1
|
Giuliano M, Pellerito C, Celesia A, Fiore T, Emanuele S. Tributyltin(IV) Butyrate: A Novel Epigenetic Modifier with ER Stress- and Apoptosis-Inducing Properties in Colon Cancer Cells. Molecules 2021; 26:5010. [PMID: 34443600 PMCID: PMC8412103 DOI: 10.3390/molecules26165010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Organotin(IV) compounds are a class of non-platinum metallo-conjugates exhibiting antitumor activity. The effects of different organotin types has been related to several mechanisms, including their ability to modify acetylation protein status and to promote apoptosis. Here, we focus on triorganotin(IV) complexes of butyric acid, a well-known HDAC inhibitor with antitumor properties. The conjugated compounds were synthesized and characterised by FTIR spectroscopy, multi-nuclear (1H, 13C and 119Sn) NMR, and mass spectrometry (ESI-MS). In the triorganotin(IV) complexes, an anionic monodentate butyrate ligand was observed, which coordinated the tin atom on a tetra-coordinated, monomeric environment similar to ester. FTIR and NMR findings confirm this structure both in solid state and solution. The antitumor efficacy of the triorganotin(IV) butyrates was tested in colon cancer cells and, among them, tributyltin(IV) butyrate (BT2) was selected as the most efficacious. BT2 induced G2/M cell cycle arrest, ER stress, and apoptotic cell death. These effects were obtained using low concentrations of BT2 up to 1 μM, whereas butyric acid alone was completely inefficacious, and the parent compound TBT was poorly effective at the same treatment conditions. To assess whether butyrate in the coordinated form maintains its epigenetic effects, histone acetylation was evaluated and a dramatic decrease in acetyl-H3 and -H4 histones was found. In contrast, butyrate alone stimulated histone acetylation at a higher concentration (5 mM). BT2 was also capable of preventing histone acetylation induced by SAHA, another potent HDAC inhibitor, thus suggesting that it may activate HDACs. These results support a potential use of BT2, a novel epigenetic modulator, in colon cancer treatment.
Collapse
|
2
|
Soboń A, Szewczyk R, Długoński J, Różalska S. A proteomic study of Cunninghamella echinulata recovery during exposure to tributyltin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32545-32558. [PMID: 31625117 DOI: 10.1007/s11356-019-06416-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
A proteomic study of Cunninghamella echinulata recovery during exposure to tributyltin was conducted with 2-D SDS-PAGE protein separation and profiling, MALDI-TOF/TOF protein identification, and PCA analysis. The presence of TBT resulted in an upregulation of enzymes related to energy production via cellular respiration. The unique overexpression of NADH dehydrogenase and mitochondrial malate dehydrogenase, together with an increased level of cytochrome c oxidase, ATP synthase subunits, and inorganic pyrophosphatase, indicates a strong energy deficit in the cells, leading to an increase in the ATP production. The overexpression of Prohibitin-1, a multifunctional protein associated with the proper functioning of mitochondria, was observed as well. The data also revealed oxidative stress condition. Among reactive oxygen species (ROS)-scavenging enzymes, only superoxide dismutase (SOD) showed active response against oxidative stress induced by the xenobiotic. The induction of a series of ROS-scavenging enzymes was supported by a microscopic analysis revealing a considerably large concentration of ROS in the hyphae. The overexpression of cytoskeleton-related proteins in the TBT presence was also noticed. The obtained results allow explaining the recovery strategy of the fungus in response to the energy depletion caused by TBT.
Collapse
|
3
|
Pruchnik H, Włoch A, Bonarska-Kujawa D, Kleszczyńska H. An In Vitro Study of the Effect of Cytotoxic Triorganotin Dimethylaminophenylazobenzoate Complexes on Red Blood Cells. J Membr Biol 2018; 251:735-745. [PMID: 30350012 PMCID: PMC6244762 DOI: 10.1007/s00232-018-0051-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/13/2018] [Indexed: 10/31/2022]
Abstract
Interactions of tributyltin (TBTA) and triphenyltin (TPhTA) 2-[4 (dimethylamino)phenylazo]benzoates, showing promising cytostatic activity against tumor cells, with erythrocytes and with erythrocyte membranes and model lipid membranes have been investigated. The effect of TBTA and TPhTA on the erythrocyte and its model membrane was investigated by the microscopic and spectroscopic methods. Interaction of tin complexes with the membrane was determined on the basis of hemolytic activity, changes induced in the shape of erythrocytes, as well as physicochemical parameters of the membrane, such as fluidity. The studies showed that the compounds in higher concentration induce hemolysis; however, TBTA is more toxic than TPhTA. Both TBTA and TPhTA induce morphological alterations in red blood cells-from discocytes to spherocytes and from discocytes to echinocytes. The results suggest that investigated complexes interact with the erythrocyte membrane, change its properties, and probably locate themselves in the hydrophilic part of the membrane, which agrees with conclusions drawn from investigation of erythrocyte membranes and model lipid membranes with the help of fluorescence and infrared spectroscopy.
