1
|
Nichol JW, Koshy S, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010; 31:5536-44. [PMID: 20417964 PMCID: PMC2878615 DOI: 10.1016/j.biomaterials.2010.03.064] [Citation(s) in RCA: 1627] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
The cellular microenvironment plays an integral role in improving the function of microengineered tissues. Control of the microarchitecture in engineered tissues can be achieved through photopatterning of cell-laden hydrogels. However, despite high pattern fidelity of photopolymerizable hydrogels, many such materials are not cell-responsive and have limited biodegradability. Here, we demonstrate gelatin methacrylate (GelMA) as an inexpensive, cell-responsive hydrogel platform for creating cell-laden microtissues and microfluidic devices. Cells readily bound to, proliferated, elongated, and migrated both when seeded on micropatterned GelMA substrates as well as when encapsulated in microfabricated GelMA hydrogels. The hydration and mechanical properties of GelMA were demonstrated to be tunable for various applications through modification of the methacrylation degree and gel concentration. The pattern fidelity and resolution of GelMA were high and it could be patterned to create perfusable microfluidic channels. Furthermore, GelMA micropatterns could be used to create cellular micropatterns for in vitro cell studies or 3D microtissue fabrication. These data suggest that GelMA hydrogels could be useful for creating complex, cell-responsive microtissues, such as endothelialized microvasculature, or for other applications that require cell-responsive microengineered hydrogels.
Collapse
|
Evaluation Study |
15 |
1627 |
2
|
Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 2014; 5:3935. [PMID: 24887553 PMCID: PMC4059935 DOI: 10.1038/ncomms4935] [Citation(s) in RCA: 1204] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/22/2014] [Indexed: 12/30/2022] Open
Abstract
The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.
Collapse
|
research-article |
11 |
1204 |
3
|
Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. NATURE NANOTECHNOLOGY 2011; 7:11-23. [PMID: 22179567 DOI: 10.1038/nnano.2011.209] [Citation(s) in RCA: 1193] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler material for nanocomposites.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
1193 |
4
|
Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013; 9:4457-86. [PMID: 22922331 DOI: 10.1016/j.actbio.2012.08.023] [Citation(s) in RCA: 1071] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 12/18/2022]
Abstract
Bioactive glasses are reported to be able to stimulate more bone regeneration than other bioactive ceramics but they lag behind other bioactive ceramics in terms of commercial success. Bioactive glass has not yet reached its potential but research activity is growing. This paper reviews the current state of the art, starting with current products and moving onto recent developments. Larry Hench's 45S5 Bioglass® was the first artificial material that was found to form a chemical bond with bone, launching the field of bioactive ceramics. In vivo studies have shown that bioactive glasses bond with bone more rapidly than other bioceramics, and in vitro studies indicate that their osteogenic properties are due to their dissolution products stimulating osteoprogenitor cells at the genetic level. However, calcium phosphates such as tricalcium phosphate and synthetic hydroxyapatite are more widely used in the clinic. Some of the reasons are commercial, but others are due to the scientific limitations of the original Bioglass 45S5. An example is that it is difficult to produce porous bioactive glass templates (scaffolds) for bone regeneration from Bioglass 45S5 because it crystallizes during sintering. Recently, this has been overcome by understanding how the glass composition can be tailored to prevent crystallization. The sintering problems can also be avoided by synthesizing sol-gel glass, where the silica network is assembled at room temperature. Process developments in foaming, solid freeform fabrication and nanofibre spinning have now allowed the production of porous bioactive glass scaffolds from both melt- and sol-gel-derived glasses. An ideal scaffold for bone regeneration would share load with bone. Bioceramics cannot do this when the bone defect is subjected to cyclic loads, as they are brittle. To overcome this, bioactive glass polymer hybrids are being synthesized that have the potential to be tough, with congruent degradation of the bioactive inorganic and the polymer components. Key to this is creating nanoscale interpenetrating networks, the organic and inorganic components of which have covalent coupling between them, which involves careful control of the chemistry of the sol-gel process. Bioactive nanoparticles can also now be synthesized and their fate tracked as they are internalized in cells. This paper reviews the main developments in the field of bioactive glass and its variants, covering the importance of control of hierarchical structure, synthesis, processing and cellular response in the quest for new regenerative synthetic bone grafts. The paper takes the reader from Hench's Bioglass 45S5 to new hybrid materials that have tailorable mechanical properties and degradation rates.
