1
|
Clements JA, Willemsen NM, Myers SA, Dong Y. The Tissue Kallikrein Family of Serine Proteases: Functional Roles in Human Disease and Potential as Clinical Biomarkers. Crit Rev Clin Lab Sci 2008; 41:265-312. [PMID: 15307634 DOI: 10.1080/10408360490471931] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate specific antigen (PSA) or human kallikrein 3 (hK3) has long been an effective biomarker for prostate cancer. Now, other members of the tissue kallikrein (KLK) gene family are fast becoming of clinical interest due to their potential as prognostic biomarkers. particularly for hormone dependent cancers. The tissue kallikreins are serine proteases that are encoded by highly conserved multi-gene family clusters in rodents and humans. The rat and mouse loci contain 10 and 25 functional genes, respectively, while the human locus at 19q 13.4 contains 15 genes. The structural organization and size of these genes are similar across species; all genes have 5 coding exons that encode a prepro-enzyme. Although the physiological activators of these zymogens have not been described, in vitro biochemical studies show that some kallikreins can auto-activate and others can activate each other, suggesting that the kallikreins may participate in an enzymatic cascade similar to that of the coagulation cascade. These genes are expressed, to varying degrees, in a wide range of tissues suggesting a functional involvement in a diverse range of physiological and pathophysiological processes. These include roles in normal skin desquamation and psoriatic lesions, tooth development, neural plasticity, and Alzheimer's disease (AD). Of particular interest is the expression of many kallikreins in prostate, ovarian, and breast cancers where they are emerging as useful prognostic indicators of disease progression.
Collapse
|
|
17 |
140 |
2
|
Debela M, Magdolen V, Schechter N, Valachova M, Lottspeich F, Craik CS, Choe Y, Bode W, Goettig P. Specificity Profiling of Seven Human Tissue Kallikreins Reveals Individual Subsite Preferences. J Biol Chem 2006; 281:25678-88. [PMID: 16740631 DOI: 10.1074/jbc.m602372200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human tissue kallikreins (hKs) form a family of 15 closely related (chymo)trypsin-like serine proteinases. These tissue kallikreins are expressed in a wide range of tissues including the central nervous system, the salivary gland, and endocrine-regulated tissues, such as prostate, breast, or testis, and may have diverse physiological functions. For several tissue kallikreins, a clear correlation has been established between expression and different types of cancer. For example, the prostate-specific antigen (PSA or hK3) serves as tumor marker and is used to monitor therapy response. Using a novel strategy, we have cloned, expressed in Escherichia coli or in insect cells, refolded, activated, and purified the seven human tissue kallikreins hK3/PSA, hK4, hK5, hK6, hK7, hK10, and hK11. Moreover, we have determined their extended substrate specificity for the nonprime side using a positional scanning combinatorial library of tetrapeptide substrates. hK3/PSA and hK7 exhibited a chymotrypsin-like specificity preferring large hydrophobic or polar residues at the P1 position. In contrast, hK4, hK5, and less stringent hK6 displayed a trypsin-like specificity with strong preference for P1-Arg, whereas hK10 and hK11 showed an ambivalent specificity, accepting both basic and large aliphatic P1 residues. The extended substrate specificity profiles are in good agreement with known substrate cleavage sites but also in accord with experimentally solved (hK4, hK6, and hK7) or modeled structures. The specificity profiles may lead to a better understanding of human tissue kallikrein functions and assist in identifying their physiological protein substrates as well as in designing more selective inhibitors.
Collapse
|
|
19 |
110 |
3
|
Forteza R, Lieb T, Aoki T, Savani RC, Conner GE, Salathe M. Hyaluronan serves a novel role in airway mucosal host defense. FASEB J 2001; 15:2179-86. [PMID: 11641244 DOI: 10.1096/fj.01-0036com] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enzymes secreted onto epithelial surfaces play a vital role in innate mucosal defense, but are believed to be steadily removed from the surface by mechanical actions. Thus, the amount and availability of enzymes on the surface are thought to be maintained by secretion. In contrast to this paradigm, we show here that enzymes are retained at the apical surface of the airway epithelium by binding to surface-associated hyaluronan, providing an apical enzyme pool 'ready for use' and protected from ciliary clearance. We have studied lactoperoxidase, which prevents bacterial colonization of the airway, and kallikrein, which mediates allergic bronchoconstriction that limits the inhalation of noxious substances. Binding to hyaluronan inhibits kallikrein, which is needed only in certain situations, whereas lactoperoxidase, useful at all times, does not change its activity. Hyaluronan itself interacts withthe receptor for hyaluronic acid-mediated motility (RHAMM or CD168) that is expressed at the apex of ciliated airway epithelial cells. Functionally, hyaluronan binding to RHAMM stimulates ciliary beating. Thus, hyaluronan plays a previously unrecognized pivotal role in mucosal host defense by stimulating ciliary clearance of foreign material while simultaneously retaining enzymes important for homeostasis at the apical surface so that they cannot be removed by ciliary action.