Collapse
|
4
|
Bridou R, Rodriguez-Gonzalez P, Stoichev T, Amouroux D, Monperrus M, Navarro P, Tessier E, Guyoneaud R. Methylation and dealkykation of tin compounds by sulfate- and nitrate-reducing bacteria. CHEMOSPHERE 2018; 208:871-879. [PMID: 30068030 DOI: 10.1016/j.chemosphere.2018.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
In this study, axenic cultures of sulfate-reducing (SRB) and nitrate-reducing (NRB) bacteria were examined for their ability to methylate inorganic tin and to methylate or dealkylate butyltin compounds. Environmentally relevant concentrations of natural abundance tributyltin (TBT) and 116Sn-enriched inorganic tin were added to bacterial cultures to identify bacterial-mediated methylation and dealkylation reactions. The results show that none of the Desulfovibrio strains tested was able to induce any transformation process. In contrast, Desulfobulbus propionicus strain DSM-6523 degraded TBT either under sulfidogenic or non-sulfidogenic conditions. In addition, it was able to alkykate 116Sn-enriched inorganic tin leading to the formation of more toxic dimethyltin and trimethyltin. A similar capacity was observed for incubations of Pseudomonas but with a much greater dealkykation of TBT. As such, Pseudomonas sp. ADR42 degraded 61% of the initial TBT under aerobic conditions and 35% under nitrate-reducing conditions. This is the first work reporting a simultaneous TBT degradation and a methylation of both inorganic tin species and TBT dealkykation products by SRB and NRB under anoxic conditions. These reactions are environmentally relevant as they can control the mobility of these compounds in aquatic ecosystems; as well as their toxicity toward resident organisms.
Collapse
|
5
|
Rossi S, Ziliani M, Annunziata R, Benaglia M. Novel Chiral Bis-Phosphoramides as Organocatalysts for Tetrachlorosilane-Mediated Reactions. Molecules 2017; 22:molecules22122181. [PMID: 29292782 PMCID: PMC6149666 DOI: 10.3390/molecules22122181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022] Open
Abstract
The formation of novel chiral bidentate phosphoroamides structures able to promote Lewis base-catalyzed Lewis acid-mediated reactions was investigated. Two different classes of phosphoroamides were synthetized: the first class presents a phthalic acid/primary diamine moiety, designed with the aim to perform a self-assembly recognition process through hydrogen bonds; the second one is characterized by the presence of two phosphoroamides as side arms connected to a central pyridine unit, able to chelate SiCl₄ in a 2:1 adduct. These species were tested as organocatalysts in the stereoselective allylation of benzaldehyde and a few other aromatic aldehydes with allyl tributyltin in the presence of SiCl₄ with good results. NMR studies confirm that only pyridine-based phosphoroamides effectively coordinate tetrachlorosilane and may lead to the generation of a self-assembled entity that would act as a promoter of the reaction. Although further work is necessary to clarify and confirm the formation of the hypothesized adduct, the study lays the foundation for the design and the synthesis of chiral supramolecular organocatalysts.
Collapse
|
6
|
Lagerström M, Strand J, Eklund B, Ytreberg E. Total tin and organotin speciation in historic layers of antifouling paint on leisure boat hulls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1333-1341. [PMID: 27836476 DOI: 10.1016/j.envpol.2016.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/14/2016] [Accepted: 11/01/2016] [Indexed: 05/25/2023]
Abstract
Despite their ban on small vessels in 1989 in the EU, organotin compounds (OTCs) are still being released into the environment due to their presence in historic paint layers on leisure boats. 23 paint samples scraped from recreational boats from three countries around the Baltic Sea were analyzed for total tin (Sn) and OTCs. Two antifouling paint products were also subjected to the same analyses. A new method for the detection of Sn in paint flake samples was developed and found to yield more accurate results compared to four different acid digestion methods. A new method was also developed for the extraction of OTCs from ground paint flakes. This endeavor revealed that existing methods for organotin analysis of sediment may not have full recoveries of OTCs if paint flakes are present in the sample. The hull paint samples had Sn concentrations ranging from 25 to 18,000 mg/kg paint and results showed that tributyltin (TBT) was detected in all samples with concentrations as high as 4.7 g (as Sn)/kg paint. TBT was however not always the major OTC. Triphenyltin (TPhT) was abundant in many samples, especially in those originating from Finland. Several other compounds such as monobutyltin (MBT), dibutyltin (DBT), tetrabutyltin (TeBT), monophenyltin (MPhT) and diphenyltin (DPhT) were also detected. These could be the result of degradation occurring on the hull or of impurities in the paint products as they were also identified in the two analyzed paint products. A linear correlation (r2 = 0.934) was found between the total tin content and the sum of all detected OTCs. The detection of tin can therefore be used to indicate the presence of OTCs on leisure boats.
