations in the structure and function of the tight junction barrier, induction of fluid and electrolyte secretion, and activation of the inflammatory cascade. This field of investigation, which was virtually non-existent a decade ago, has now exploded, thus rapidly expanding our understanding of bacterial pathogenesis. Through increased delineation of the ways in which microbes alter host physiology, we simultaneous gain insight into the normal regulatory mechanisms of the intestinal epithelium.
Collapse
|
review-article |
22 |
440 |
4
|
Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 2006; 9:804-16. [PMID: 17087734 DOI: 10.1111/j.1462-5822.2006.00836.x] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The probiotic Escherichia coli strain Nissle 1917 (EcN) has been used for decades in human medicine in Central Europe for the treatment and prevention of intestinal disorders and diseases. However, the molecular mechanisms underlying its beneficial effects are only partially understood. To identify molecular responses induced by EcN that might contribute to its probiotic properties polarized T84 cells were investigated employing DNA microarrays, quantitative RT-PCR, Western blotting, immunofluorescence and specific protein kinase C (PKC) inhibitors. Polarized T84 epithelial cell monolayers were used as a model to monitor barrier disruption by infection with the enteropathogenic E. coli (EPEC) strain E2348/69. Co-incubation of EPEC with EcN or addition of EcN following EPEC infection abolished barrier disruption and, moreover, restored barrier integrity as monitored by transepithelial resistance. DNA-microarray analysis of T84 cells incubated with EcN identified 300+ genes exhibiting altered expression. EcN altered the expression, distribution of zonula occludens-2 (ZO-2) protein and of distinct PKC isotypes. ZO-2 expression was enhanced in parallel to its redistribution towards the cell boundaries. This study provides evidence that EcN induces an overriding signalling effect leading to restoration of a disrupted epithelial barrier. This is transmitted via silencing of PKCzeta and the redistribution of ZO-2. We suggest that these properties contribute to the reported efficacy in the treatment of inflammatory bowel diseases and in part rationalize the probiotic nature of EcN.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
310 |
5
|
Krumbeck JA, Rasmussen HE, Hutkins RW, Clarke J, Shawron K, Keshavarzian A, Walter J. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. MICROBIOME 2018; 6:121. [PMID: 29954454 PMCID: PMC6022452 DOI: 10.1186/s40168-018-0494-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/06/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND One way to improve both the ecological performance and functionality of probiotic bacteria is by combining them with a prebiotic in the form of a synbiotic. However, the degree to which such synbiotic formulations improve probiotic strain functionality in humans has not been tested systematically. Our goal was to use a randomized, double-blind, placebo-controlled, parallel-arm clinical trial in obese humans to compare the ecological and physiological impact of the prebiotic galactooligosaccharides (GOS) and the probiotic strains Bifidobacterium adolescentis IVS-1 (autochthonous and selected via in vivo selection) and Bifidobacterium lactis BB-12 (commercial probiotic allochthonous to the human gut) when used on their own or as synbiotic combinations. After 3 weeks of consumption, strain-specific quantitative real-time PCR and 16S rRNA gene sequencing were performed on fecal samples to assess changes in the microbiota. Intestinal permeability was determined by measuring sugar recovery in urine by GC after consumption of a sugar mixture. Serum-based endotoxin exposure was also assessed. RESULTS IVS-1 reached significantly higher cell numbers in fecal samples than BB-12 (P < 0.01) and, remarkably, its administration induced an increase in total bifidobacteria that was comparable to that of GOS. Although GOS showed a clear bifidogenic effect on the resident gut microbiota, both probiotic strains showed only a non-significant trend of higher fecal cell numbers when administered with GOS. Post-aspirin sucralose:lactulose ratios were reduced in groups IVS-1 (P = 0.050), IVS-1 + GOS (P = 0.022), and GOS (P = 0.010), while sucralose excretion was reduced with BB-12 (P = 0.002) and GOS (P = 0.020), indicating improvements in colonic permeability but no synergistic effects. No changes in markers of endotoxemia were observed. CONCLUSION This study demonstrated that "autochthony" of the probiotic strain has a larger effect on ecological performance than the provision of a prebiotic substrate, likely due to competitive interactions with members of the resident microbiota. Although the synbiotic combinations tested in this study did not demonstrate functional synergism, our findings clearly showed that the pro- and prebiotic components by themselves improved markers of colonic permeability, providing a rational for their use in pathologies with an underlying leakiness of the gut.