Collapse
|
Review |
12 |
1071 |
5
|
Abstract
This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
914 |
6
|
Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. NATURE NANOTECHNOLOGY 2011; 6:13-22. [PMID: 21151110 PMCID: PMC4059057 DOI: 10.1038/nnano.2010.246] [Citation(s) in RCA: 893] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tissue engineering aims at developing functional substitutes for damaged tissues and organs. Before transplantation, cells are generally seeded on biomaterial scaffolds that recapitulate the extracellular matrix and provide cells with information that is important for tissue development. Here we review the nanocomposite nature of the extracellular matrix, describe the design considerations for different tissues and discuss the impact of nanostructures on the properties of scaffolds and their uses in monitoring the behaviour of engineered tissues. We also examine the different nanodevices used to trigger certain processes for tissue development, and offer our view on the principal challenges and prospects of applying nanotechnology in tissue engineering.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
893 |
7
|
Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 2015; 11:21-34. [PMID: 25247412 PMCID: PMC4629810 DOI: 10.1038/nrrheum.2014.157] [Citation(s) in RCA: 869] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability of articular cartilage to regenerate renders joint arthroplasty an unavoidable surgical intervention. This Review describes current, widely used clinical repair techniques for resurfacing articular cartilage defects; short-term and long-term clinical outcomes of these techniques are discussed. Also reviewed is a developmental pipeline of acellular and cellular regenerative products and techniques that could revolutionize joint care over the next decade by promoting the development of functional articular cartilage. Acellular products typically consist of collagen or hyaluronic-acid-based materials, whereas cellular techniques use either primary cells or stem cells, with or without scaffolds. Central to these efforts is the prominent role that tissue engineering has in translating biological technology into clinical products; therefore, concomitant regulatory processes are also discussed.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
869 |
8
|
Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 2008; 26:1-21. [PMID: 17884325 DOI: 10.1016/j.biotechadv.2007.07.009] [Citation(s) in RCA: 869] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/25/2007] [Indexed: 12/16/2022]
Abstract
Tissue engineering is an important therapeutic strategy for present and future medicine. Recently, functional biomaterial researches have been directed towards the development of improved scaffolds for regenerative medicine. Chitosan is a natural polymer from renewable resources, obtained from shell of shellfish, and the wastes of the seafood industry. It has novel properties such as biocompatibility, biodegradability, antibacterial, and wound-healing activity. Furthermore, recent studies suggested that chitosan and its derivatives are promising candidates as a supporting material for tissue engineering applications owing to their porous structure, gel forming properties, ease of chemical modification, high affinity to in vivo macromolecules, and so on. In this review, we focus on the various types of chitosan derivatives and their use in various tissue engineering applications namely, skin, bone, cartilage, liver, nerve and blood vessel.
Collapse
|
|
17 |
869 |
9
|
Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013; 65:457-70. [PMID: 23137786 DOI: 10.1016/j.addr.2012.09.043] [Citation(s) in RCA: 846] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 08/26/2012] [Accepted: 09/25/2012] [Indexed: 12/31/2022]
Abstract
Regeneration of tissues using cells, scaffolds and appropriate growth factors is a key approach in the treatments of tissue or organ failure. Silk protein fibroin can be effectively used as a scaffolding material in these treatments. Silk fibers are obtained from diverse sources such as spiders, silkworms, scorpions, mites and flies. Among them, silk of silkworms is a good source for the development of biomedical device. It possesses good biocompatibility, suitable mechanical properties and is produced in bulk in the textile sector. The unique combination of elasticity and strength along with mammalian cell compatibility makes silk fibroin an attractive material for tissue engineering. The present article discusses the processing of silk fibroin into different forms of biomaterials followed by their uses in regeneration of different tissues. Applications of silk for engineering of bone, vascular, neural, skin, cartilage, ligaments, tendons, cardiac, ocular, and bladder tissues are discussed. The advantages and limitations of silk systems as scaffolding materials in the context of biocompatibility, biodegradability and tissue specific requirements are also critically reviewed.