Collapse
|
|
24 |
97 |
4
|
Réhault S, Monget P, Mazerbourg S, Tremblay R, Gutman N, Gauthier F, Moreau T. Insulin-like growth factor binding proteins (IGFBPs) as potential physiological substrates for human kallikreins hK2 and hK3. ACTA ACUST UNITED AC 2001; 268:2960-8. [PMID: 11358513 DOI: 10.1046/j.1432-1327.2001.02185.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insulin-like growth factors (IGFs) are important growth regulators of both normal and malignant prostate cells. Their action is regulated by six insulin-like growth factor binding proteins (IGFBPs). The proteolytic cleavage of IGFBPs by various proteases decreases dramatically their affinity for their ligands and therefore enhances the bioavailability of IGFs. To elucidate the putative biological role of prostatic kallikreins hK2 and hK3 (prostate-specific antigen) in tumour progression, we analyzed the degradation of IGFBP-2, -3, -4 and -5 by these two tissue kallikreins. We found that hK3, already characterized as an IGFBP-3 degrading protease, cleaved IGFBP-4 but not IGFBP-2 and -5, whereas hK2 cleaved all of the IGFBPs much more effectively, and at concentrations far lower than those reported for other IGFBP-degrading proteases. The proteolytic patterns after cleavage of IGFBPs by hK2 and hK3 were similar and were not modified in the presence of IGF-I. Heparin, but not other glycosaminoglycans, enhanced dramatically the ability of hK3 but not hK2 to degrade IGFBP-3 and IGFBP-4. More importantly, the IGFBP fragments generated by hK2 and hK3 had no IGF-binding capacity, as assessed by Western ligand blotting. Our results suggest that the prostatic kallikreins hK2 and hK3 may influence specifically the tumoral growth of prostate cells through the degradation of IGFBPs, to increase IGF bioavailability.
Collapse
|
Research Support, Non-U.S. Gov't |
24 |
74 |
5
|
Yousef GM, Diamandis EP. An overview of the kallikrein gene families in humans and other species: emerging candidate tumour markers. Clin Biochem 2003; 36:443-52. [PMID: 12951170 DOI: 10.1016/s0009-9120(03)00055-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Kallikreins are serine proteases with diverse physiologic functions. They are represented by multigene families in many animal species, especially in rat and mouse. Recently, the human kallikrein gene family has been fully characterized and includes 15 members, tandemly localized on chromosome 19q13.4. A new definition has now been proposed for kallikreins, which is not based on function but, rather, on close proximity and structural similarities. In this review, we summarize available information about kallikreins in many animal species with special emphasis on human kallikreins. We discuss the common structural features of kallikreins at the DNA, mRNA and protein levels and overview their evolutionary history. Kallikreins are expressed in a wide range of tissues including the salivary gland, endocrine or endocrine-related tissues such as testis, prostate, breast and endometrium and in the central nervous system. Most, if not all, genes are under steroid hormone regulation. Accumulating evidence indicates that kallikreins are involved in many pathologic conditions. Of special interest is the potential role of kallikreins in the central nervous system. In addition, many kallikreins seem to be candidate tumor markers for many malignancies, especially those of endocrine-related organs.
Collapse
|
Review |
22 |
67 |
6
|
Laxmikanthan G, Blaber SI, Bernett MJ, Scarisbrick IA, Juliano MA, Blaber M. 1.70 A X-ray structure of human apo kallikrein 1: structural changes upon peptide inhibitor/substrate binding. Proteins 2006; 58:802-14. [PMID: 15651049 DOI: 10.1002/prot.20368] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human kallikreins are serine proteases that comprise a recently identified large and closely related 15-member family. The kallikreins include both regulatory- and degradative-type proteases, impacting a variety of physiological processes including regulation of blood pressure, neuronal health, and the inflammatory response. While the function of the majority of the kallikreins remains to be elucidated, two members are useful biomarkers for prostate cancer and several others are potentially useful biomarkers for breast cancer, Alzheimer's, and Parkinson's disease. Human tissue kallikrein (human K1) is the best functionally characterized member of this family, and is known to play an important role in blood pressure regulation. As part of this function, human K1 exhibits unique dual-substrate specificity in hydrolyzing low molecular weight kininogen between both Arg-Ser and Met-Lys sequences. We report the X-ray crystal structure of mature, active recombinant human apo K1 at 1.70 A resolution. The active site exhibits structural features intermediate between that of apo and pro forms of known kallikrein structures. The S2 to S2' pockets demonstrate a variety of conformational changes in comparison to the porcine homolog of K1 in complex with peptide inhibitors, including the displacement of an extensive solvent network. These results indicate that the binding of a peptide substrate contributes to a structural rearrangement of the active-site Ser 195 resulting in a catalytically competent juxtaposition with the active-site His 57. The solvent networks within the S1 and S1' pockets suggest how the Arg-Ser and Met-Lys dual substrate specificity of human K1 is accommodated.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
49 |
7
|
Yousef GM, Obiezu CV, Luo LY, Magklara A, Borgoño CA, Kishi T, Memari N, Michael LP, Sidiropoulos M, Kurlender L, Economopolou K, Kapadia C, Komatsu N, Petraki C, Elliott M, Scorilas A, Katsaros D, Levesque MA, Diamandis EP. Human Tissue Kallikreins: From Gene Structure to Function and Clinical Applications. Adv Clin Chem 2005; 39:11-79. [PMID: 16013667 DOI: 10.1016/s0065-2423(04)39002-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
|
20 |
46 |
8
|
Pavlopoulou A, Pampalakis G, Michalopoulos I, Sotiropoulou G. Evolutionary history of tissue kallikreins. PLoS One 2010; 5:e13781. [PMID: 21072173 PMCID: PMC2967472 DOI: 10.1371/journal.pone.0013781] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 10/08/2010] [Indexed: 12/12/2022] Open
Abstract