Collapse
|
Randomized Controlled Trial |
7 |
226 |
6
|
Abstract
Pathogenic microbes subvert normal host-cell processes to create a specialized niche, which enhances their survival. A common and recurring target of pathogens is the host cell's cytoskeleton, which is utilized by these microbes for purposes that include attachment, entry into cells, movement within and between cells, vacuole formation and remodelling, and avoidance of phagocytosis. Our increased understanding of these processes in recent years has not only contributed to a greater comprehension of the molecular causes of infectious diseases, but has also revealed fundamental insights into normal functions of the cytoskeleton. From the use of bacterial toxins to investigate Rho family GTPases to in vitro studies of actin polymerization using Listeria and Shigella, the study of pathogenesis has provided important tools to probe cytoskeletal function.
Collapse
|
Review |
22 |
226 |
7
|
Fasano A, Uzzau S. Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest 1997; 99:1158-64. [PMID: 9077522 PMCID: PMC507928 DOI: 10.1172/jci119271] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The intestinal epithelium represents the major barrier to absorption of orally administered drugs and peptides into the systemic circulation. Entry of molecules through the paracellular pathway is restricted by tight junctions. We have previously reported that these structures can be modulated by Zonula occludens toxin (Zot). In the present report, we show that Zot reversibly increases rabbit intestinal permeability to insulin by 72% (P = 0.034) and immunoglobulins by 52% (P = 0.04) in vitro. When tested in vivo, Zot induced a 10-fold increase of insulin absorption in both the rabbit jejunum and ileum, whereas no substantial changes were detected in the colon. Similar results were obtained with immunoglobulins, whereby Zot induced twofold and sixfold increases of IgG absorption in the jejunum and ileum, respectively. In diabetic rats, bioavailability of oral insulin coadministered with Zot was sufficient to lower serum glucose concentrations to levels comparable to those obtained after parenteral injection of the hormone. The survival time of diabetic animals chronically treated with oral insulin + Zot was comparable to that observed in parenterally treated rats. These studies offer an innovative strategy for the oral delivery of drugs and proteins normally not absorbed through the intestine.
Collapse
|
research-article |
28 |
183 |
8
|
Howe KL, Reardon C, Wang A, Nazli A, McKay DM. Transforming growth factor-beta regulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic Escherichia coli O157:H7-induced increased permeability. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1587-97. [PMID: 16314472 PMCID: PMC1613202 DOI: 10.1016/s0002-9440(10)61243-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an enteric pathogen that causes potentially fatal symptoms after intimate adhesion, modulation of intestinal epithelial signal transduction, and alteration of epithelial function (eg, barrier disruption). Although the epithelial barrier is critical to gut homeostasis, only a few agents, such as transforming growth factor (TGF)-beta, can enhance or protect epithelial barrier function. Our aims were to delineate the mechanism(s) behind TGF-beta-induced barrier enhancement and to determine whether TGF-beta could prevent EHEC-induced barrier disruption. Using monolayers of the human T84 colonic epithelial cell line, we found that TGF-beta induced a significant increase in transepithelial electrical resistance (a measure of paracellular permeability) through activation of ERK MAPK and SMAD signaling pathways and up-regulation of the tight junction protein claudin-1. Additionally, TGF-beta pretreatment of epithelia blocked the decrease in transepithelial electrical resistance and the increase in transepithelial passage of [(3)H]-mannitol caused by EHEC infection. EHEC infection was associated with reduced expression of zonula occludens-1, occludin, and claudin-2 (but not claudin-1 or claudin-4); TGF-beta pretreatment prevented these changes. These studies provide insight into EHEC pathogenesis by illustrating the mechanisms underlying TGF-beta-induced epithelial barrier enhancement and identifying TGF-beta as an agent capable of blocking EHEC-induced increases in epithelial permeability via maintenance of claudin-2, occludin, and zonula occludens-1 levels.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
175 |
9
|
Feng Y, Huang Y, Wang Y, Wang P, Song H, Wang F. Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy. PLoS One 2019; 14:e0218384. [PMID: 31211803 PMCID: PMC6581431 DOI: 10.1371/journal.pone.0218384] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Tight junction barrier is critical to intestinal homeostasis. Applying antibiotics to treat infections is common in clinical practice, which may affect intestinal microbiota. Intestinal microbiota dysbiosis is involved in the occurrence of some gastrointestinal diseases. Therefore, this study was aimed to investigate the influence of antibiotics on intestinal tight junction barrier and the possible underlying mechanisms. Healthy adult female C57BL/6 mice were treated with a broad-spectrum antibiotic cocktail for 14 days. 16S rDNA Illumina sequencing and headspace gas chromatography-mass spectrometry (HS-GC/MS) were respectively used to analyze microbial community and to detect short-chain fatty acids (SCFAs) contents. In vivo intestinal paracellular permeability to fluorescein isothiocyanate-dextran (FITC-dextran) was measured. Protein expression was determined by immunoblotting. Immunofluoresence was applied to observe the distributions of ZO-1, LC3B and ASC. Antibiotics remarkably altered intestinal microbiota composition in healthy mice, accompanying reduced SCFAs' concentrations. In addition, the intestinal tight junction barrier was disrupted by antibiotic treatment, as evidenced by increased intestinal paracellular permeability to FITC-dextran, decreased tight junction protein expressions, and disrupted ZO-1 morphology. Furthermore, NLRP3 inflammasome and autophagy were activated by antibiotic treatment. In conclusion, intestinal epithelial tight junction barrier dysfunction induced by antibiotics is associated with intestinal microbiota dysbiosis, activated NLRP3 inflammasome and autophagy in mice.