Collapse
|
Review |
12 |
846 |
10
|
Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE. Tissue-engineered lungs for in vivo implantation. Science 2010; 329:538-41. [PMID: 20576850 PMCID: PMC3640463 DOI: 10.1126/science.1189345] [Citation(s) in RCA: 843] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Because adult lung tissue has limited regeneration capacity, lung transplantation is the primary therapy for severely damaged lungs. To explore whether lung tissue can be regenerated in vitro, we treated lungs from adult rats using a procedure that removes cellular components but leaves behind a scaffold of extracellular matrix that retains the hierarchical branching structures of airways and vasculature. We then used a bioreactor to culture pulmonary epithelium and vascular endothelium on the acellular lung matrix. The seeded epithelium displayed remarkable hierarchical organization within the matrix, and the seeded endothelial cells efficiently repopulated the vascular compartment. In vitro, the mechanical characteristics of the engineered lungs were similar to those of native lung tissue, and when implanted into rats in vivo for short time intervals (45 to 120 minutes) the engineered lungs participated in gas exchange. Although representing only an initial step toward the ultimate goal of generating fully functional lungs in vitro, these results suggest that repopulation of lung matrix is a viable strategy for lung regeneration.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
843 |
11
|
Abstract
Articular cartilage was predicted to be one of the first tissues to successfully be regenerated, but this proved incorrect. In contrast, bone (but also vasculature and cardiac tissues) has seen numerous successful reparative approaches, despite consisting of multiple cell and tissue types and, thus, possessing more complex design requirements. Here, we use bone-regeneration successes to highlight cartilage-regeneration challenges: such as selecting appropriate cell sources and scaffolds, creating biomechanically suitable tissues, and integrating to native tissue. We also discuss technologies that can address the hurdles of engineering a tissue possessing mechanical properties that are unmatched in human-made materials and functioning in environments unfavorable to neotissue growth.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
842 |
12
|
Norotte C, Marga F, Niklason L, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009; 30:5910-7. [PMID: 19664819 PMCID: PMC2748110 DOI: 10.1016/j.biomaterials.2009.06.034] [Citation(s) in RCA: 799] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 06/18/2009] [Indexed: 02/07/2023]
Abstract
Current limitations of exogenous scaffolds or extracellular matrix based materials have underlined the need for alternative tissue-engineering solutions. Scaffolds may elicit adverse host responses and interfere with direct cell-cell interaction, as well as assembly and alignment of cell-produced ECM. Thus, fabrication techniques for production of scaffold-free engineered tissue constructs have recently emerged. Here we report on a fully biological self-assembly approach, which we implement through a rapid prototyping bioprinting method for scaffold-free small diameter vascular reconstruction. Various vascular cell types, including smooth muscle cells and fibroblasts, were aggregated into discrete units, either multicellular spheroids or cylinders of controllable diameter (300-500 microm). These were printed layer-by-layer concomitantly with agarose rods, used here as a molding template. The post-printing fusion of the discrete units resulted in single- and double-layered small diameter vascular tubes (OD ranging from 0.9 to 2.5mm). A unique aspect of the method is the ability to engineer vessels of distinct shapes and hierarchical trees that combine tubes of distinct diameters. The technique is quick and easily scalable.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
799 |
13
|
Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 2009; 30:1482-91. [PMID: 19121538 PMCID: PMC2805023 DOI: 10.1016/j.biomaterials.2008.11.040] [Citation(s) in RCA: 657] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/27/2008] [Indexed: 01/23/2023]
Abstract
Recently, macrophages have been characterized as having an M1 or M2 phenotype based on receptor expression, cytokine and effector molecule production, and function. The effects of macrophage phenotype upon tissue remodeling following the implantation of a biomaterial are largely unknown. The objectives of this study were to determine the effects of a cellular component within an implanted extracellular matrix (ECM) scaffold upon macrophage phenotype, and to determine the relationship between macrophage phenotype and tissue remodeling. Partial-thickness defects in the abdominal wall musculature of Sprague-Dawley rats were repaired with autologous body wall tissue, acellular allogeneic rat body wall ECM, xenogeneic pig urinary bladder tissue, or acellular xenogeneic pig urinary bladder ECM. At 3, 7, 14, and 28 days the host tissue response was characterized using histologic, immunohistochemical, and RT-PCR methods. The acellular test articles were shown to elicit a predominantly M2 type response and resulted in constructive remodeling, while those containing a cellular component, even an autologous cellular component, elicited a predominantly M1 type response and resulted in deposition of dense connective tissue and/or scarring. We conclude that the presence of cellular material within an ECM scaffold modulates the phenotype of the macrophages participating in the host response following implantation, and that the phenotype of the macrophages participating in the host response appears to be related to tissue remodeling outcome.