The gene family of human kallikrein-related peptidases (KLKs) encodes proteins with diverse and pleiotropic functions in normal physiology as well as in disease states. Currently, the most widely known KLK is KLK3 or prostate-specific antigen (PSA) that has applications in clinical diagnosis and monitoring of prostate cancer. The KLK gene family encompasses the largest contiguous cluster of serine proteases in humans which is not interrupted by non-KLK genes. This exceptional and unique characteristic of KLKs makes them ideal for evolutionary studies aiming to infer the direction and timing of gene duplication events. Previous studies on the evolution of KLKs were restricted to mammals and the emergence of KLKs was suggested about 150 million years ago (mya). In order to elucidate the evolutionary history of KLKs, we performed comprehensive phylogenetic analyses of KLK homologous proteins in multiple genomes including those that have been completed recently. Interestingly, we were able to identify novel reptilian, avian and amphibian KLK members which allowed us to trace the emergence of KLKs 330 mya. We suggest that a series of duplication and mutation events gave rise to the KLK gene family. The prominent feature of the KLK family is that it consists of tandemly and uninterruptedly arrayed genes in all species under investigation. The chromosomal co-localization in a single cluster distinguishes KLKs from trypsin and other trypsin-like proteases which are spread in different genetic loci. All the defining features of the KLKs were further found to be conserved in the novel KLK protein sequences. The study of this unique family will further assist in selecting new model organisms for functional studies of proteolytic pathways involving KLKs.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
43 |
9
|
Koumandou VL, Scorilas A. Evolution of the plasma and tissue kallikreins, and their alternative splicing isoforms. PLoS One 2013; 8:e68074. [PMID: 23874499 PMCID: PMC3707919 DOI: 10.1371/journal.pone.0068074] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/25/2013] [Indexed: 12/14/2022] Open
Abstract
Kallikreins are secreted serine proteases with important roles in human physiology. Human plasma kallikrein, encoded by the KLKB1 gene on locus 4q34-35, functions in the blood coagulation pathway, and in regulating blood pressure. The human tissue kallikrein and kallikrein-related peptidases (KLKs) have diverse expression patterns and physiological roles, including cancer-related processes such as cell growth regulation, angiogenesis, invasion, and metastasis. Prostate-specific antigen (PSA), the product of the KLK3 gene, is the most widely used biomarker in clinical practice today. A total of 15 KLKs are encoded by the largest contiguous cluster of protease genes in the human genome (19q13.3-13.4), which makes them ideal for evolutionary analysis of gene duplication events. Previous studies on the evolution of KLKs have traced mammalian homologs as well as a probable early origin of the family in aves, amphibia and reptilia. The aim of this study was to address the evolutionary and functional relationships between tissue KLKs and plasma kallikrein, and to examine the evolution of alternative splicing isoforms. Sequences of plasma and tissue kallikreins and their alternative transcripts were collected from the NCBI and Ensembl databases, and comprehensive phylogenetic analysis was performed by Bayesian as well as maximum likelihood methods. Plasma and tissue kallikreins exhibit high sequence similarity in the trypsin domain (>50%). Phylogenetic analysis indicates an early divergence of KLKB1, which groups closely with plasminogen, chymotrypsin, and complement factor D (CFD), in a monophyletic group distinct from trypsin and the tissue KLKs. Reconstruction of the earliest events leading to the diversification of the tissue KLKs is not well resolved, indicating rapid expansion in mammals. Alternative transcripts of each KLK gene show species-specific divergence, while examination of sequence conservation indicates that many annotated human KLK isoforms are missing the catalytic triad that is crucial for protease activity.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
36 |
10
|
Chen VC, Chao L, Chao J. Roles of the P1, P2, and P3 residues in determining inhibitory specificity of kallistatin toward human tissue kallikrein. J Biol Chem 2000; 275:38457-66. [PMID: 10993887 DOI: 10.1074/jbc.m005605200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kallistatin is a serpin with a unique P1 Phe, which confers an excellent inhibitory specificity toward tissue kallikrein. In this study, we investigated the P3-P2-P1 residues (residues 386-388) of human kallistatin in determining inhibitory specificity toward human tissue kallikrein by site-directed mutagenesis and molecular modeling. Human kallistatin mutants with 19 different amino acid substitutions at each P1, P2, or P3 residue were created and purified to compare their kallikrein binding activity. Complex formation assay showed that P1 Arg, P1 Phe (wild type), P1 Lys, P1 Tyr, P1 Met, and P1 Leu display significant binding activity with tissue kallikrein among the P1 variants. Kinetic analysis showed the inhibitory activities of the P1 mutants toward tissue kallikrein in the order of P1 Arg > P1 Phe > P1 Lys >/= P1 Tyr > P1 Leu >/= P1 Met. P1 Phe displays a better selectivity for human tissue kallikrein than P1 Arg, since P1 Arg also inhibits several other serine proteinases. Heparin distinguishes the inhibitory specificity of kallistatin toward kallikrein versus chymotrypsin. For the P2 and P3 variants, the mutants with hydrophobic and bulky amino acids at P2 and basic amino acids at P3 display better binding activity with tissue kallikrein. The inhibitory activities of these mutants toward tissue kallikrein are in the order of P2 Phe (wild type) > P2 Leu > P2 Trp > P2 Met and P3 Arg > P3 Lys (wild type). Molecular modeling of the reactive center loop of kallistatin bound to the reactive crevice of tissue kallikrein indicated that the P2 residue required a long and bulky hydrophobic side chain to reach and fill the hydrophobic S2 cleft generated by Tyr(99) and Trp(219) of tissue kallikrein. Basic amino acids at P3 could stabilize complex formation by forming electrostatic interaction with Asp(98J) and hydrogen bond with Gln(174) of tissue kallikrein. Our results indicate that tissue kallikrein is a specific target proteinase for kallistatin.