Collapse
|
7
|
Ophithakorn T, Sabah A, Delalonde M, Bancon-Montigny C, Suksaroj TT, Wisniewski C. Organotins' fate in lagoon sewage system: dealkylation and sludge sorption/desorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22832-22842. [PMID: 27568196 DOI: 10.1007/s11356-016-7396-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Organotin compounds (OTs) have been widely used for their biocidal properties and as stabilizers in various industrial applications. Due to their high toxicity, organotins are subject to many studies regarding their behavior in wastewater treatment plant and aquatic environment. However, few studies are available regarding their behavior in lagoon sewage system, although such treatment is commonly used for sewage treatment in low-population areas. The present study aimed at studying the fate of organotins (monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT)) in lagoon sewage system. Short-term experiments, carried out at lab scale, consisted in sampling sludge from aerobic stabilization ponds, and then quantifying sorption and desorption of the different organotin species, as well as their respective transformation, under defined operating conditions (e.g., tributyltin spike and dilution) simulating possible change in the surrounding environment of sludge in the lagoon. Results established that a very important percentage of the OTs was localized in the solid phase of the sludge (more than 98 %), whatever the operating conditions may be; however, transformation and locations of the three OT species differed according to the different conditions of sludge dilution, TBT spiking, and test duration. After dilution of lagoon sludge, TBT desorption from sludge was observed; it was supposed that dealkylation of TBT after desorption occurred rapidly and increased dissolved MBT and DBT in liquid phase; MBT sorbed subsequently on solid phase. The nature of the diluent (i.e., tap water or saline solution) appeared to slightly influence the sludge behavior. After TBT spiking, TBT was supposed to be rapidly sorbed but also transformed in DBT and MBT that would as well sorbed on the sludge, which explained the decrease of these species in the liquid phase. Tests aimed at studying long-term effect of TBT spiking demonstrated that the sorbed species could be remobilized and transformed after a dilution.
Collapse
|
8
|
Peeters K, Lespes G, Milačič R, Ščančar J. Adsorption and degradation processes of tributyltin and trimethyltin in landfill leachates treated with iron nanoparticles. ENVIRONMENTAL RESEARCH 2015; 142:511-521. [PMID: 26280471 DOI: 10.1016/j.envres.2015.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Biotic and abiotic degradation of toxic organotin compounds (OTCs) in landfill leachates is usually not complete. In this work adsorption and degradation processes of tributyltin (TBT) and trimethyltin (TMeT) in leachate sample treated with different iron nanoparticles (FeNPs): Fe(0) (nZVI), FeO and Fe3O4 were investigated to find conditions for their efficient removal. One sample aliquot was kept untreated (pH 8), while to the others (pH 8) FeNPs dispersed with tetramethyl ammonium hydroxide (TMAH) or by mixing were added and samples shaken under aerated conditions for 7 days. The same experiments were done in leachates in which the pH was adjusted to 3 with citric acid. Size distribution of TBT and TMeT between particles >5 µm, 0.45-5 µm, 2.5-0.45 µm, and <2.5 nm was determined by sequential filtration and their concentrations in a given fraction by gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS). Results revealed that most of the TBT or TMeT was present in fractions with particles >2.5 or <2.5 nm, respectively. At pH 8 adsorption of TBT to FeNPs prevailed, while at pH 3, the Fenton reaction provoked degradation of TBT by hydroxyl radicals. TBT was the most effectively removed (96%) when sequential treatment of leachate with nZVI (dispersed by mixing) was applied first at pH 8, followed by nZVI treatment of the aqueous phase, previously acidified to pH 3 with citric acid. Such treatment less effectively removed TMeT (about 40%). It was proven that TMAH provoked methylation of tin, so mixing was recommended for dispersion of nZVI.
Collapse
|
9
|
Li ZH, Li P, Shi ZC. Molecular responses in digestive tract of juvenile common carp after chronic exposure to sublethal tributyltin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 109:10-14. [PMID: 25129219 DOI: 10.1016/j.ecoenv.2014.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
The effect of long-term exposure to tributyltin (TBT) on the intestine-related biochemical biomarkers in common carp was investigated in this study. Fish were exposed at sub-lethal concentrations of TBT (75 ng/L, 0.75 and 7.5 μg/L) for 60 days. Multiple biomarkers were measured, including digestive enzymes (trypsin, lipase and amylase), antioxidant responses (malondialdehyde (MDA) and total antioxidative capacity (T-AOC)), RNA/DNA ratio and the expression of digestive-related genes (try, lipc and amy). TBT exposure at 0.75 and 7.5 μg/L led to significantly inhibited activities of all digestive enzymes. At higher concentration of TBT, oxidative stress was apparent as reflected by the significant higher MDA content in the fish intestine, associated with an inhibition of T-AOC activities. After 60 days, the RNA/DNA ratio in fish intestine was significantly lower in groups exposed to TBT at higher concentrations (0.75 and 7.5 μg/L). In addition, the expression levels of try, lipc and amy in intestine of all treated fish were inhibited, even at the environmental concentration (75 ng/L). Our results suggest that long-term exposure to TBT could result in different responses of intestine-related biochemical biomarkers in fish, which could be used as new potential indicators for monitoring residual TBT present in aquatic environment.