Collapse
|
research-article |
16 |
657 |
14
|
Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: A comprehensive review on bioprintable materials. Biotechnol Adv 2017; 35:217-239. [PMID: 28057483 DOI: 10.1016/j.biotechadv.2016.12.006] [Citation(s) in RCA: 609] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/16/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
This paper discusses "bioink", bioprintable materials used in three dimensional (3D) bioprinting processes, where cells and other biologics are deposited in a spatially controlled pattern to fabricate living tissues and organs. It presents the first comprehensive review of existing bioink types including hydrogels, cell aggregates, microcarriers and decellularized matrix components used in extrusion-, droplet- and laser-based bioprinting processes. A detailed comparison of these bioink materials is conducted in terms of supporting bioprinting modalities and bioprintability, cell viability and proliferation, biomimicry, resolution, affordability, scalability, practicality, mechanical and structural integrity, bioprinting and post-bioprinting maturation times, tissue fusion and formation post-implantation, degradation characteristics, commercial availability, immune-compatibility, and application areas. The paper then discusses current limitations of bioink materials and presents the future prospects to the reader.
Collapse
|
Review |
8 |
609 |
15
|
Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 2016; 106:58-68. [PMID: 27552316 PMCID: PMC5300870 DOI: 10.1016/j.biomaterials.2016.07.038] [Citation(s) in RCA: 594] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/23/2016] [Accepted: 07/31/2016] [Indexed: 12/21/2022]
Abstract
Despite the significant technological advancement in tissue engineering, challenges still exist towards the development of complex and fully functional tissue constructs that mimic their natural counterparts. To address these challenges, bioprinting has emerged as an enabling technology to create highly organized three-dimensional (3D) vascular networks within engineered tissue constructs to promote the transport of oxygen, nutrients, and waste products, which can hardly be realized using conventional microfabrication techniques. Here, we report the development of a versatile 3D bioprinting strategy that employs biomimetic biomaterials and an advanced extrusion system to deposit perfusable vascular structures with highly ordered arrangements in a single-step process. In particular, a specially designed cell-responsive bioink consisting of gelatin methacryloyl (GelMA), sodium alginate, and 4-arm poly(ethylene glycol)-tetra-acrylate (PEGTA) was used in combination with a multilayered coaxial extrusion system to achieve direct 3D bioprinting. This blend bioink could be first ionically crosslinked by calcium ions followed by covalent photocrosslinking of GelMA and PEGTA to form stable constructs. The rheological properties of the bioink and the mechanical strengths of the resulting constructs were tuned by the introduction of PEGTA, which facilitated the precise deposition of complex multilayered 3D perfusable hollow tubes. This blend bioink also displayed favorable biological characteristics that supported the spreading and proliferation of encapsulated endothelial and stem cells in the bioprinted constructs, leading to the formation of biologically relevant, highly organized, perfusable vessels. These characteristics make this novel 3D bioprinting technique superior to conventional microfabrication or sacrificial templating approaches for fabrication of the perfusable vasculature. We envision that our advanced bioprinting technology and bioink formulation may also have significant potentials in engineering large-scale vascularized tissue constructs towards applications in organ transplantation and repair.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
594 |
16
|
Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A, Dokmeci MR, Dentini M, Khademhosseini A. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:677-84. [PMID: 26606883 PMCID: PMC4804470 DOI: 10.1002/adma.201503310] [Citation(s) in RCA: 563] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/03/2015] [Indexed: 04/14/2023]