Collapse
|
Comparative Study |
25 |
36 |
11
|
Yayama K, Kunimatsu N, Teranishi Y, Takano M, Okamoto H. Tissue kallikrein is synthesized and secreted by human vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1593:231-8. [PMID: 12581867 DOI: 10.1016/s0167-4889(02)00393-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The generation of kinins on the surface of vascular endothelium has been postulated in two pathways involving plasma kallikrein and tissue kallikrein; the former pathway has been well documented, but the latter is controversial. To clarify the presence of a kinin-generating system on endothelium, we examined whether human umbilical vein endothelial cells (HUVEC) synthesize and release tissue kallikrein in vitro. Kallikrein-like activity hydrolyzing a peptide Pro-Phe-Arg-4-methyl-coumaryl-7-amide was detected in the culture medium of HUVEC and was inhibited by aprotinin but not by soybean trypsin inhibitor. Western blotting of HUVEC medium using anti-human tissue kallikrein antibodies demonstrated the release of tissue kallikrein from HUVEC, and the reverse transcription-polymerase chain reaction (RT-PCR) followed by Southern blotting revealed the expression of tissue kallikrein mRNA in HUVEC. HUVEC metabolically labeled with [35S]methionine released radioactive proteins corresponding to tissue kallikrein. RT-PCR also showed the expression of low-molecular-weight kininogen (L-kininogen) mRNA in HUVEC. The cGMP levels in HUVEC were significantly elevated by the incubation with angiotensin converting enzyme inhibitor, lisinopril, and the elevation was completely inhibited by aprotinin or bradykinin B2-receptor antagonist, FR172357. These results suggest that the endothelial cells continuously release an active form of tissue kallikrein which enables generation of kinins on the vascular endothelium.
Collapse
|
|
22 |
36 |
12
|
Thorek DLJ, Evans MJ, Carlsson SV, Ulmert D, Lilja H. Prostate-specific kallikrein-related peptidases and their relation to prostate cancer biology and detection. Established relevance and emerging roles. Thromb Haemost 2013; 110:484-92. [PMID: 23903407 PMCID: PMC4029064 DOI: 10.1160/th13-04-0275] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/17/2013] [Indexed: 01/05/2023]
Abstract
Kallikreins are a family of serine proteases with a range of tissue-specific and essential proteolytic functions. Among the best studied are the prostate tissue-specific KLK2 and KLK3 genes and their secreted protease products, human kallikrein 2, hk2, and prostate-specific antigen (PSA). Members of the so-called classic kallikreins, these highly active trypsin-like serine proteases play established roles in human reproduction. Both hK2 and PSA expression is regulated by the androgen receptor which has a fundamental role in prostate tissue development and progression of disease. This feature, combined with the ability to sensitively detect different forms of these proteins in blood and biopsies, result in a crucially important biomarker for the presence and recurrence of cancer. Emerging evidence has begun to suggest a role for these kallikreins in critical vascular events. This review discusses the established and developing biological roles of hK2 and PSA, as well as the historical and advanced use of their detection to accurately and non-invasively detect and guide treatment of prostatic disease.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
35 |
13
|
Pakkala M, Hekim C, Soininen P, Leinonen J, Koistinen H, Weisell J, Stenman UH, Vepsäläinen J, Närvänen A. Activity and stability of human kallikrein-2-specific linear and cyclic peptide inhibitors. J Pept Sci 2007; 13:348-53. [PMID: 17436344 DOI: 10.1002/psc.849] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human glandular kallikrein (KLK2) is a highly prostate-specific serine protease, which is mainly excreted into the seminal fluid, but part of which is also secreted into circulation from prostatic tumors. Since the expression level of KLK2 is elevated in aggressive tumors and it has been suggested to mediate the metastasis of prostate cancer, inhibition of the proteolytic activity of KLK2 is of potential therapeutic value. We have previously identified several KLK2-specific linear peptides by phage display technology. Two of its synthetic analogs, A R R P A P A P G (KLK2a) and G A A R F K V W W A A G (KLK2b), show specific inhibition of KLK2 but their sensitivity to proteolysis in vivo may restrict their potential use as therapeutic agents. In order to improve the stability of the linear peptides for in vivo use, we have prepared cyclic analogs and compared their biological activity and their structural stability. A series of cyclic variants with cysteine bridges were synthesized. Cyclization inactivated one peptide (KLK2a) and its derivatives, while the other peptide (KLK2b) and its derivatives remained active. Furthermore, backbone cyclization of KLK2b improved significantly the resistance against proteolysis by trypsin and human plasma. Nuclear magnetic resonance studies showed that cyclization of the KLK2b peptides does not make the structures more rigid. In conclusion, we have shown that backbone cyclization of KLK2 inhibitory peptides can be used to increase stability without losing biological activity. This should render the peptides more useful for in vivo applications, such as tumor imaging and prostate cancer targeting.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
