1
|
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49:1603-16. [PMID: 20840865 PMCID: PMC2990475 DOI: 10.1016/j.freeradbiomed.2010.09.006] [Citation(s) in RCA: 3649] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 02/06/2023]
Abstract
Extensive research during the past 2 decades has revealed the mechanism by which continued oxidative stress can lead to chronic inflammation, which in turn could mediate most chronic diseases including cancer, diabetes, and cardiovascular, neurological, and pulmonary diseases. Oxidative stress can activate a variety of transcription factors including NF-κB, AP-1, p53, HIF-1α, PPAR-γ, β-catenin/Wnt, and Nrf2. Activation of these transcription factors can lead to the expression of over 500 different genes, including those for growth factors, inflammatory cytokines, chemokines, cell cycle regulatory molecules, and anti-inflammatory molecules. How oxidative stress activates inflammatory pathways leading to transformation of a normal cell to tumor cell, tumor cell survival, proliferation, chemoresistance, radioresistance, invasion, angiogenesis, and stem cell survival is the focus of this review. Overall, observations to date suggest that oxidative stress, chronic inflammation, and cancer are closely linked.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
3649 |
2
|
Feig C, Jones JO, Kraman M, Wells RJB, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, Teichmann SA, Janowitz T, Jodrell DI, Tuveson DA, Fearon DT. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 2013; 110:20212-20217. [PMID: 24277834 PMCID: PMC3864274 DOI: 10.1073/pnas.1320318110] [Citation(s) in RCA: 1533] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An autochthonous model of pancreatic ductal adenocarcinoma (PDA) permitted the analysis of why immunotherapy is ineffective in this human disease. Despite finding that PDA-bearing mice had cancer cell-specific CD8(+) T cells, the mice, like human patients with PDA, did not respond to two immunological checkpoint antagonists that promote the function of T cells: anti-cytotoxic T-lymphocyte-associated protein 4 (α-CTLA-4) and α-programmed cell death 1 ligand 1 (α-PD-L1). Immune control of PDA growth was achieved, however, by depleting carcinoma-associated fibroblasts (CAFs) that express fibroblast activation protein (FAP). The depletion of the FAP(+) stromal cell also uncovered the antitumor effects of α-CTLA-4 and α-PD-L1, indicating that its immune suppressive activity accounts for the failure of these T-cell checkpoint antagonists. Three findings suggested that chemokine (C-X-C motif) ligand 12 (CXCL12) explained the overriding immunosuppression by the FAP(+) cell: T cells were absent from regions of the tumor containing cancer cells, cancer cells were coated with the chemokine, CXCL12, and the FAP(+) CAF was the principal source of CXCL12 in the tumor. Administering AMD3100, a CXCL12 receptor chemokine (C-X-C motif) receptor 4 inhibitor, induced rapid T-cell accumulation among cancer cells and acted synergistically with α-PD-L1 to greatly diminish cancer cells, which were identified by their loss of heterozygosity of Trp53 gene. The residual tumor was composed only of premalignant epithelial cells and inflammatory cells. Thus, a single protein, CXCL12, from a single stromal cell type, the FAP(+) CAF, may direct tumor immune evasion in a model of human PDA.