Abstract
A novel bioink and a dispensing technique for 3D tissue-engineering applications are presented. The technique incorporates a coaxial extrusion needle using a low-viscosity cell-laden bioink to produce highly defined 3D biostructures. The extrusion system is then coupled to a microfluidic device to control the bioink arrangement deposition, demonstrating the versatility of the bioprinting technique. This low-viscosity cell-responsive bioink promotes cell migration and alignment within each fiber organizing the encapsulated cells.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
563 |
17
|
Engelmayr GC, Cheng M, Bettinger CJ, Borenstein JT, Langer R, Freed LE. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. NATURE MATERIALS 2008; 7:1003-10. [PMID: 18978786 PMCID: PMC2613200 DOI: 10.1038/nmat2316] [Citation(s) in RCA: 553] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/01/2008] [Indexed: 04/14/2023]
Abstract
Tissue-engineered grafts may be useful in myocardial repair; however, previous scaffolds have been structurally incompatible with recapitulating cardiac anisotropy. Here, we use microfabrication techniques to create an accordion-like honeycomb microstructure in poly(glycerol sebacate), which yields porous, elastomeric three-dimensional (3D) scaffolds with controllable stiffness and anisotropy. Accordion-like honeycomb scaffolds with cultured neonatal rat heart cells demonstrated utility through: (1) closely matched mechanical properties compared to native adult rat right ventricular myocardium, with stiffnesses controlled by polymer curing time; (2) heart cell contractility inducible by electric field stimulation with directionally dependent electrical excitation thresholds (p<0.05); and (3) greater heart cell alignment (p<0.0001) than isotropic control scaffolds. Prototype bilaminar scaffolds with 3D interconnected pore networks yielded electrically excitable grafts with multi-layered neonatal rat heart cells. Accordion-like honeycombs can thus overcome principal structural-mechanical limitations of previous scaffolds, promoting the formation of grafts with aligned heart cells and mechanical properties more closely resembling native myocardium.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
553 |
18
|
Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2014; 14:15-56. [PMID: 24730250 PMCID: PMC3997175 DOI: 10.1166/jnn.2014.9127] [Citation(s) in RCA: 536] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
536 |
19
|
Huang GTJ, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 2008; 34:645-51. [PMID: 18498881 PMCID: PMC2653220 DOI: 10.1016/j.joen.2008.03.001] [Citation(s) in RCA: 502] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 02/28/2008] [Accepted: 03/04/2008] [Indexed: 12/17/2022]
Abstract
Some clinical case reports have shown that immature permanent teeth with periradicular periodontitis or abscess can undergo apexogenesis after conservative endodontic treatment. A call for a paradigm shift and new protocol for the clinical management of these cases has been brought to attention. Concomitantly, a new population of mesenchymal stem cells residing in the apical papilla of permanent immature teeth recently has been discovered and was termed stem cells from the apical papilla (SCAP). These stem cells appear to be the source of odontoblasts that are responsible for the formation of root dentin. Conservation of these stem cells when treating immature teeth may allow continuous formation of the root to completion. This article reviews current findings on the isolation and characterization of these stem cells. The potential role of these stem cells in the following respects will be discussed: (1) their contribution in continued root maturation in endodontically treated immature teeth with periradicular periodontitis or abscess and (2) their potential utilization for pulp/dentin regeneration and bioroot engineering.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