34 |
14
|
Hekim C, Leinonen J, Närvänen A, Koistinen H, Zhu L, Koivunen E, Väisänen V, Stenman UH. Novel peptide inhibitors of human kallikrein 2. J Biol Chem 2006; 281:12555-60. [PMID: 16527822 DOI: 10.1074/jbc.m600014200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human kallikrein 2 (hK2) is a serine protease produced by the secretory epithelial cells in the prostate. Because hK2 activates several factors participating in proteolytic cascades that may mediate metastasis of prostate cancer, modulation of the activity of hK2 is a potential way of preventing tumor growth and metastasis. Furthermore, specific ligands for hK2 are potentially useful for targeting and imaging of prostate cancer and for assay development. We have used enzymatically active recombinant hK2 captured by a monoclonal antibody exposing the active site of the enzyme to screen phage display peptide libraries. Using libraries expressing 10 or 11 amino acids long linear peptides, we identified six different peptides binding to hK2. Three of these were shown to be specific and efficient inhibitors of the enzymatic activity of hK2 toward a peptide substrate. Furthermore, the peptides inhibited the activation of the proform of prostate-specific antigen by hK2. Amino acid substitution analyses revealed that motifs of six amino acids were required for the inhibitory activity. These peptides are potentially useful for treatment and targeting of prostate cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
33 |
15
|
Finnskog D, Jaras K, Ressine A, Malm J, Marko-Varga G, Lilja H, Laurell T. High-speed biomarker identification utilizing porous silicon nanovial arrays and MALDI-TOF mass spectrometry. Electrophoresis 2006; 27:1093-103. [PMID: 16523454 DOI: 10.1002/elps.200500751] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Speed and accuracy are crucial prerequisites in the application of proteomic methods to clinical medicine. We describe a microfluidic-based nanovial array for rapid proteolytic processing linked to MALDI-TOF MS. This microscale format consumes only minute amounts of sample, and it is compatible with rapid bioanalytical protocols and high-sensitivity readouts. Arrays of vials (300 microm in diameter and 25 microm deep), isotropically etched in silicon wafers were electrochemically porosified. Automated picoliter microdispensing was employed for precise fluid handling in the microarray format. Vials were prefilled with trypsin solution, which was allowed to dry. Porosified and nonporosified nanovials were compared for trypsin digestion and subsequent MS identification of three model proteins: lysozyme, alcohol dehydrogenase, and serum albumin at levels of 100 and 20 fmol. In an effort to assess the rapid digestion platform in a context of putative clinical applications, two prostate cancer biomarkers, prostate-specific antigen (PSA) and human glandular kallikrein 2 (hK2), were digested at levels of 100 fmol (PSA), 20 fmol (PSA) and 8 fmol (hK2). All biomarker digestions were completed in less than 30 s, with successful MS identification in the porous nanovial setting.
Collapse
|
|
19 |
32 |
16
|
Desmazes C, Galineau L, Gauthier F, Brömme D, Lalmanach G. Kininogen-derived peptides for investigating the putative vasoactive properties of human cathepsins K and L. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:171-8. [PMID: 12492488 DOI: 10.1046/j.1432-1033.2003.03382.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Macrophages at an inflammatory site release massive amounts of proteolytic enzymes, including lysosomal cysteine proteases, which colocalize with their circulating, tight-binding inhibitors (cystatins, kininogens), so modifying the protease/antiprotease equilibrium in favor of enhanced proteolysis. We have explored the ability of human cathepsins B, K and L to participate in the production of kinins, using kininogens and synthetic peptides that mimic the insertion sites of bradykinin on human kininogens. Although both cathepsins processed high-molecular weight kininogen under stoichiometric conditions, only cathepsin L generated significant amounts of immunoreactive kinins. Cathepsin L exhibited higher specificity constants (kcat/Km) than tissue kallikrein (hK1), and similar Michaelis constants towards kininogen-derived synthetic substrates. A 20-mer peptide, whose sequence encompassed kininogen residues Ile376 to Ile393, released bradykinin (BK; 80%) and Lys-bradykinin (20%) when incubated with cathepsin L. By contrast, cathepsin K did not release any kinin, but a truncated kinin metabolite BK(5-9) [FSPFR(385-389)]. Accordingly cathepsin K rapidly produced BK(5-9) from bradykinin and Lys-bradykinin, and BK(5-8) from des-Arg9-bradykinin, by cleaving the Gly384-Phe385 bond. Data suggest that extracellular cysteine proteases may participate in the regulation of kinin levels at inflammatory sites, and clearly support that cathepsin K may act as a potent kininase.