Collapse
|
10
|
Yamada S, Kotake Y, Demizu Y, Kurihara M, Sekino Y, Kanda Y. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells. Sci Rep 2014; 4:5952. [PMID: 25092173 PMCID: PMC4121607 DOI: 10.1038/srep05952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/15/2014] [Indexed: 11/20/2022] Open
Abstract
Tributyltin (TBT) is known to cause developmental defects as endocrine disruptive chemicals (EDCs). At nanomoler concentrations, TBT actions were mediated by genomic pathways via PPAR/RXR. However, non-genomic target of TBT has not been elucidated. To investigate non-genomic TBT targets, we performed comprehensive metabolomic analyses using human embryonic carcinoma NT2/D1 cells. We found that 100 nM TBT reduced the amounts of α-ketoglutarate, succinate and malate. We further found that TBT decreased the activity of NAD-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the conversion of isocitrate to α-ketoglutarate in the TCA cycle. In addition, TBT inhibited cell growth and enhanced neuronal differentiation through NAD-IDH inhibition. Furthermore, studies using bacterially expressed human NAD-IDH and in silico simulations suggest that TBT inhibits NAD-IDH due to a possible interaction. These results suggest that NAD-IDH is a novel non-genomic target of TBT at nanomolar levels. Thus, a metabolomic approach may provide new insights into the mechanism of EDC action.
Collapse
|
11
|
Brosillon S, Bancon-Montigny C, Mendret J. Study of photocatalytic degradation of tributyltin, dibutylin and monobutyltin in water and marine sediments. CHEMOSPHERE 2014; 109:173-179. [PMID: 24613444 DOI: 10.1016/j.chemosphere.2014.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
This study reports on the first assessment of the treatment of sediments contaminated by organotin compounds using heterogeneous photocatalysis. Photocatalysis of organotins in water was carried out under realistic concentration conditions (μgL(-1)). Degradation compounds were analyzed by GC-ICP-MS; a quasi-complete degradation of tributyltin (TBT) in water (99.8%) was achieved after 30min of photocatalytic treatment. The degradation by photolysis was about (10%) in the same conditions. For the first time decontamination of highly polluted marine sediments (certified reference material and harbor sediments) by photocatalysis proves that the use of UV and the production of hydroxyl radicals are an efficient way to treat organotins adsorbed onto marine sediment despite the complexity of the matrix. In sediment, TBT degradation yield ranged from 32% to 37% after only 2h of irradiation (TiO2-UV) and the by-products: dibutyltin (DBT) and monobutyltin (MBT) were degraded very rapidly in comparison with TBT. It was shown that during photocatalysis of organotins in sediments, the hydroxyl radical attack and photolysis are the two ways for the degradation of adsorbed TBT.
Collapse
|
12
|
Peeters K, Iskra J, Zuliani T, Ščančar J, Milačič R. The micro-scale synthesis of (117)Sn-enriched tributyltin chloride and its characterization by GC-ICP-MS and NMR techniques. CHEMOSPHERE 2014; 107:386-392. [PMID: 24472491 DOI: 10.1016/j.chemosphere.2014.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
Organotin compounds (OTCs) are among the most toxic substances ever introduced to the environment by man. They are common pollutants in marine ecosystems, but are also present in the terrestrial environment, accumulated mainly in sewage sludge and landfill leachates. In investigations of the degradation and methylation processes of OTC in environmental samples, the use of enriched isotopic tracers represents a powerful analytical tool. Sn-enriched OTC are also necessary in application of the isotope dilution mass spectrometry technique for their accurate quantification. Since Sn-enriched monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT) are not commercially available as single species, "in house" synthesis of individual butyltin-enriched species is necessary. In the present work, the preparation of the most toxic butyltin, namely TBT, was performed via a simple synthetic path, starting with bromination of metallic Sn, followed by butylation with butyl lithium. The tetrabutyltin (TeBT) formed was transformed to tributyltin chloride (TBTCl) using concentrated hydrochloric acid (HCl). The purity of the synthesized TBT was verified by speciation analysis using the techniques of gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS) and nuclear magnetic resonance (NMR). The results showed that TBT had a purity of more than 97%. The remaining 3% corresponded to DBT. TBT was quantified by reverse isotope dilution GC-ICP-MS. The synthesis yield was around 60%. The advantage of this procedure over those previously reported lies in its possibility to be applied on a micro-scale (starting with 10mg of metallic Sn). This feature is of crucial importance, since enriched metallic Sn is extremely expensive. The procedure is simple and repeatable, and was successfully applied for the preparation of (117)Sn-enriched TBTCl from (117)Sn-enriched metal.