Collapse
|
research-article |
12 |
1533 |
3
|
Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, Collins NB, Bi K, LaFleur MW, Juneja VR, Weiss SA, Lo J, Fisher DE, Miao D, Van Allen E, Root DE, Sharpe AH, Doench JG, Haining WN. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 2017; 547:413-418. [PMID: 28723893 PMCID: PMC5924693 DOI: 10.1038/nature23270] [Citation(s) in RCA: 811] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/06/2017] [Indexed: 12/27/2022]
Abstract
Immunotherapy with PD-1 checkpoint blockade is effective in only a minority of patients with cancer, suggesting that additional treatment strategies are needed. Here we use a pooled in vivo genetic screening approach using CRISPR-Cas9 genome editing in transplantable tumours in mice treated with immunotherapy to discover previously undescribed immunotherapy targets. We tested 2,368 genes expressed by melanoma cells to identify those that synergize with or cause resistance to checkpoint blockade. We recovered the known immune evasion molecules PD-L1 and CD47, and confirmed that defects in interferon-γ signalling caused resistance to immunotherapy. Tumours were sensitized to immunotherapy by deletion of genes involved in several diverse pathways, including NF-κB signalling, antigen presentation and the unfolded protein response. In addition, deletion of the protein tyrosine phosphatase PTPN2 in tumour cells increased the efficacy of immunotherapy by enhancing interferon-γ-mediated effects on antigen presentation and growth suppression. In vivo genetic screens in tumour models can identify new immunotherapy targets in unanticipated pathways.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
811 |
4
|
Khong HT, Restifo NP. Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immunol 2002; 3:999-1005. [PMID: 12407407 PMCID: PMC1508168 DOI: 10.1038/ni1102-999] [Citation(s) in RCA: 772] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The idea that tumors must "escape" from immune recognition contains the implicit assumption that tumors can be destroyed by immune responses either spontaneously or as the result of immunotherapeutic intervention. Simply put, there is no need for tumor escape without immunological pressure. Here, we review evidence supporting the immune escape hypothesis and critically explore the mechanisms that may allow such escape to occur. We discuss the idea that the central engine for generating immunoresistant tumor cell variants is the genomic instability and dysregulation that is characteristic of the transformed genome. "Natural selection" of heterogeneous tumor cells results in the survival and proliferation of variants that happen to possess genetic and epigenetic traits that facilitate their growth and immune evasion. Tumor escape variants are likely to emerge after treatment with increasingly effective immunotherapies.
Collapse
|
Review |
23 |
772 |
5
|
Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E, Calabrese F, Basso G, Zanovello P, Cozzi E, Mandruzzato S, Bronte V. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 2010; 32:790-802. [PMID: 20605485 DOI: 10.1016/j.immuni.2010.05.010] [Citation(s) in RCA: 725] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/17/2010] [Accepted: 05/20/2010] [Indexed: 12/21/2022]
Abstract
Tumor growth is associated with a profound alteration in myelopoiesis, leading to recruitment of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). We showed that among factors produced by various experimental tumors, the cytokines GM-CSF, G-CSF, and IL-6 allowed a rapid generation of MDSCs from precursors present in mouse and human bone marrow (BM). BM-MDSCs induced by GM-CSF+IL-6 possessed the highest tolerogenic activity, as revealed by the ability to impair the priming of CD8(+) T cells and allow long term acceptance of pancreatic islet allografts. Cytokines inducing MDSCs acted on a common molecular pathway and the immunoregulatory activity of both tumor-induced and BM-derived MDSCs was entirely dependent on the C/EBPbeta transcription factor. Adoptive transfer of tumor antigen-specific CD8(+) T lymphocytes resulted in therapy of established tumors only in mice lacking C/EBPbeta in the myeloid compartment, suggesting that C/EBPbeta is a critical regulator of the immunosuppressive environment created by growing cancers.
Collapse
|
|
15 |
725 |
6
|
Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, Azidis-Yates E, Vassiliadis D, Bell CC, Gilan O, Jackson S, Tan L, Wong SQ, Hollizeck S, Michalak EM, Siddle HV, McCabe MT, Prinjha RK, Guerra GR, Solomon BJ, Sandhu S, Dawson SJ, Beavis PA, Tothill RW, Cullinane C, Lehner PJ, Sutherland KD, Dawson MA. An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell 2019; 36:385-401.e8. [PMID: 31564637 PMCID: PMC6876280 DOI: 10.1016/j.ccell.2019.08.008] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/26/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022]
Abstract
Loss of MHC class I (MHC-I) antigen presentation in cancer cells can elicit immunotherapy resistance. A genome-wide CRISPR/Cas9 screen identified an evolutionarily conserved function of polycomb repressive complex 2 (PRC2) that mediates coordinated transcriptional silencing of the MHC-I antigen processing pathway (MHC-I APP), promoting evasion of T cell-mediated immunity. MHC-I APP gene promoters in MHC-I low cancers harbor bivalent activating H3K4me3 and repressive H3K27me3 histone modifications, silencing basal MHC-I expression and restricting cytokine-induced upregulation. Bivalent chromatin at MHC-I APP genes is a normal developmental process active in embryonic stem cells and maintained during neural progenitor differentiation. This physiological MHC-I silencing highlights a conserved mechanism by which cancers arising from these primitive tissues exploit PRC2 activity to enable immune evasion.