Collapse
|
research-article |
6 |
143 |
10
|
Guttman JA, Li Y, Wickham ME, Deng W, Vogl AW, Finlay BB. Attaching and effacing pathogen-induced tight junction disruption in vivo. Cell Microbiol 2006; 8:634-45. [PMID: 16548889 DOI: 10.1111/j.1462-5822.2005.00656.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diarrhoea is a hallmark of infections by the human attaching and effacing (A/E) pathogens, enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). Although the mechanisms underlying diarrhoea induced by these pathogens remain unknown, cell culture results have suggested that these pathogens may target tight junctions. Tight junctions in the colon function as physical intercellular barriers that separate and prevent mixing of the luminal contents with adlumenal regions of the epithelium. Consequently, it is thought that the disruption of intestinal epithelial tight junctions by A/E pathogens could result in a loss of barrier function in the alimentary tract; however, this remains unexamined. Here we demonstrate for the first time that A/E pathogen infection results in the morphological alteration of tight junctions during natural disease. Tight junction alteration, characterized by relocalization of the transmembrane tight junction proteins claudin 1, 3 and 5, is a functional disruption; molecular tracers, which do not normally penetrate uninfected epithelia, pass across pathogen-infected epithelia. Functional junction disruption occurs with a concomitant increase in colon luminal water content. The effects on tissue are dependent upon the bacterial type III effector EspF (E. coli secreted protein F), because bacteria lacking EspF, while able to colonize, are defective for junction disruption and result in decreased proportions of water in the colon compared with wild-type infection. These results suggest that the diarrhoea induced by A/E pathogens occurs as part of functional tight junction disruption.
Collapse
|
|
19 |
143 |
11
|
Cogan TA, Thomas AO, Rees LEN, Taylor AH, Jepson MA, Williams PH, Ketley J, Humphrey TJ. Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 2007; 56:1060-5. [PMID: 17185353 PMCID: PMC1955515 DOI: 10.1136/gut.2006.114926] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 11/27/2006] [Accepted: 12/06/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND Campylobacter jejuni can cause a spectrum of diseases in humans, ranging from enteritis and diarrhoea to severe inflammation, profuse bloody diarrhoea and chronic relapsing infection. Norepinephrine (NE) levels in the intestine increase under conditions of stress and trauma, and are thought to result in spill over of NE into the intestinal lumen. NE is known to stimulate the growth of a range of bacterial species, and to increase the pathogenicity of Escherichia coli. AIM To determine the effects of NE on the pathogenic potential of C jejuni in a model system. METHODS C jejuni was grown in iron-replete and iron-limited media in the presence and absence of 100 microM NE. Several virulence-associated characteristics, including motility and cell invasion, were measured. RESULTS When C jejuni was grown in iron-limited media in the presence of NE, growth rate, motility and invasion of cultured epithelial cells were increased compared with cultures grown in the absence of NE. Bacteria exposed to NE during growth also caused greater subsequent disruption of cultured epithelial cell monolayers, inducing widespread breakdown of tight junctions. CONCLUSION Exposure to NE causes an increase in the virulence-associated properties of Campylobacter. Stress and concomitant infection could therefore be contributory factors to the variable presentation of this disease.