Collapse
|
13
|
Ohta M, Nakamura K, Kubo T, Suzuki T. Detoxification Effect of Iron-encaging Zeolite-processed Water in Tributyltin-intoxicated Euglena gracilis Z. Biosci Biotechnol Biochem 2014; 65:14-21. [PMID: 11272817 DOI: 10.1271/bbb.65.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In our previous paper, we reported the restoration promoting effects of mineral-encaging zeolite-processed water, especially of a Fe-encaging one, on tributyltin chloride (TBTCl)-intoxicated Euglena gracilis. This present study extends the investigation on the behavior of TBTCl and a xenobiotic enzyme, cytochrome P-450, in Euglena cells incubated with or without Fe-encaging zeolite-processed water (FeZW). Subcellular fractionation of TBTCl-intoxicated Euglena cells, atomic absorption spectrophotometry, and GC analyses showed that TBTCl was rapidly incorporated into the cells to halt cell motility. GC-MS showed that FeZW promoted conversion of TBTCl to dibutyltin (DBT) as the major metabolite in the microsomal fraction of the cells. An in vitro incubation system with heat-treated microsomes did not convert TBTCl to DBT. The contribution of cytochrome P-450 in the microsomal fraction was suggested by an immunochemical method. The results suggest that the improvement of detoxification by FeZW in the TBT-intoxicated Euglena cells should be due to activation of biotransformation system of the Euglena cells by FeZW.
Collapse
|
14
|
Ayanda OS, Fatoki OS, Adekola FA, Ximba BJ. Kinetics and equilibrium models for the sorption of tributyltin to nZnO, activated carbon and nZnO/activated carbon composite in artificial seawater. MARINE POLLUTION BULLETIN 2013; 72:222-230. [PMID: 23643341 DOI: 10.1016/j.marpolbul.2013.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 03/13/2013] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
The removal of tributyltin (TBT) from artificial seawater using nZnO, activated carbon and nZnO/activated carbon composite was systematically studied. The equilibrium and kinetics of adsorption were investigated in a batch adsorption system. Equilibrium adsorption data were analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherm models. Pseudo first- and second-order, Elovich, fractional power and intraparticle diffusion models were applied to test the kinetic data. Thermodynamic parameters such as ΔG°, ΔS° and ΔH° were also calculated to understand the mechanisms of adsorption. Optimal conditions for the adsorption of TBT from artificial seawater were then applied to TBT removal from natural seawater. A higher removal efficiency of TBT (>99%) was obtained for the nZnO/activated carbon composite material and for activated carbon but not for nZnO.
Collapse
|
15
|
Goodsir F, Fisher TT, Barry J, Bolam T, Nelson LD, Rumney HS, Brant JL. Extraction of bioavailable contaminants from marine sediments: an approach to reducing toxicity using adsorbent parcels. MARINE POLLUTION BULLETIN 2013; 72:250-256. [PMID: 23711841 DOI: 10.1016/j.marpolbul.2013.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 04/14/2013] [Accepted: 04/23/2013] [Indexed: 06/02/2023]
Abstract
This paper demonstrates an approach to reducing acute toxicity in marine sediments using adsorbent parcels. Acute toxicity tests were carried using the marine amphipod Corophium volutator. Marine sediments were spiked with two know contaminants tributyltin and naphthalene and then treated with adsorbent parcels containing either amberlite XAD4 or activated carbon. Results showed that both types of adsorbent parcels were effective in reducing acute toxicity, not only within spiked sediments containing naphthalene and/or tributyltin, but also in an environmental field samples form an expected contaminated site. Adsorbent parcels such as these could provide a practical approach to remediate areas of contaminated sediment within marine environments. Furthermore adsorbents can be used as an identification tool for problematic contaminants using a toxicity identification evaluation approach.