502 |
20
|
Serruys PW, Chevalier B, Dudek D, Cequier A, Carrié D, Iniguez A, Dominici M, van der Schaaf RJ, Haude M, Wasungu L, Veldhof S, Peng L, Staehr P, Grundeken MJ, Ishibashi Y, Garcia-Garcia HM, Onuma Y. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet 2015; 385:43-54. [PMID: 25230593 DOI: 10.1016/s0140-6736(14)61455-0] [Citation(s) in RCA: 461] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Despite rapid dissemination of an everolimus-eluting bioresorbable scaffold for treatment for coronary artery disease, no data from comparisons with its metallic stent counterpart are available. In a randomised controlled trial we aimed to compare an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent. Here we report secondary clinical and procedural outcomes after 1 year of follow-up. METHODS In a single-blind, multicentre, randomised trial, we enrolled eligible patients aged 18-85 years with evidence of myocardial ischaemia and one or two de-novo native lesions in different epicardial vessels. We randomly assigned patients in a 2:1 ratio to receive treatment with an everolimus-eluting bioresorbable scaffold (Absorb, Abbott Vascular, Santa Clara, CA, USA) or treatment with an everolimus-eluting metallic stent (Xience, Abbott Vascular, Santa Clara, CA, USA). Randomisation was stratified by diabetes status and number of planned target lesions. The co-primary endpoints of this study are vasomotion (change in mean lumen diameter before and after nitrate administration at 3 years) and difference between minimum lumen diameter (after nitrate administration) after the index procedure and at 3 years. Secondary endpoints were procedural performance assessed by quantitative angiography and intravascular ultrasound; composite clinical endpoints based on death, myocardial infarction, and coronary revascularisation; device and procedural success; and angina status assessed by the Seattle Angina Questionnaire and exercise testing at 6 and 12 months. Cumulative angina rate based on adverse event reporting was analysed post hoc. This trial is registered at ClinicalTrials.gov, number NCT01425281. FINDINGS Between Nov 28, 2011, and June 4, 2013, we enrolled 501 patients and randomly assigned them to the bioresorbable scaffold group (335 patients, 364 lesions) or the metallic stent group (166 patients, 182 lesions). Dilatation pressure and balloon diameter at the highest pressure during implantation or postdilatation were higher and larger in the metallic stent group, whereas the acute recoil post implantation was similar (0.19 mm for both, p=0.85). Acute lumen gain was lower for the bioresorbable scaffold by quantitative coronary angiography (1.15 mm vs 1.46 mm, p<0.0001) and quantitative intravascular ultrasound (2.85 mm(2)vs 3.60 mm(2), p<0.0001), resulting in a smaller lumen diameter or area post procedure. At 1 year, however, cumulative rates of first new or worsening angina from adverse event reporting were lower (72 patients [22%] in the bioresorbable scaffold group vs 50 [30%] in the metallic stent group, p=0.04), whereas performance during maximum exercise and angina status by SAQ were similar. The 1-year composite device orientated endpoint was similar between the bioresorbable scaffold and metallic stent groups (16 patients [5%] vs five patients [3%], p=0.35). Three patients in the bioresorbable scaffold group had definite or probable scaffold thromboses (one definite acute, one definite sub-acute, and one probable late), compared with no patients in the metallic stent group. There were 17 (5%) major cardiac adverse events in the bioresorbable scaffold group compared with five (3%) events in the metallic stent group, with the most common adverse events being myocardial infarction (15 cases [4%] vs two cases [1%], respectively) and clinically indicated target-lesion revascularisation (four cases [1%] vs three cases [2%], respectively). INTERPRETATION The everolimus-eluting bioresorbable scaffold showed similar 1-year composite secondary clinical outcomes to the everolimus-eluting metallic stent. FUNDING Abbott Vascular.