Collapse
|
research-article |
18 |
135 |
12
|
Muza-Moons MM, Schneeberger EE, Hecht GA. Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol 2004; 6:783-93. [PMID: 15236645 DOI: 10.1111/j.1462-5822.2004.00404.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infection of intestinal epithelial cells with enteropathogenic Escherichia coli (EPEC) disrupts tight junction (TJ) architecture and barrier function. The aim of this study was to determine the impact of EPEC on TJ protein interactions and localization. Human intestinal epithelial cells (T84) were infected for 1, 3 or 6 h with EPEC. To probe the TJ protein-protein interactions, co-immunoprecipitations were performed. The associations between ZO-1, occludin and claudin-1 progressively decreased after infection. Corresponding morphological changes were analysed by immunofluorescence confocal microscopy. Tight junction proteins progressively lost their apically restricted localization. Freeze-fracture electron microscopy revealed the appearance of aberrant strands throughout the lateral membrane that contained claudin-1 and occludin as determined by immunogold labelling. These structural alterations were accompanied by a loss of barrier function. Mutation of the gene encoding EspF, important in the disruption of TJs by EPEC, prevented the disruption of TJs. Tight junction structure normalized following eradication of EPEC with gentamicin and overnight recovery. This is the first demonstration that a microbial pathogen can cause aberrant TJ strands in the lateral membrane of host cells. We speculate that the disruption of integral and cytoplasmic TJ protein interactions following EPEC infection allows TJ strands to form or diffuse into the lateral plasma membrane.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
121 |
13
|
Rajan S, Cacalano G, Bryan R, Ratner AJ, Sontich CU, van Heerckeren A, Davis P, Prince A. Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells: analysis of the effects of cystic fibrosis transmembrane conductance regulator dysfunction and bacterial virulence factors. Am J Respir Cell Mol Biol 2000; 23:304-12. [PMID: 10970820 DOI: 10.1165/ajrcmb.23.3.4098] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway epithelial cells can respond to infection by activating several signaling pathways. We examined the induction of apoptosis in response to Pseudomonas aeruginosa PAO1 in normal cells and several cystic fibrosis (CF) and corrected cell lines. Epithelial cells in monolayers with tight junctions, confirmed by apical ZO-1 staining demonstrated by confocal microscopy, were entirely resistant to PAO1-induced apoptosis. In contrast, cell lines such as 9HTEo(-) cells that do not form tight junctions were susceptible, with 50% of the population apoptotic after 6 h of exposure to PAO1. CF transmembrane conductance regulator (CFTR) dysfunction caused by different mechanisms (trafficking mutations, overexpression of the regulatory domain or antisense constructs) did not alter rates of apoptosis, nor were differences apparent in terminal deoxyribonucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling detection of apoptotic airway cells from PAO1 infected cftr -/- or control mice. Bacterial expression of specific adhesins, complete lipopolysaccharide, and a functional type III secretion system were all necessary to evoke apoptosis even in susceptible epithelial cells. Unlike other mucosal surfaces, the airway epithelium is highly resistant to apoptosis, and this response is activated only when the appropriate epithelial conditions are present as well as fully virulent P. aeruginosa capable of coordinately expressing both adhesins and cytotoxins.
Collapse
|
|
25 |
115 |
14
|
Shifflett DE, Clayburgh DR, Koutsouris A, Turner JR, Hecht GA. Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. J Transl Med 2005; 85:1308-24. [PMID: 16127426 DOI: 10.1038/labinvest.3700330] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) infection disrupts tight junctions (TJs) and perturbs intestinal barrier function in vitro. E. coli secreted protein F (EspF) is, in large part, responsible for these physiological and morphological alterations. We recently reported that the C57BL/6J mouse is a valid in vivo model of EPEC infection as EPEC colonizes the intestinal epithelium and effaces microvilli. Our current aim was to examine the effects of EPEC on TJ structure and barrier function of the mouse intestine and to determine the role of EspF in vivo. C57BL/6J mice were gavaged with approximately 2 x 10(8) EPEC organisms or PBS. At 1 or 5 days postinfection, mice were killed and ileal and colonic tissue was mounted in Ussing chambers to determine barrier function (measured as transepithelial resistance) and short circuit current. TJ structure was analyzed by immunofluorescence microscopy. Wild-type (WT) EPEC significantly diminished the barrier function of ileal and colonic mucosa at 1 and 5 days postinfection. Deficits in barrier function correlated with redistribution of occludin in both tissues. Infection with an EPEC strain deficient of EspF (delta espF) had no effect on barrier function at 1 day postinfection. Furthermore, delta espF had no effect on ileal TJ morphology and minor alterations of colonic TJ morphology at 1 day postinfection. In contrast, at 5 days postinfection, WT EPEC and delta espF had similar effects on barrier function and occludin localization. In both cases this was associated with immune activation, as demonstrated by increased mucosal tumor necrosis factor-alpha levels 5 days postinfection. In conclusion, these data demonstrate that WT EPEC infection of 6-8-week-old C57BL/6J mice (1) significantly decreases barrier function in the ileum and colon (2) redistributes occludin in the ileum and colon and (3) is dependent upon EspF to induce TJ barrier defects at early, but not late, times postinfection.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
107 |
15
|
Nassif X, Bourdoulous S, Eugène E, Couraud PO. How do extracellular pathogens cross the blood-brain barrier? Trends Microbiol 2002; 10:227-32. [PMID: 11973156 DOI: 10.1016/s0966-842x(02)02349-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial invasion of the meninges can occur as a consequence of bloodstream invasion by some bacterial pathogens. Bacteria enter the central nervous system following a direct interaction with the luminal side of the cerebral endothelium, which constitutes the blood-brain barrier. To breach the barriers protecting the brain, extracellular pathogens must cross a monolayer of tight junction-expressing endothelial or epithelial cells. The limited number of pathogens capable of crossing these tight barriers and invading the meninges suggests that they display very specific attributes. For Neisseria meningitidis, type IV pili have been identified as being essential for meningeal invasion and it is believed other, as-yet-unidentified factors are also involved.