Collapse
|
16
|
Talawat J, Sabatini DA, Tongcumpou C. Behavior of DNAPL mixture of organometallic and chlorinated solvent in the presence of surfactants and alcohols as density modifying agents. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1619-1627. [PMID: 23947699 DOI: 10.1080/10934529.2013.815093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This work evaluates the behavior of surfactant and alcohols in combination with a mixture of tributyltinchloride (TBT) and tetrachloroethylene (PCE) with the goal of modifying the mixed oil from being a dense non-aqueous phase liquid (DNAPL) to a light non-aqueous phase liquid (LNAPL). Phase behavior of the mixed oil was studied under various combinations of surfactant, alcohol, and salinity. Phase density conversion was examined using pseudo-ternary phase diagrams constructed between the mixed oil, surfactant solution (4 wt%), and two types of alcohols (n-butyl alcohol (BuOH) and tert-butyl alcohol (TBA)). Aqueous phase solubilization and oil phase density modification were studied at varying alcohol to surfactant (A/S) ratios. The results showed that the optimum surfactant system was sodium dihexylsulfosuccinate (SDHS) and hexadecyl diphenyloxidedisulfonate (C16DPDS) (3.6 wt% and 0.4 wt%, respectively) with salt (NaCl) of 3 wt%. From pseudo-ternary phase diagrams, BuOH was found to produce a larger LNAPL region than TBA. From solubilization studies, the surfactant system plus either TBA or BuOH caused PCE preferential solubilization and this preference was more pronounced at higher total surfactant concentration in the system with TBA addition. In terms of density modification, BuOH produced lower oil density than TBA at high A/S ratio. This phase behavior knowledge can be used to optimize site remediation of organometallic DNAPLs.
Collapse
|
17
|
Bancon-Montigny C, Delalonde M, Rondet E, Vachoud L, Grosmaire L, Delarbre JL, Wisniewski C. A contribution to the understanding of micro-pollutant sorption mechanisms in wastewater biological processes: case of the tributyltin. ENVIRONMENTAL TECHNOLOGY 2012; 33:2229-2233. [PMID: 23393963 DOI: 10.1080/09593330.2012.729769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Micro-pollutant fluxes distribution throughout the physical separation and biological units of wastewater treatment plants (WWTPs) are very dependent ofsorption phenomena. The understanding and the control of the sorption stage is thus essential for the optimization of micro-pollutant removal in WWTPs, and particularly in biological treatments where these mechanisms influence the bioavailability towards micro-organisms. If the influence of the micro-pollutant physicochemical characteristics (e.g. Kow, pKa) on their ability to sorb on biological media (i.e. sludge) has been demonstrated, it appears that some other parameters, like the biosorbent characteristics, have to been taken into account. The aim of this study is thus to correlate the capacities of sorption of an environmentally relevant substance (tributyltin), with a thorough characterization of different types of sludge. The characterization of three biological media (raw, sonicated and flocculated activated sludges) is proposed according to various characterization parameters related to biochemical composition, aggregate size, rheological behaviour etc. The results show first that, whatever the sludge characteristics may be, the sorption mechanisms are very rapid and that an equilibrium state is reached after a few minutes. The influence of the sludge characteristics, notably the floc size and the chemical oxygen demand partition between solid and colloidal fraction, on sorption efficiency is demonstrated. A Langmuir modelling allows giving the maximum sorption capacity, as well as the binding energy for the three studied sludges, according to their physicochemical characteristics.
Collapse
|
18
|
Nowak C, Vogt C, Oehlmann J, Pfenninger M, Schwenk K, Streit B, Oetken M. Impact of genetic diversity and inbreeding on the life-history of Chironomus midges over consecutive generations. CHEMOSPHERE 2012; 88:988-993. [PMID: 22480940 DOI: 10.1016/j.chemosphere.2012.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
We report results of a multigenerational experiment with Chironomus riparius. Two strains with a high and a low level of genetic variability were exposed to a low, environmentally relevant TBT concentration of 80 μg Sn kg(-1)sedimentdw nominally (time weighted mean, based on measured concentrations: 4.5 μg Sn kg(-1)sedimentdw), and various life history traits as well as genetic diversity were monitored for eleven consecutive generations. While TBT effects are hardly visible in the outbred and genetically diverse strain, the inbred and genetically impoverished strain shows a clearly reduced population growth rate compared to the control. Moreover, the impoverished strain shows an increase in fitness over time. Analyses of variation at five microsatellite loci revealed that the level of genetic variation is strongly reduced in the inbred compared to the outbred strain. Moreover, genetic diversity increases over time in the inbred strain. This finding explains the observed increase in fitness in both inbred lineages (control and TBT exposed). The results document that inbreeding and the level of genetic diversity might be of crucial importance in populations under pollution stress. Furthermore, ecotoxicological bioassays have to consider genetic diversity if results between laboratories should be comparable. Our data provides evidence that genetic diversity strongly contributes to the survival of a population exposed to chemical pollution.