Collapse
|
research-article |
6 |
436 |
7
|
Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol 2018; 24:3834-3848. [PMID: 30228778 PMCID: PMC6141340 DOI: 10.3748/wjg.v24.i34.3834] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is often diagnosed at an advanced stage when tumor cell dissemination has taken place. Chemo- and targeted therapies provide only a limited increase of overall survival for these patients. The major reason for clinical outcome finds its origin in therapy resistance. Escape mechanisms to both chemo- and targeted therapy remain the main culprits. Here, we evaluate major resistant mechanisms and elaborate on potential new therapies. Amongst promising therapies is α-amanitin antibody-drug conjugate targeting hemizygous p53 loss. It becomes clear that a dynamic interaction with the tumor microenvironment exists and that this dictates therapeutic outcome. In addition, CRC displays a limited response to checkpoint inhibitors, as only a minority of patients with microsatellite instable high tumors is susceptible. In this review, we highlight new developments with clinical potentials to augment responses to checkpoint inhibitors.
Collapse
|
Review |
7 |
408 |
8
|
Lee SJ, Jang BC, Lee SW, Yang YI, Suh SI, Park YM, Oh S, Shin JG, Yao S, Chen L, Choi IH. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett 2006; 580:755-62. [PMID: 16413538 DOI: 10.1016/j.febslet.2005.12.093] [Citation(s) in RCA: 382] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/12/2022]
Abstract
Majority of cancer cells upregulate co-inhibitory molecule B7-H1 which confers resistance to anti-tumor immunity, allowing cancers to escape from host immune surveillance. We addressed the molecular mechanism underlying the regulation of cancer-associated B7-H1 expression in response to interferon-gamma (IFN-gamma). Using promoter constructs in luciferase assay, the region between 202 and 320 bp from the translational start site is responsible for B7-H1 expression. Electrophoretic mobility shift assay, site-directed mutagenesis and knockdown experiment using siRNA revealed that interferon regulatory factor-1 (IRF-1) is primarily responsible for the constitutive B7-H1 expression as well as for the IFN-gamma-mediated B7-H1 upregulation in a human lung cancer cell line A549. Additionally, AG490, a Janus activated kinase/signal transducer and activator of transcription inhibitor, greatly abolished the responsiveness of A549 cells to IFN-gamma by reducing the IRF-1 transcription. Our findings support a critical role of IRF-1 in the regulation of constitutive and IFN-gamma-induced expression of B7-H1 in cancer cells.
Collapse
MESH Headings
- Antigens, CD
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- B7-1 Antigen/biosynthesis
- B7-1 Antigen/genetics
- B7-1 Antigen/immunology
- B7-H1 Antigen
- Electrophoretic Mobility Shift Assay
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/immunology
- HeLa Cells
- Humans
- Interferon Regulatory Factor-1/biosynthesis
- Interferon Regulatory Factor-1/genetics
- Interferon Regulatory Factor-1/immunology
- Interferon-gamma/immunology
- Interferon-gamma/pharmacology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mutagenesis, Site-Directed
- Peptides/genetics
- Peptides/immunology
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/immunology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/immunology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- RNA, Small Interfering/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Transcription, Genetic/immunology
- Tumor Escape/drug effects
- Tumor Escape/genetics
- Tumor Escape/immunology
- Tyrphostins/pharmacology
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
382 |
9
|
Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol 2004; 17:133-44. [PMID: 15611321 DOI: 10.1093/intimm/dxh194] [Citation(s) in RCA: 347] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since metastasis is the major cause of death for cancer patients, there is an urgent need to develop new therapies to control hematogenous dissemination of cancer cells. Previously we and others demonstrated a novel mechanism that allows tumors to escape from the host immune response by expressing PD-L1 which can negatively regulate immune response through the interaction with PD-1, an immunoinhibitory receptor belonging to the CD28 family. In this study, we report that hematogenous spread of poorly immunogenic B16 melanoma cells to