Collapse
|
|
22 |
24 |
17
|
Kita M, Okumura Y, Ohdachi SD, Oba Y, Yoshikuni M, Nakamura Y, Kido H, Uemura D. Purification and characterisation of blarinasin, a new tissue kallikrein-like protease from the short-tailed shrew Blarina brevicauda: comparative studies with blarina toxin. Biol Chem 2005; 386:177-82. [PMID: 15843162 DOI: 10.1515/bc.2005.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A new tissue kallikrein-like protease, blarinasin, has been purified from the salivary glands of the short-tailed shrew Blarina brevicauda. Blarinasin is a 32-kDa N-glycosylated protease with isoelectric values ranging between 5.3 and 5.7, and an optimum pH of 8.5 for enzyme activity. The cloned blarinasin cDNA coded for a pre-pro-sequence and a mature peptide of 252 amino acids with a catalytic triad typical for serine proteases and 43.7-54.0% identity to other mammalian tissue kallikreins. Blarinasin preferentially hydrolysed Pro-Phe-Arg-4-methylcoumaryl-7-amide (MCA) and N-tert-butyloxycarbonyl-Val-Leu-Lys-MCA, and preferentially converted human high-molecular-weight kininogen (HK) to bradykinin. The activity of blarinasin was prominently inhibited by aprotinin (K(i) =3.4 nM). A similar kallikrein-like protease, the lethal venom blarina toxin, has previously been purified from the salivary glands of the shrew Blarina and shows 67.9% identity to blarinasin. However, blarinasin was not toxic in mice. Blarinasin is a very abundant kallikrein-like protease and represents 70-75% of kallikrein-like enzymes in the salivary gland of B. brevicauda.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
24 |
18
|
Saedi MS, Zhu Z, Marker K, Liu RS, Carpenter PM, Rittenhouse H, Mikolajczyk SD. Human kallikrein 2 (hK2), but not prostate-specific antigen (PSA), rapidly complexes with protease inhibitor 6 (PI-6) released from prostate carcinoma cells. Int J Cancer 2001; 94:558-63. [PMID: 11745444 DOI: 10.1002/ijc.1501] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human kallikrein 2 (hK2) is a secreted, trypsin-like protease that shares 80% amino acid sequence identity with prostate-specific antigen (PSA). hK2 has been shown to be a serum marker for prostate cancer and may also play a role in cancer progression and metastasis. We have previously identified a novel complex between human kallikrein 2 (hK2) and protease inhibitor 6 (PI-6) in prostate cancer tissue. PI-6 is an intracellular serine protease inhibitor with both antitrypsin and antichymotrypsin activity. In the current study we have shown that PI-6 forms a rapid in vitro complex with hK2 but does not complex with PSA. Recombinant mammalian cells expressing both hK2 and PI-6 showed hK2-PI-6 complex in the spent media only after cell death and lysis. Similarly, LNCaP cells expressing endogenous hK2 and PI-6 showed extracellular hK2-PI-6 complex formation concurrently with cell death. Immunostaining of prostate cancer tissues with PI-6 monoclonal antibodies showed a marked preferential staining pattern in cancerous epithelial cells compared with noncancerous tissue. These results indicate that the hK2-PI-6 complex may be a naturally occurring marker of tissue damage and necrosis associated with neoplasia. Both hK2 and PI-6 were shed into the lumen of prostate cancer glands as granular material that appeared to be cellular necrotic debris. The differential staining pattern of PI6 in tissues suggests a complex regulation of PI-6 expression that may play a role in other aspects of neoplastic progression.
Collapse
|
|
24 |
14 |
19
|
Zani M, Brillard-Bourdet M, Lazure C, Juliano L, Courty Y, Gauthier F, Moreau T. Purification and characterization of active recombinant rat kallikrein rK9. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:387-96. [PMID: 11410295 DOI: 10.1016/s0167-4838(01)00208-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rat tissue kallikrein rK9 is most abundant in the submandibular gland and the prostate. It has been successfully expressed in the Pichia pastoris yeast expression system. A full-length cDNA coding for the mature rK9 was fused in frame with yeast alpha-factor cDNA. The fusion protein was secreted into the medium with high yield without being processed by the yeast KEX2 signal peptidase. Mature rK9 was efficiently released from the fusion protein by trypsin and was purified to homogeneity by one-step affinity chromatography using soya bean trypsin inhibitor (SBTI) as affinity ligand. The identity of the recombinant enzyme was checked by N-terminal amino acid sequencing, Western blot analysis and kinetic studies. The dual trypsin- and chymotrypsin-like enzymatic specificity of rK9 was assessed by determining specificity constants (k(cat)/K(m)) for the hydrolysis of fluorogenic substrates, the peptide sequences of which were derived from proparathyroid hormone (pro-PTH) and from semenogelin-I. Our results confirmed the presence of an extended binding site in the rK9 active site. We also identified a far more sensitive substrate of this enzyme than those previously described, Abz-VKKRSARQ-EDDnp, which was hydrolysed with a catalytic efficiency k(cat)/K(m) of 420000 M(-1)s(-1). Finally, we showed that four of the five major proteins contained in secretions of rat seminal vesicles were rapidly degraded by recombinant rK9.