Collapse
|
19
|
Pinna D, Salvadori B, Galeotti M. Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 423:132-141. [PMID: 22401787 DOI: 10.1016/j.scitotenv.2012.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/30/2012] [Accepted: 02/08/2012] [Indexed: 05/31/2023]
Abstract
In this study, some mixtures of consolidants or water-repellent products and biocides developed to prevent biological growth, were tested over time on three stone substrates with different bioreceptivity. The performance of both traditional (tetraethylorthosilicate, methylethoxy polysiloxane, Paraloid B72, tributyltin oxide, dibutyltin dilaurate) and innovative compounds (copper nanoparticles) was assessed using colour measurements, the water absorption by contact sponge method, and observation under stereo and optical microscopes. The application of the mixtures had also the purpose of controlling re-colonization on stone after a conservation treatment. The study site was the archaeological Area of Fiesole; the mixtures were applied in situ to sandstone, marble and plaster which had been cleaned beforehand. An innovative aspect of the study is that, by using non-invasive methods, it also permitted monitoring the mixtures' effectiveness in preventing biological growth. The monitoring results made it possible to assess the bioreceptivity of the treated stones (sandstone, marble, plaster) over a period of almost three years. The results showed that the mixtures of consolidants or water-repellent products with biocides were effective in preventing biological growth on both a substrate with low bioreceptivity like plaster and a substrate with high bioreceptivity such as marble. The innovative mixture of nano-Cu particles with a water-repellent yielded good results in terms of preventing biological colonization. Moreover, they apparently did not affect the substrates' colour. Mixtures of nano-Cu particles with a consolidant and a water-repellent hold great promise for preventing re-colonization of stone after conservation treatment.
Collapse
|
20
|
Wang YF, Tam NFY. Natural attenuation of contaminated marine sediments from an old floating dock - Part I: Spatial and temporal changes of organic and inorganic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 420:90-99. [PMID: 22326320 DOI: 10.1016/j.scitotenv.2012.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 05/31/2023]
Abstract
Temporal and spatial changes of mixed pollutants, including eight heavy metals, 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT) in surface marine sediments were examined for a one-year period after the removal of an old floating dock in Hong Kong SAR, South China. The sediments from the impacted stations close to the dock were highly polluted with zinc (Zn) and copper (Cu), and were moderately polluted with TBT and total PAHs, based on their effects range-low (ERL) guideline values, while those collected in the reference stations away from the dock were lower than the ERL. Strong, positive correlations were found between the organic pollutants and heavy metals only in the impacted stations, suggesting that the old floating dock was a significant source of mixed pollutants. There was no significant decline in the levels of total PAHs, TBT and heavy metals and "hot spots" of contamination were still detected a year after the removal of the dock. However, the profiles of 16 PAHs in the impacted stations changed 6 months after the removal of the dock, with decreases of certain low-molecular-weight PAHs, especially fluorene, as a sign of biodegradation in situ. Further, principal component analysis (PCA) based on an integrated dataset of the pollutants together with general sediment properties showed that the temporal changes of the biodegradable low-molecular-weight PAHs were highly associated with the pH value and total Kjeldahl nitrogen, while heavy metals were independent of time and other sediment properties during natural attenuation in the dock area.
Collapse
|
21
|
Xiao X, Sheng GD, Qiu Y. Improved understanding of tributyltin sorption on natural and biochar-amended sediments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2682-7. [PMID: 21898569 DOI: 10.1002/etc.672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/13/2011] [Accepted: 08/01/2011] [Indexed: 05/25/2023]
Abstract
A poor understanding of tributyltin (TBT) sorption on sediments has hindered an accurate evaluation of its environmental fate. The present study determined TBT sorption by a freshwater sediment (BH) and a coastal marine sediment (TZ) as influenced by pH, salinity, and biochar (BC) amendment into TZ. The isotherms were essentially linear, with K(OC) values in the range of 10(4) to 10(5) L/kg. Tributyltin sorption at pH 3.56 and 8.00 occurred mainly via partitioning. It reached maxima at pH equal to its pK(a) (=6.25) because of added ion exchange. A salinity increase from 5 to 35 practical salinity units enhanced TBT sorption at pH 3.56 and 8.00 on TZ by approximately 30% and on BH by approximately 80%, ascribed to the salting-out effect that reduced the solubilities of tributyltin hydroxide (TBTOH) and tributyltin chloride (TBTCl). At pH 6.25, the same salinity increase reduced TBT sorption on TZ by approximately 20% but enhanced TBT sorption on BH by approximately 35%. This was attributed to the enhancing role of salting out and the reducing role of metal competition for ion exchange. Tributyltin was two orders of magnitude more effectively sorbed by BC than by total organic carbon of TZ, mainly because of the high level of surface area of the BC. Although BC affinity for TBT may be significantly diminished when present in TZ, it was considered to be the primary contributor to TBT sorption from water. Biochar may thus be used to immobilize TBT in sediment for potential remediation.