Collapse
|
Review |
23 |
104 |
16
|
Bednarska O, Walter SA, Casado-Bedmar M, Ström M, Salvo-Romero E, Vicario M, Mayer EA, Keita ÅV. Vasoactive Intestinal Polypeptide and Mast Cells Regulate Increased Passage of Colonic Bacteria in Patients With Irritable Bowel Syndrome. Gastroenterology 2017; 153:948-960.e3. [PMID: 28711627 PMCID: PMC5623149 DOI: 10.1053/j.gastro.2017.06.051] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/13/2017] [Accepted: 06/30/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Irritable bowel syndrome (IBS) is associated with intestinal dysbiosis and symptoms of IBS develop following gastroenteritis. We aimed to study the passage of live bacteria through the colonic epithelium, and determine the role of mast cells (MCs) and vasoactive intestinal polypeptide (VIP) in barrier regulation in IBS and healthy individuals. METHODS Colon biopsies from 32 women with IBS and 15 age-matched healthy women (controls) were mounted in Ussing chambers; we measured numbers of fluorescently labeled Escherichia coli HS and Salmonella typhimurium that passed through from the mucosal side to the serosal side of the tissue. Some biopsies were exposed to agents that block the VIP receptors (VPAC1 and VPAC2) or MCs. Levels of VIP and tryptase were measured in plasma and biopsy lysates. Number of MCs and MCs that express VIP or VIP receptors were quantified by immunofluorescence. Biopsies from an additional 5 patients with IBS and 4 controls were mounted in chambers and Salmonella were added; we studied passage routes through the epithelium by transmission electron microscopy and expression of tight junctions by confocal microscopy. RESULTS In colon biopsies from patients with IBS, larger numbers of E coli HS and S typhimurium passed through the epithelium than in biopsies from controls (P < .0005). In transmission electron microscopy analyses, bacteria were found to cross the epithelium via only the transcellular route. Bacterial passage was reduced in biopsies from patients with IBS and controls after addition of antibodies against VPACs or ketotifen, which inhibits MCs. Plasma samples from patients with IBS had higher levels of VIP than plasma samples from controls. Biopsies from patients with IBS had higher levels of tryptase, larger numbers of MCs, and a higher percentage of MCs that express VPAC1 than biopsies from controls. In biopsies from patients with IBS, addition of Salmonella significantly reduced levels of occludin; subsequent addition of ketotifen significantly reversed this effect. CONCLUSIONS We found that colonic epithelium tissues from patients with IBS have increased translocation of commensal and pathogenic live bacteria compared with controls. The mechanisms of increased translocation include MCs and VIP.
Collapse
|
research-article |
8 |
100 |
17
|
Ohnemus U, Kohrmeyer K, Houdek P, Rohde H, Wladykowski E, Vidal S, Horstkotte MA, Aepfelbacher M, Kirschner N, Behne MJ, Moll I, Brandner JM. Regulation of Epidermal Tight-Junctions (TJ) during Infection with Exfoliative Toxin-Negative Staphylococcus Strains. J Invest Dermatol 2008; 128:906-16. [PMID: 17914452 DOI: 10.1038/sj.jid.5701070] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tight Junction (TJ) proteins have been shown to exert a barrier function within the skin. Here, we study the fate of TJ proteins during the challenge of the skin by bacterial colonization and infection. We investigated the influence of various exfoliative toxin-negative Staphylococcus strains on TJ, adherens junction (AJ), desmosomal proteins, and actin in a human keratinocyte infection culture and in a porcine skin infection model. We found that the pathogen Staphylococcus aureus downregulates TJ and subsequently AJ and desmosomal proteins, including atypical protein kinase C, an essential player in TJ formation, at the cell-cell borders of keratinocytes in a time and concentration dependent manner. Little changes in protein and RNA levels were seen, indicating redistribution of proteins. In cultured keratinocytes, a reduction of transepithelial resistance was observed. Staphylococcus epidermidis shows only minor effects. All strains induced enhanced expression of occludin and ZO-1 at the beginning of colonization/infection. Thus, we demonstrate that TJ are likely to be involved in skin infection of exfoliative toxin-negative S. aureus. As we did not find a change in actin, and as changes of TJ preceded alterations of AJs and desmosomes, we suggest that S. aureus targets TJ.