Collapse
|
|
24 |
11 |
20
|
Sousa MO, Miranda TL, Costa EB, Bittar ER, Santoro MM, Figueiredo AF. Linear competitive inhibition of human tissue kallikrein by 4-aminobenzamidine and benzamidine and linear mixed inhibition by 4-nitroaniline and aniline. Braz J Med Biol Res 2001; 34:35-44. [PMID: 11151026 DOI: 10.1590/s0100-879x2001000100004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hydrolysis of D-valyl-L-leucyl-L-arginine p-nitroanilide (7.5-90.0 microM) by human tissue kallikrein (hK1) (4.58-5.27 nM) at pH 9.0 and 37 degrees C was studied in the absence and in the presence of increasing concentrations of 4-aminobenzamidine (96-576 microM), benzamidine (1.27-7.62 mM), 4-nitroaniline (16.5-66 microM) and aniline (20-50 mM). The kinetic parameters determined in the absence of inhibitors were: Km = 12.0 +/- 0.8 microM and k cat = 48.4 +/- 1.0 min(-1). The data indicate that the inhibition of hK1 by 4-aminobenzamidine and benzamidine is linear competitive, while the inhibition by 4-nitroaniline and aniline is linear mixed, with the inhibitor being able to bind both to the free enzyme with a dissociation constant Ki yielding an EI complex, and to the ES complex with a dissociation constant Ki', yielding an ESI complex. The calculated Ki values for 4-aminobenzamidine, benzamidine, 4-nitroaniline and aniline were 146 +/- 10, 1,098 +/- 91, 38.6 +/- 5.2 and 37,340 +/- 5,400 microM, respectively. The calculated Ki' values for 4-nitroaniline and aniline were 289.3 +/- 92.8 and 310,500 +/- 38,600 microM, respectively. The fact that Ki'>Ki indicates that 4-nitroaniline and aniline bind to a second binding site in the enzyme with lower affinity than they bind to the active site. The data about the inhibition of hK1 by 4-aminobenzamidine and benzamidine help to explain previous observations that esters, anilides or chloromethyl ketone derivatives of Nalpha-substituted arginine are more sensitive substrates or inhibitors of hK1 than the corresponding lysine compounds.
Collapse
|
|
24 |
8 |
21
|
Gao B, Sun HC, Fang HX, Qian K, Zhao MS, Qiu HL, Song CY, Wang ZY. Expression and preliminary characterization of recombinant human tissue kallikrein in egg white of laying hens. Poult Sci 2006; 85:1239-44. [PMID: 16830865 DOI: 10.1093/ps/85.7.1239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human tissue kallikrein (hK1) plays an important role in regulation of blood pressure, electrolyte and glucose transport, and renal function. To evaluate the feasibility of expression of recombinant human tissue kallikrein (rhK1) in the egg whites of laying hens, human tissue kallikrein gene (hKLK1) cDNA was subcloned into the chicken oviduct-specific expression vector (pOV3), and the resultant recombinant vector pOV3K was injected into laying hens via wing vein after mixing with polyethyleneimine. Following injection twice with the recombinant vector, the enzymatic activity at a maximal level of 59 U/mL was detected in the egg whites, which lasted for more than 7 d. The expression level of rhK1 in the egg whites in the 3-mg group was relatively higher than that in the 2-mg group, but the significant differences were identified on d 7 and 8 (P < 0.05). Ten days after the primary injection, the hens were reinjected with the same dose of the vector, and even higher enzymatic activity was detected in their egg whites. Two different breeds of hen were tested with no difference in expression level found (P > 0.05). Western blot analysis of the egg whites from vector-injected hens showed the rhK1 was recognized by a polyclonal antibody specific for hK1 with molecular weights of 37 and 43 kDa, which probably corresponded to the mature and preenzyme, respectively. Biochemical studies showed that the recombinant enzyme had a similar thermostability, optimal pH, hypotensive effect, and sensitivity to different ions to the natural enzymes in human and porcine tissues. These data indicate that the chicken oviduct-specific transient expression system can produce relatively high level and authentic recombinant enzyme with a potential for further development for therapeutic use.