Collapse
|
22
|
Li ZJ, Ren HY, Cui MC, Deuther-Conrad W, Tang RK, Steinbach J, Brust P, Liu BL, Jia HM. Synthesis and biological evaluation of novel 4-benzylpiperazine ligands for sigma-1 receptor imaging. Bioorg Med Chem 2011; 19:2911-7. [PMID: 21481592 DOI: 10.1016/j.bmc.2011.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
We report the synthesis and evaluation of 4-benzylpiperazine ligands (BP-CH(3), BP-F, BP-Br, BP-I, and BP-NO(2)) as potential σ(1) receptor ligands. The X-ray crystal structure of BP-Br, which crystallized with monoclinic space group P2(1)/c, has been determined. In vitro competition binding assays showed that all the five ligands exhibit low nanomolar affinity for σ(1) receptors (K(i)=0.43-0.91nM) and high subtype selectivity (σ(2) receptor: K(i)=40-61nM; K(i)σ(2)/K(i)σ(1)=52-94). [(125)I]BP-I (1-(1,3-benzodioxol-5-ylmethyl)-4-(4-iodobenzyl)piperazine) was prepared in 53±10% isolated radiochemical yield, with radiochemical purity of >99% by HPLC analysis after purification, via iododestannylation of the corresponding tributyltin precursor. The logD value of [(125)I]BP-I was found to be 2.98±0.17, which is within the range expected to give high brain uptake. Biodistribution studies in mice demonstrated relatively high concentration of radiolabeled substances in organs known to contain σ(1) receptors, including the brain, lung, kidney, heart, and spleen. Administration of haloperidol 5min prior to injection of [(125)I]BP-I significantly reduced the concentration of radioactivity in the above-mentioned organs. The accumulation of radiolabeled substance in the thyroid was quite low suggesting that [(125)I]BP-I is relatively stable to in vivo deiodination. These findings suggest that the binding of [(125)I]BP-I to σ(1) receptors in vivo is specific.
Collapse
|
23
|
Bangkedphol S, Keenan HE, Davidson CM, Sakultantimetha A, Sirisaksoontorn W, Songsasen A. Enhancement of tributyltin degradation under natural light by N-doped TiO2 photocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:533-537. [PMID: 20855158 DOI: 10.1016/j.jhazmat.2010.08.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 08/16/2010] [Accepted: 08/19/2010] [Indexed: 05/29/2023]
Abstract
Photo-degradation of tributyltin (TBT) has been enhanced by TiO(2) nanoparticles doped with nitrogen (N-doped TiO(2)). The N-doped catalyst was prepared by a sol-gel reaction of titanium (IV) tetraisopropoxide with 25% ammonia solution and calcined at various temperatures from 300 to 600°C. X-ray diffraction results showed that N-doped TiO(2) remained amorphous at 300°C. At 400°C the anatase phase occurred then transformed to the rutile phase at 600°C. The crystallite size calculated from Scherrer's equation was in the range of 16-51 nm which depended on the calcination temperature. N-doped TiO(2) calcined at 400°C which contained 0.054% nitrogen, demonstrated the highest photocatalytic degradation of TBT at 28% in 3h under natural light when compared with undoped TiO(2) and commercial photocatalyst, P25-TiO(2) which gave 14.8 and 18% conversion, respectively.
Collapse
|
24
|
Fang L, Borggaard OK, Marcussen H, Holm PE, Bruun Hansen HC. The pH-dependent adsorption of tributyltin to charcoals and soot. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3642-3649. [PMID: 20828900 DOI: 10.1016/j.envpol.2010.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 07/23/2010] [Accepted: 08/03/2010] [Indexed: 05/29/2023]
Abstract
Widespread use of tributyltin (TBT) poses a serious environmental problem. Adsorption by black carbon (BC) may strongly affect its behavior. The adsorption of TBT to well characterized soot and two charcoals with specific surface area in the range of 62-111m(2)g(-1) have been investigated with main focus on pH effects. The charcoals but not soot possess acidic functional groups. TBT adsorption reaches maximum at pH 6-7 for charcoals, and at pH>6 for soot. Soot has between 1.5 and 15 times higher adsorption density (0.09-1.77μmolm(-2)) than charcoals, but charcoals show up to 17 times higher sorption affinities than soot. TBT adsorption is successfully described by a new pH-dependent dual Langmuir model considering electrostatic and hydrophobic adsorption, and pH effects on TBT speciation and BC surface charge. It is inferred that strong sorption of the TBTOH species to BC may affect TBT toxicity.
Collapse
|
25
|
Al-Deyab SS, El-Newehy MH, Al-Hazmi AM. Synthesis, characterization and reactivity ratio study of poly(di(tri-n-butyltin) citraconate-co-N-vinylimidazole). Molecules 2010; 15:4750-6. [PMID: 20657390 PMCID: PMC6257635 DOI: 10.3390/molecules15074750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 06/28/2010] [Accepted: 06/30/2010] [Indexed: 12/05/2022] Open
Abstract
The organotin monomer di(tri-n-butyltin) citraconate (DTBTC, I) was synthesized. Subsequently this monomer was copolymerized with N-vinylimidazole (VI) using a free radical technique. The overall conversion was kept low (≤14% wt/wt) for all studied samples and the copolymer composition was determined from tin analysis using the Gilman and Rosenberg method. The synthesized monomer and copolymer were further characterized by elemental analysis, 1H- and 13C-NMR, and FTIR spectroscopy.
Collapse
|