Collapse
|
|
17 |
89 |
18
|
Roxas JL, Koutsouris A, Bellmeyer A, Tesfay S, Royan S, Falzari K, Harris A, Cheng H, Rhee KJ, Hecht G. Enterohemorrhagic E. coli alters murine intestinal epithelial tight junction protein expression and barrier function in a Shiga toxin independent manner. J Transl Med 2010; 90:1152-68. [PMID: 20479715 PMCID: PMC2912457 DOI: 10.1038/labinvest.2010.91] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin (Stx) is implicated in the development of hemorrhagic colitis and hemolytic-uremic syndrome, but early symptoms of enterohemorrhagic Escherichia coli (EHEC) infection such as nonbloody diarrhea may be Stx independent. In this study, we defined the effects of EHEC, in the absence of Stx, on the intestinal epithelium using a murine model. EHEC colonization of intestines from two groups of antibiotic-free and streptomycin-treated C57Bl/6J mice were characterized and compared. EHEC colonized the cecum and colon more efficiently than the ileum in both groups; however, greater amounts of tissue-associated EHEC were detected in streptomycin-pretreated mice. Imaging of intestinal tissues of mice infected with bioluminescent EHEC further confirmed tight association of the bacteria with the cecum and colon. Greater numbers of EHEC were also cultured from stool samples obtained from streptomycin-pretreated mice, as compared with those that received no antibiotics. Transmission electron microscopy shows that EHEC infection leads to microvillous effacement of mouse colonocytes. Hematoxylin and eosin staining of the colonic tissues of infected mice revealed a slight increase in the number of lamina propria polymorphonuclear leukocytes. Transmucosal electrical resistance, a measure of epithelial barrier function, was reduced in the colonic tissues of infected animals. Increased mucosal permeability to 4- kDa FITC-dextran was also observed in the colonic tissues of infected mice. Immunofluorescence microscopy showed that EHEC infection resulted in redistribution of the tight junction (TJ) proteins occludin and claudin-3 and increased the expression of claudin-2, whereas ZO-1 localization remained unaltered. Quantitative real-time PCR showed that EHEC altered mRNA transcription of OCLN, CLDN2, and CLDN3. Most notably, claudin-2 expression was significantly increased and correlated with increased intestinal permeability. Our data indicate that C57Bl/6J mice serve as an in vivo model to study the physiological effects of EHEC infection on the intestinal epithelium and suggest that altered transcription of TJ proteins has a role in the increase in intestinal permeability.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
87 |
19
|
Zhou X, Qi W, Hong T, Xiong T, Gong D, Xie M, Nie S. Exopolysaccharides from Lactobacillus plantarum NCU116 Regulate Intestinal Barrier Function via STAT3 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9719-9727. [PMID: 30134660 DOI: 10.1021/acs.jafc.8b03340] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lactic acid bacteria (LAB) and their exopolysaccharides (EPS) are recognized to promote intestinal barrier function by mechanisms that remain incompletely understood. Herein, we sought to identify the roles of exopolysaccharides from Lactobacillus plantarum NCU116 (EPS116) in intestinal barrier function. Our data showed that EPS116 attenuated dextran sodium sulfate (DSS) induced colitis and promoted epithelial barrier function and the expression of tight junction (TJ) proteins in vivo and in vitro. Moreover, chromatin immunoprecipitation data showed that EPS116 facilitated STAT3 (signal transducer and activator of transcription 3) binding to the promoter of occludin and ZO-1. Furthermore, knockdown of STAT3 in Caco-2 cell with EPS116 treatment led to decreased expression of occludin and ZO-1 and increased intestinal permeability, suggesting that the regulation of epithelial barrier function by EPS116 should be STAT3 dependent. Thus, our data revealed a novel mechanism that EPS116 inhibited intestinal inflammation via regulating intestinal epithelial barrier function.