Collapse
|
Clinical Trial, Phase II |
10 |
461 |
21
|
Abstract
The situations in which biomaterials are currently used are vastly different to those of just a decade ago. Although implantable medical devices are still immensely important, medical technologies now encompass a range of drug and gene delivery systems, tissue engineering and cell therapies, organ printing and cell patterning, nanotechnology based imaging and diagnostic systems and microelectronic devices. These technologies still encompass metals, ceramics and synthetic polymers, but also biopolymers, self assembled systems, nanoparticles, carbon nanotubes and quantum dots. These changes imply that our original concepts of biomaterials and our expectations of their performance also have to change. This Leading Opinion Paper addresses these issues. It concludes that many substances which hitherto we may not have thought of as biomaterials should now be considered as such so that, alongside the traditional structural biomaterials, we have substances that have been engineered to perform functions within health care where their performance is directly controlled by interactions with tissues and tissue components. These include engineered tissues, cells, organs and even viruses. This essay develops the arguments for a radically different definition of a biomaterial.
Collapse
|
Review |
16 |
454 |
22
|
Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 2010; 376:440-8. [PMID: 20692530 PMCID: PMC4035014 DOI: 10.1016/s0140-6736(10)60668-x] [Citation(s) in RCA: 454] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND A common approach for tissue regeneration is cell delivery, for example by direct transplantation of stem or progenitor cells. An alternative, by recruitment of endogenous cells, needs experimental evidence. We tested the hypothesis that the articular surface of the synovial joint can regenerate with a biological cue spatially embedded in an anatomically correct bioscaffold. METHODS In this proof of concept study, the surface morphology of a rabbit proximal humeral joint was captured with laser scanning and reconstructed by computer-aided design. We fabricated an anatomically correct bioscaffold using a composite of poly-epsilon-caprolactone and hydroxyapatite. The entire articular surface of unilateral proximal humeral condyles of skeletally mature rabbits was surgically excised and replaced with bioscaffolds spatially infused with transforming growth factor beta3 (TGFbeta3)-adsorbed or TGFbeta3-free collagen hydrogel. Locomotion and weightbearing were assessed 1-2, 3-4, and 5-8 weeks after surgery. At 4 months, regenerated cartilage samples were retrieved from in vivo and assessed for surface fissure, thickness, density, chondrocyte numbers, collagen type II and aggrecan, and mechanical properties. FINDINGS Ten rabbits received TGFbeta3-infused bioscaffolds, ten received TGFbeta3-free bioscaffolds, and three rabbits underwent humeral-head excision without bioscaffold replacement. All animals in the TGFbeta3-delivery group fully resumed weightbearing and locomotion 3-4 weeks after surgery, more consistently than those in the TGFbeta3-free group. Defect-only rabbits limped at all times. 4 months after surgery, TGFbeta3-infused bioscaffolds were fully covered with hyaline cartilage in the articular surface. TGFbeta3-free bioscaffolds had only isolated cartilage formation, and no cartilage formation occurred in defect-only rabbits. TGFbeta3 delivery yielded uniformly distributed chondrocytes in a matrix with collagen type II and aggrecan and had significantly greater thickness (p=0.044) and density (p<0.0001) than did cartilage formed without TGFbeta3. Compressive and shear properties of TGFbeta3-mediated articular cartilage did not differ from those of native articular cartilage, and were significantly greater than those of cartilage formed without TGFbeta3. Regenerated cartilage was avascular and integrated with regenerated subchondral bone that had well defined blood vessels. TGFbeta3 delivery recruited roughly 130% more cells in the regenerated articular cartilage than did spontaneous cell migration without TGFbeta3. INTERPRETATION Our findings suggest that the entire articular surface of the synovial joint can regenerate without cell transplantation. Regeneration of complex tissues is probable by homing of endogenous cells, as exemplified by stratified avascular cartilage and vascularised bone. Whether cell homing acts as an adjunctive or alternative approach of cell delivery for regeneration of tissues with different organisational complexity warrants further investigation. FUNDING New York State Stem Cell Science; US National Institutes of Health.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
454 |
23
|