Collapse
|
Evaluation Study |
19 |
5 |
22
|
Olsson AY, Persson AM, Valtonen-André C, Lundwall A. Glandular kallikreins of the cotton-top tamarin: molecular cloning of the gene encoding the tissue kallikrein. DNA Cell Biol 2000; 19:721-7. [PMID: 11177570 DOI: 10.1089/104454900750058080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The glandular kallikrein family is composed of structurally related serine proteases. Studies show that the mouse family encompasses at least 14 highly conserved functional genes, but of these only the tissue kallikarein has a human ortholog. In man, the tissue kallikrein display high sequence similarity with prostate specific antigen and human glandular kallikrein 2, suggesting that they evolved after the separation of primates and rodents. A phylogenetic study of the genes encoding glandular kallikreins in species evolutionarily located between rodents and man may reveal interesting details on how the gene family evolved, which in turn could yield information about the function of the proteins. Therefore, we have initiated a study of the glandular kallikreins of the cotton-top tamarin (Saguinus oedipus), a New World Monkey. Here, we report the cloning and nucleotide sequence of one of these, the tissue kallikrein gene. The gene of 4.4 kb is composed of five exons, and the structure is 90% similar to that of the orthologous human gene. It gives rise to a polypeptide of 261 amino acids, including a signal peptide of 17 residues, a pro-piece of 7 residues, and the mature protein of 237 residues with an estimated molecular mass of 26.3 kD. The similarity to the human prostate specific antigen and human glandular kallikrein 2 genes is 73% and 72%, respectively, including introns and flanking regions. The lower similarity to these genes compared with the human tissue kallikrein gene indicates that they, or a progenitor to them, arose in primates prior to the separation of New and Old World monkeys. Genomic Southern blots also show that the cotton-top tamarin genome encompasses at least one more glandular kallikrein gene.
Collapse
|
|
25 |
5 |
23
|
De Sousa MO, Santoro MM, De Souza Figueiredo AF. The Effect of Cations on the Amidase Activity of Human Tissue Kallikrein: 1-Linear Competitive Inhibition by Sodium, Potassium, Calcium and Magnesium. 2-Linear Mixed Inhibition by Aluminium. J Enzyme Inhib Med Chem 2011; 19:317-25. [PMID: 15558947 DOI: 10.1080/14756360409162444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Hydrolysis of D-valyl-L-leucyl-L-arginine p-nitroanilide by human tissue kallikrein (hK1) was studied in the absence and in the presence of increasing concentrations of the following chloride salts: sodium, potassium, calcium, magnesium and aluminium. The data indicate that the inhibition of hK1 by sodium, potassium, calcium and magnesium is linear competitive and that divalent cations are more potent inhibitors of hK1 than univalent cations. However the inhibition of hK1 by aluminium cation is linear mixed, with the cation being able to bind to both the free enzyme and the ES complex. This cation was the best hK1 inhibitor. Aluminium is not a physiological cation, but is a known neurotoxicant for animals and humans. The neurotoxic actions of aluminium may relate to neuro-degenerative diseases.
Collapse
|
|
14 |
2 |
24
|
Borgoño CA, Michael IP, Diamandis EP. Human tissue kallikreins: physiologic roles and applications in cancer. Mol Cancer Res 2004; 2:257-80. [PMID: 15192120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Tissue kallikreins are members of the S1 family (clan SA) of trypsin-like serine proteases and are present in at least six mammalian orders. In humans, tissue kallikreins (hK) are encoded by 15 structurally similar, steroid hormone-regulated genes (KLK) that colocalize to chromosome 19q13.4, representing the largest cluster of contiguous protease genes in the entire genome. hKs are widely expressed in diverse tissues and implicated in a range of normal physiologic functions from the regulation of blood pressure and electrolyte balance to tissue remodeling, prohormone processing, neural plasticity, and skin desquamation. Several lines of evidence suggest that hKs may be involved in cascade reactions and that cross-talk may exist with proteases of other catalytic classes. The proteolytic activity of hKs is regulated in several ways including zymogen activation, endogenous inhibitors, such as serpins, and via internal (auto)cleavage leading to inactivation. Dysregulated hK expression is associated with multiple diseases, primarily cancer. As a consequence, many kallikreins, in addition to hK3/PSA, have been identified as promising diagnostic and/or prognostic biomarkers for several cancer types, including ovarian, breast, and prostate. Recent data also suggest that hKs may be causally involved in carcinogenesis, particularly in tumor metastasis and invasion, and, thus, may represent attractive drug targets to consider for therapeutic intervention.
Collapse
|
Review |
21 |
|
25
|
Yousef GM, Diamandis EP. Tissue kallikreins: new players in normal and abnormal cell growth? Thromb Haemost 2003; 90:7-16. [PMID: 12876620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Serine proteases are proteolytic enzymes with an active serine residue in their catalytic site. Kallikreins are a subgroup of the serine protease family and are known to have diverse physiological functions. The human tissue kallikrein gene family has now been fully characterized and includes 15 members, clustered in a 300 kb region on chromosome 19q13.4. In this review, we discuss the common structural features of kallikreins at the DNA, mRNA and protein levels. Kallikreins are secreted as inactive zymogens and are activated by cleavage of an N-terminal peptide. Some kallikreins can undergo autoactivation while others may be activated by other kallikreins or other proteases. Most kallikreins are predicted to have trypsin-like enzymatic activity except for three members which may have chymotrypsin-like activity. Circumstantial evidence suggests that at least some kallikreins may be part of an enzymatic cascade pathway which is activated in aggressive forms of ovarian and probably other cancers. Accumulating evidence suggests potential diagnostic and/or prognostic roles of kallikreins in diverse malignancies. In addition to PSA, many other kallikreins show differential expression in malignancy. For example, hK6, 10 and 11 are promising serological markers for ovarian cancer diagnosis. KLK10 may act as a tumor suppressor. In addition to their diagnostic and prognostic values, kallikreins may also be good therapeutic targets.
Collapse
|
Comparative Study |
22 |
|