the liver was inhibited in PD-1-deficient mice. After inoculation to spleen, PD-L1 was induced on tumor cells, which did not express PD-L1 in vitro. As compared with wild-type mice, intrasplenic injection of B16 cells into PD-1-deficient mice showed enhanced induction of effector T cells in spleen, prolonged T cell proliferation and cytokine production, and augmented homing of effector T cells to tumor sites in the liver, resulting in accumulation of effector T cells in the tumor sites. PD-1 blockade by genetic manipulation or antibody treatment inhibited not only hematogenous dissemination of B16 melanoma cells to the liver on the C57BL/6 background, but also dissemination of CT26 colon cancer cells to the lung on the BALB/c background. These results suggest that PD-1 blockade may be a powerful tool for treatment of hematogenous spread of various tumor cells.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
347 |
10
|
Abstract
Changes in classical and nonclassical HLA class I as well as HLA class II antigens have been identified in malignant lesions. These changes, which are described in this review are believed to play a major role in the clinical course of the disease since both HLA class I and class II antigens are critical to the interaction between tumor cells and components of both innate and adaptive immune system. Abnormalities in HLA antigen expression in malignant cells, which range in frequency from 0-90%, are caused by distinct mechanisms. They include defects in beta(2)-microglobulin (beta(2)m) synthesis, loss of the gene(s) encoding HLA antigen heavy chain(s), mutations, which inhibit HLA antigen heavy chain transcription or translation, defects in the regulatory mechanisms, which control HLA antigen expression and/or abnormalities in one or more of the antigen processing, machinery (APM) components. More recently, epigenetic events associated with tumor development and progression have been found to underlie changes in HLA antigen, APM component, costimulatory molecule and tumor antigen (TA) expression in malignant cells. The types of epigenetic modifications that may occur in normal and malignant cells as well as their role in changes in HLA antigen expression by malignant cells have been reviewed. The epigenetic events associated with alterations in HLA antigen expression may be clinically relevant as, in some cases, they have been shown to impair the recognition of tumor cells by components of the adaptive immune system. The functional relevance and potential clinical significance of these epigenetic alterations have been addressed. Finally, unlike genetic alterations, epigenetic modifications can, in some cases, be reversed with pharmacologic agents that induce DNA hypomethylation or inhibit histone deacetylation. Therefore, strategies to overcome epigenetic modifications underlying changes in HLA antigen expression in malignant cells have been discussed.
Collapse
|
Review |
17 |
321 |
11
|
Daley D, Mani VR, Mohan N, Akkad N, Ochi A, Heindel DW, Lee KB, Zambirinis CP, Pandian GSB, Savadkar S, Torres-Hernandez A, Nayak S, Wang D, Hundeyin M, Diskin B, Aykut B, Werba G, Barilla RM, Rodriguez R, Chang S, Gardner L, Mahal LK, Ueberheide B, Miller G. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med 2017; 23:556-567. [PMID: 28394331 PMCID: PMC5419876 DOI: 10.1038/nm.4314] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
The progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intratumoral immune tolerance are uncertain. Dectin 1 is an innate immune receptor crucial for anti-fungal immunity, but its role in sterile inflammation and oncogenesis has not been well defined. Furthermore, non-pathogen-derived ligands for dectin 1 have not been characterized. We found that dectin 1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin 1 ligation accelerated the progression of PDA in mice, whereas deletion of Clec7a-the gene encoding dectin 1-or blockade of dectin 1 downstream signaling was protective. We found that dectin 1 can ligate the lectin galectin 9 in mouse and human PDA, which results in tolerogenic macrophage programming and adaptive immune suppression. Upon disruption of the dectin 1-galectin 9 axis, CD4+ and CD8+ T cells, which are dispensable for PDA progression in hosts with an intact signaling axis, become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting dectin 1 signaling is an attractive strategy for developing an immunotherapy for PDA.