Collapse
|
|
7 |
85 |
20
|
Caron TJ, Scott KE, Fox JG, Hagen SJ. Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier. World J Gastroenterol 2015; 21:11411-11427. [PMID: 26523106 PMCID: PMC4616217 DOI: 10.3748/wjg.v21.i40.11411] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/26/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Long-term chronic infection with Helicobacter pylori (H. pylori) is a risk factor for gastric cancer development. In the multi-step process that leads to gastric cancer, tight junction dysfunction is thought to occur and serve as a risk factor by permitting the permeation of luminal contents across an otherwise tight mucosa. Mechanisms that regulate tight junction function and structure in the normal stomach, or dysfunction in the infected stomach, however, are largely unknown. Although conventional tight junction components are expressed in gastric epithelial cells, claudins regulate paracellular permeability and are likely the target of inflammation or H. pylori itself. There are 27 different claudin molecules, each with unique properties that render the mucosa an intact barrier that is permselective in a way that is consistent with cell physiology. Understanding the architecture of tight junctions in the normal stomach and then changes that occur during infection is important but challenging, because most of the reports that catalog claudin expression in gastric cancer pathogenesis are contradictory. Furthermore, the role of H. pylori virulence factors, such as cytotoxin-associated gene A and vacoulating cytotoxin, in regulating tight junction dysfunction during infection is inconsistent in different gastric cell lines and in vivo, likely because non-gastric epithelial cell cultures were initially used to unravel the details of their effects on the stomach. Hampering further study, as well, is the relative lack of cultured cell models that have tight junction claudins that are consistent with native tissues. This summary will review the current state of knowledge about gastric tight junctions, normally and in H. pylori infection, and make predictions about the consequences of claudin reorganization during H. pylori infection.
Collapse
|
Review |
10 |
73 |
21
|
Koo OK, Amalaradjou MAR, Bhunia AK. Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro. PLoS One 2012; 7:e29277. [PMID: 22235279 PMCID: PMC3250429 DOI: 10.1371/journal.pone.0029277] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection. METHODOLOGY/PRINCIPAL FINDINGS The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (Lbp(LAP)) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to Lbp(LAP) for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, Lbp(LAP) pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. Lbp(LAP) also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, Lbp(LAP) cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h. CONCLUSIONS/SIGNIFICANCE Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, Lbp(LAP) blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant probiotics in preventing L. monocytogenes infection in high-risk populations.
Collapse
|
research-article |
13 |
67 |
22
|
Nielsen HL, Nielsen H, Ejlertsen T, Engberg J, Günzel D, Zeitz M, Hering NA, Fromm M, Schulzke JD, Bücker R. Oral and fecal Campylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells. PLoS One 2011; 6:e23858. [PMID: 21887334 PMCID: PMC3161070 DOI: 10.1371/journal.pone.0023858] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/26/2011] [Indexed: 12/22/2022] Open
Abstract
Campylobacter concisus infections of the gastrointestinal tract can be accompanied by diarrhea and inflammation, whereas colonization of the human oral cavity might have a commensal nature. We focus on the pathophysiology of C. concisus and the effects of different clinical oral and fecal C. concisus strains on human HT-29/B6 colon cells. Six oral and eight fecal strains of C. concisus were isolated. Mucus-producing HT-29/B6 epithelial monolayers were infected with the C. concisus strains. Transepithelial electrical resistance (Rt) and tracer fluxes of different molecule size were measured in Ussing chambers. Tight junction (TJ) protein expression was determined by Western blotting, and subcellular TJ distribution was analyzed by confocal laser-scanning microscopy. Apoptosis induction was examined by TUNEL-staining and Western blot of caspase-3 activation. All strains invaded confluent HT-29/B6 cells and impaired epithelial barrier function, characterized by a time- and dose-dependent decrease in Rt either after infection from the apical side but even more from the basolateral compartment. TJ protein expression changes were sparse, only in apoptotic areas of infected monolayers TJ proteins were redistributed. Solely the barrier-forming TJ protein claudin-5 showed a reduced expression level to 66±8% (P<0.05), by expression regulation from the gene. Concomitantly, Lactate dehydrogenase release was elevated to 3.1±0.3% versus 0.7±0.1% in control (P<0.001), suggesting cytotoxic effects. Furthermore, oral and fecal C. concisus strains elevated apoptotic events to 5-fold. C. concisus-infected monolayers revealed an increased permeability for 332 Da fluorescein (1.74±0.13 vs. 0.56±0.17 10−6 cm/s in control, P<0.05) but showed no difference in permeability for 4 kDa FITC-dextran (FD-4). The same was true in camptothecin-exposed monolayers, where camptothecin was used for apoptosis induction. In conclusion, epithelial barrier dysfunction by oral and fecal C. concisus strains could mainly be assigned to apoptotic leaks together with moderate TJ changes, demonstrating a leak-flux mechanism that parallels the clinical manifestation of diarrhea.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