Huang GTJ, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 2010; 16:605-15. [PMID: 19737072 PMCID: PMC2813150 DOI: 10.1089/ten.tea.2009.0518] [Citation(s) in RCA: 444] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 09/08/2009] [Indexed: 12/30/2022] Open
Abstract
The ultimate goal of this study is to regenerate lost dental pulp and dentin via stem/progenitor cell-based approaches and tissue engineering technologies. In this study, we tested the possibility of regenerating vascularized human dental pulp in emptied root canal space and producing new dentin on existing dentinal walls using a stem/progenitor cell-mediated approach with a human root fragment and an immunocompromised mouse model. Stem/progenitor cells from apical papilla and dental pulp stem cells were isolated, characterized, seeded onto synthetic scaffolds consisting of poly-D,L-lactide/glycolide, inserted into the tooth fragments, and transplanted into mice. Our results showed that the root canal space was filled entirely by a pulp-like tissue with well-established vascularity. In addition, a continuous layer of dentin-like tissue was deposited onto the canal dentinal wall. This dentin-like structure appeared to be produced by a layer of newly formed odontoblast-like cells expressing dentin sialophosphoprotein, bone sialoprotein, alkaline phosphatase, and CD105. The cells in regenerated pulp-like tissue reacted positively to anti-human mitochondria antibodies, indicating their human origin. This study provides the first evidence showing that pulp-like tissue can be regenerated de novo in emptied root canal space by stem cells from apical papilla and dental pulp stem cells that give rise to odontoblast-like cells producing dentin-like tissue on existing dentinal walls.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
444 |
24
|
Patel ZS, Young S, Tabata Y, Jansen JA, Wong ME, Mikos AG. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 2008; 43:931-40. [PMID: 18675385 PMCID: PMC3014108 DOI: 10.1016/j.bone.2008.06.019] [Citation(s) in RCA: 441] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 06/23/2008] [Accepted: 06/30/2008] [Indexed: 12/13/2022]
Abstract
This study investigated the effects of dual delivery of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) for bone regeneration in a rat cranial critical size defect. Four groups of scaffolds were generated with VEGF (12 microg), BMP-2 (2 mug), both VEGF (12 microg) and BMP-2 (2 microg), or no growth factor released from gelatin microparticles incorporated within the scaffold pores. These scaffolds were implanted within an 8 mm rat cranial critical size defect (n=8-9 for each group). At 4 and 12 weeks, implants were retrieved and evaluated by microcomputed tomography (microCT) and histological scoring analysis. Additionally, 4 week animals were perfused with a radiopaque material to visualize and quantify blood vessel formation. Histological analysis revealed that for all groups at 4 weeks, a majority of the porous scaffold volume was filled with vascularized fibrous tissue; however, bone formation appeared most abundant in the dual release group at this time. At 12 weeks, both dual release and BMP-2 groups showed large amounts of bone formation within the scaffold pores and along the outer surfaces of the scaffold; osteoid secretion and mineralization were apparent, and new bone was often in close or direct contact with the scaffold interface. MicroCT results showed no significant difference among groups for blood vessel formation at 4 weeks (<4% blood vessel volume); however, the dual release group showed significantly higher bone formation (16.1+/-9.2% bone volume) than other groups at this time. At 12 weeks, dual release and BMP-2 groups exhibited significantly higher bone formation (39.7+/-14.1% and 37.4+/-18.8% bone volume, respectively) than either the VEGF group or blank scaffolds (6.3+/-4.8% and 7.8+/-7.1% bone volume, respectively). This work indicates a synergistic effect of the dual delivery of VEGF and BMP-2 on bone formation at 4 weeks and suggests an interplay between these growth factors for early bone regeneration. For the doses investigated, the results show that the addition of VEGF does not affect the amount of bone formation achieved by BMP-2 at 12 weeks; however, they also indicate that delivery of both growth factors may enhance bone bridging and union of the critical size defect compared to delivery of BMP-2 alone.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
441 |
25
|
Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, Zorlutuna P, Vrana NE, Ghaemmaghami AM, Dokmeci MR, Khademhosseini A. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 2014; 6:024105. [PMID: 24695367 PMCID: PMC4040163 DOI: 10.1088/1758-5082/6/2/024105] [Citation(s) in RCA: 410] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least eight days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
410 |