Collapse
|
research-article |
8 |
282 |
12
|
Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grüssel S, Sipos B, Grützmann R, Pilarsky C, Ungefroren H, Saeger HD, Klöppel G, Kabelitz D, Kalthoff H. Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 2007; 67:8344-50. [PMID: 17804750 DOI: 10.1158/0008-5472.can-06-3304] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The forkhead transcription factor Foxp3 is highly expressed in CD4+CD25+ regulatory T cells (Treg) and was recently identified as a key player in mediating their inhibitory functions. Here, we describe for the first time the expression and function of Foxp3 in pancreatic ductal adenocarcinoma cells and tumors. Foxp3 expression was induced by transforming growth factor-beta2 (TGF-beta2), but not TGF-beta1 stimulation in these cells, and was partially suppressed following antibody-mediated neutralization of TGF-beta2. The TGF-beta2 effect could be mimicked by ectopic expression of a constitutively active TGF-beta type I receptor/ALK5 mutant. Down-regulation of Foxp3 with small interfering RNA (siRNA) in pancreatic carcinoma cells resulted in the up-regulation of interleukin 6 (IL-6) and IL-8 expression, providing evidence for a negative transcriptional activity of Foxp3 also in these epithelial cells. Coculture of Foxp3-expressing tumor cells with naive T cells completely inhibited T-cell proliferation, but not activation, and this antiproliferative effect was partially abrogated following specific inhibition of Foxp3 expression. These findings indicate that pancreatic carcinoma cells share growth-suppressive effects with Treg and suggest that mimicking Treg function may represent a new mechanism of immune evasion in pancreatic cancer.
Collapse
|
|
18 |
267 |
13
|
Ni L, Lu J. Interferon gamma in cancer immunotherapy. Cancer Med 2018; 7:4509-4516. [PMID: 30039553 PMCID: PMC6143921 DOI: 10.1002/cam4.1700] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
Immune system can recognize self vs transformed self. That is why cancer immunotherapy achieves notable benefits in a wide variety of cancers. Recently, several papers reported that immune checkpoint blockade therapy led to upregulation of IFNγ and in turn clearance of tumor cells. In this review, we conducted an extensive literature search of recent 5-year studies about the roles of IFNγ signaling in both tumor immune surveillance and immune evasion. In addition to well-known functions, IFNγ signaling also induces tumor ischemia and homeostasis program, resulting in tumor clearance and tumor escape, respectively. The yin and the yang of IFNγ signaling are summarized. Thus, this review helps us to comprehensively understand the roles of IFNγ in tumor immunity, which contributes to better design and management of clinical immunotherapy approaches.
Collapse
|
Review |
7 |
258 |
14
|
He W, Liu Q, Wang L, Chen W, Li N, Cao X. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol 2007; 44:2850-9. [PMID: 17328955 DOI: 10.1016/j.molimm.2007.01.022] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 01/19/2007] [Indexed: 12/23/2022]
Abstract
Tumors actively develop different mechanisms such as immunosuppressive cytokine production to escape from immune control and limit the success of immunotherapy. More and more evidences suggest that chronic inflammation contributes to cancer development and progression. Recently, Toll-like receptors (TLRs), the receptors by which immune cells recognize microbial conserved components such as lipopolysaccharide (LPS) then initiate immune and inflammatory responses, have been found to be expressed by some kinds of tumor cells. However, what is the biological function of TLRs on tumor cells and whether human lung cancer cells can express TLRs remain to be fully understood. In the present study, we demonstrate that TLR4 is expressed on human lung cancer cell lines. TLR4 ligation promotes production of immunosuppressive cytokines TGF-beta, VEGF, proangiogenic chemokine IL-8 by human lung cancer cells. In addition, TLR4 ligation induces resistance of human lung cancer cells to TNF-alpha or TRAIL-induced apoptosis. Furthermore, we show p38MAPK activation is necessary for increased VEGF and IL-8 secretion, NF-kappaB activation contributes to apoptosis resistance of human lung cancer cells induced by LPS. Therefore, we demonstrate that TLR4 expressed on human lung cancer cells is functionally active, and may play important roles in promoting immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