66 |
23
|
MacCallum A, Hardy SP, Everest PH. Campylobacter jejuni inhibits the absorptive transport functions of Caco-2 cells and disrupts cellular tight junctions. MICROBIOLOGY-SGM 2005; 151:2451-2458. [PMID: 16000735 DOI: 10.1099/mic.0.27950-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Caco-2 cells are models of absorptive enterocytes. The net transport of fluid from apical to basolateral surfaces results in 'domes' forming in differentiated monolayers. Here, the effect of Campylobacter jejuni on this process has been examined. C. jejuni caused no changes in short-circuit current upon infection of Caco-2 cell monolayers in Ussing chambers. Thus, no active secretory events could be demonstrated using this model. It was therefore hypothesized that C. jejuni could inhibit the absorptive function of enterocytes and that this may contribute to diarrhoeal disease. C. jejuni infection of fluid-transporting ('doming') Caco-2 cells resulted in a significant reduction in dome number, which correlated with a decrease in tight junction integrity in infected monolayers, when measured as transepithelial electrical resistance. Defined mutants of C. jejuni also reduced dome numbers in infected monolayers. C. jejuni also altered the distribution of the tight junction protein occludin within cell monolayers. The addition to monolayers of extracellular gentamicin prevented these changes, indicating the contribution of extracellular bacteria to this process. Thus, tight junction integrity is required for fluid transport in Caco-2 cell monolayers as leaky tight junctions cannot maintain support of transported fluid at the basolateral surface of infected cell monolayers. Inhibition of absorptive cell function, changes in epithelial resistance and rearrangement of tight junctional proteins such as occludin represent a potential diarrhoeal mechanism of C. jejuni.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
65 |
24
|
Matsuzawa T, Kuwae A, Abe A. Enteropathogenic Escherichia coli type III effectors EspG and EspG2 alter epithelial paracellular permeability. Infect Immun 2005; 73:6283-9. [PMID: 16177299 PMCID: PMC1230889 DOI: 10.1128/iai.73.10.6283-6289.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) delivers a subset of effectors into host cells via a type III secretion system. Here we show that the type III effector EspG and its homologue EspG2 alter epithelial paracellular permeability. When MDCK cells were infected with wild-type (WT) EPEC, RhoA was activated, and this event was dependent on the delivery of either EspG or EspG2 into host cells. In contrast, a loss of transepithelial electrical resistance and ZO-1 disruption were induced by infection with an espG/espG2 double-knockout mutant, as was the case with the WT EPEC, indicating that EspG/EspG2 is not involved in the disruption of tight junctions during EPEC infection. Although EspG- and EspG2-expressing MDCK cells exhibited normal overall morphology and maintained fully assembled tight junctions, the paracellular permeability to 4-kDa dextran, but not the paracellular permeability to 500-kDa dextran, was greatly increased. This report reveals for the first time that a pathogen can regulate the size-selective paracellular permeability of epithelial cells in order to elicit a disease process.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
63 |
25
|
Guttman JA, Samji FN, Li Y, Vogl AW, Finlay BB. Evidence that tight junctions are disrupted due to intimate bacterial contact and not inflammation during attaching and effacing pathogen infection in vivo. Infect Immun 2006; 74:6075-84. [PMID: 16954399 PMCID: PMC1695516 DOI: 10.1128/iai.00721-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is widely accepted that tight junctions are altered during infections by attaching and effacing (A/E) pathogens. These disruptions have been demonstrated both in vitro and more recently in vivo. For in vivo experiments, the murine model of A/E infection with Citrobacter rodentium is the animal model of choice. In addition to effects on tight junctions, these bacteria also colonize the colon at high levels, efface colonocyte microvilli, and cause hyperplasia and inflammation. Although we have recently demonstrated that tight junctions are disrupted by C. rodentium, the issue of direct effects of bacteria on epithelial cell junctions versus the indirect effects of inflammation still remains to be clarified. Here, we demonstrate that during the C. rodentium infections, inflammation plays no discernible role in the alteration of tight junctions. The distribution of the tight junction proteins, claudin-1, -3, and -5, are unaffected in inflamed colon, and junctions appear morphologically unaltered when viewed by electron microscopy. Additionally, tracer molecules are not capable of penetrating the inflamed colonic epithelium of infected mice that have cleared the bacteria. Finally, infected colonocytes from mice exposed to C. rodentium for 14 days, which have high levels of bacterial attachment to colonocytes as well as inflammation, have characteristic, altered claudin localization whereas cells adjacent to infected colonocytes retain their normal claudin distribution. We conclude that inflammation plays no discernible role in tight junction alteration during A/E pathogenesis and that tight junction disruption in vivo appears dependent only on the direct intimate attachment of the pathogenic bacteria to the cells.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
63 |