258 |
15
|
Miska J, Lee-Chang C, Rashidi A, Muroski ME, Chang AL, Lopez-Rosas A, Zhang P, Panek WK, Cordero A, Han Y, Ahmed AU, Chandel NS, Lesniak MS. HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma. Cell Rep 2019; 27:226-237.e4. [PMID: 30943404 PMCID: PMC6461402 DOI: 10.1016/j.celrep.2019.03.029] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/07/2018] [Accepted: 03/08/2019] [Indexed: 11/29/2022] Open
Abstract
The mechanisms by which regulatory T cells (Tregs) migrate to and function within the hypoxic tumor microenvironment are unclear. Our studies indicate that specific ablation of hypoxia-inducible factor 1α (HIF-1α) in Tregs results in enhanced CD8+ T cell suppression versus wild-type Tregs under hypoxia, due to increased pyruvate import into the mitochondria. Importantly, HIF-1α-deficient Tregs are minimally affected by the inhibition of lipid oxidation, a fuel that is critical for Treg metabolism in tumors. Under hypoxia, HIF-1α directs glucose away from mitochondria, leaving Tregs dependent on fatty acids for mitochondrial metabolism within the hypoxic tumor. Indeed, inhibition of lipid oxidation enhances the survival of mice with glioma. Interestingly, HIF-1α-deficient-Treg mice exhibit significantly enhanced animal survival in a murine model of glioma, due to their stymied migratory capacity, explaining their reduced abundance in tumor-bearing mice. Thus HIF-1α acts as a metabolic switch for Tregs between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
223 |
16
|
Cao J, Yan Q. Cancer Epigenetics, Tumor Immunity, and Immunotherapy. Trends Cancer 2020; 6:580-592. [PMID: 32610068 DOI: 10.1016/j.trecan.2020.02.003] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Epigenetic mechanisms, including DNA methylation, histone post-translational modifications, and chromatin structure regulation, are critical for the interactions between tumor and immune cells. Emerging evidence shows that tumors commonly hijack various epigenetic mechanisms to escape immune restriction. As a result, the pharmaceutical modulation of epigenetic regulators, including 'writers', 'readers', 'erasers', and 'remodelers', is able to normalize the impaired immunosurveillance and/or trigger antitumor immune responses. Thus, epigenetic targeting agents are attractive immunomodulatory drugs and will have major impacts on immuno-oncology. Here, we discuss epigenetic regulators of the cancer-immunity cycle and current advances in developing epigenetic therapies to boost anticancer immune responses, either alone or in combination with current immunotherapies.
Collapse
|
Review |
5 |
223 |
17
|
Paulson KG, Voillet V, McAfee MS, Hunter DS, Wagener FD, Perdicchio M, Valente WJ, Koelle SJ, Church CD, Vandeven N, Thomas H, Colunga AG, Iyer JG, Yee C, Kulikauskas R, Koelle DM, Pierce RH, Bielas JH, Greenberg PD, Bhatia S, Gottardo R, Nghiem P, Chapuis AG. Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA. Nat Commun 2018; 9:3868. [PMID: 30250229 PMCID: PMC6155241 DOI: 10.1038/s41467-018-06300-3] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Understanding mechanisms of late/acquired cancer immunotherapy resistance is critical to improve outcomes; cellular immunotherapy trials offer a means to probe complex tumor-immune interfaces through defined T cell/antigen interactions. We treated two patients with metastatic Merkel cell carcinoma with autologous Merkel cell polyomavirus specific CD8+ T cells and immune-checkpoint inhibitors. In both cases, dramatic remissions were associated with dense infiltration of activated CD8+s into the regressing tumors. However, late relapses developed at 22 and 18 months, respectively. Here we report single cell RNA sequencing identified dynamic transcriptional suppression of the specific HLA genes presenting the targeted viral epitope in the resistant tumor as a consequence of intense CD8-mediated immunologic pressure; this is distinguished from genetic HLA-loss by its reversibility with drugs. Transcriptional suppression of Class I loci may underlie resistance to other immunotherapies, including checkpoint inhibitors, and have implications for the design of improved immunotherapy treatments.
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/therapeutic use
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/immunology
- Carcinoma, Merkel Cell/therapy
- Carcinoma, Merkel Cell/virology
- Costimulatory and Inhibitory T-Cell Receptors/antagonists & inhibitors
- Gene Expression Regulation, Neoplastic
- Genes, MHC Class I/genetics
- Genes, MHC Class I/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/transplantation
- Male
- Merkel cell polyomavirus/immunology
- Merkel cell polyomavirus/isolation & purification
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/immunology
- Polyomavirus Infections/genetics
- Polyomavirus Infections/immunology
- Polyomavirus Infections/therapy
- Polyomavirus Infections/virology
- Sequence Analysis, RNA/methods
- Single-Cell Analysis/methods
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/therapy
- Skin Neoplasms/virology
- Testicular Neoplasms/immunology
- Testicular Neoplasms/secondary
- Testicular Neoplasms/virology
- Transcription, Genetic/immunology
- Transplantation, Autologous/methods
- Tumor Escape/genetics
- Tumor Virus Infections/genetics
- Tumor Virus Infections/immunology
- Tumor Virus Infections/therapy
- Tumor Virus Infections/virology
Collapse
|
research-article |
7 |
217 |
18
|
Raffaghello L, Prigione I, Airoldi I, Camoriano M, Levreri I, Gambini C, Pende D, Steinle A, Ferrone S, Pistoia V. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia 2005; 6:558-68. [PMID: 15548365 PMCID: PMC1531660 DOI: 10.1593/neo.04316] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric extracranial tumor characterized by downregulation of human leukocyte antigen class I and defects of the antigen processing machinery, two features that make it an appropriate target for natural killer (NK)-mediated lysis. NKG2D is an activating immunoreceptor expressed by cytotoxic T lymphocytes and NK cells. The ligands for NKG2D are the major histocompatibility complex class I-related chain (MIC)A and MICB glycoproteins, and the UL-16-binding proteins (ULBPs). Here, the expression of NKG2D ligands was investigated in human primary NB tumors and cell lines because scanty information is available on this issue. MICA, MICB, and ULBP transcripts were found in most tumors and cell lines. MICA protein was detected in some NB cell lines but not in primary tumors. A soluble form of MICA (sMICA) was identified in most patient sera and in some cell line supernatants. sMICA downregulated surface NKG2D in normal peripheral blood CD8(+) cells and decreased NK-mediated killing of MICA(+) NB cells. MICB was detected exclusively in the cytosol of primary tumors and cell lines. Approximately 50% of primary tumors expressed ULBP-2, but not ULBP-1 or -3. ULBP-3 was expressed in 5 of 9 cell lines, ULBP-2 in 2 of 9, whereas ULBP-1 was never detected. These studies delineate novel potential pathways of tumor escape and immunodeficiency in NB.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
212 |
19
|
Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, Spaczynski M, Whiteside TL. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene 2009; 28:4353-63. [PMID: 19826413 PMCID: PMC2794996 DOI: 10.1038/onc.2009.289] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/29/2009] [Accepted: 08/17/2009] [Indexed: 01/19/2023]
Abstract
Toll-like receptors (TLRs) expressed on immune cells trigger inflammatory responses. TLRs are also expressed on ovarian cancer (OvCa) cells, but the consequences of signaling by the TLR4/MyD88 pathway in these cells are unclear. Here, TLR4 and MyD88 expression in OvCa tissues (n=20) and cell lines (OVCAR3, SKOV3, AD10, A2780 and CP70) was evaluated by reverse transcriptase-PCR, western blots and immunohistochemistry. Cell growth, apoptosis, nuclear factor-kappaB (NF-kappaB) translocation, IRAK4 and TRIF expression and cJun phosphorylation were measured following tumor cell exposure to the TLR4 ligands, lipopolysaccharide (LPS) or paclitaxel (PTX). Culture supernatants were tested for cytokine levels. TLR4 was expressed in all tumors, tumor cell lines and normal epithelium. MyD88 was detectable in tumor tissues and in 3/5 OvCa lines but not in normal cells. In MyD88(+) SCOV3 cells, LPS or PTX binding to TLR4 induced IRAK4 activation and cJun phosphorylation, activated the NF-kappaB pathway and promoted interleukin (IL)-8, IL-6, vascular endothelial growth factor and monocyte chemotactic protein-1 production and resistance to drug-induced apoptosis. Silencing of TLR4 in SCOV3 cells with small interference RNA resulted in phosphorylated-cJun (p-cJun) downregulation and a loss of PTX resistance. In PTX-sensitive, MyD88(neg) A2780 cells, TLR4 stimulation upregulated TRIF, and TLR4 silencing eliminated this effect. Thus, TLR4/MyD88 signaling supports OvCa progression and chemoresistance, promoting immune escape.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
198 |
20
|
Peng S, Wang R, Zhang X, Ma Y, Zhong L, Li K, Nishiyama A, Arai S, Yano S, Wang W. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Mol Cancer 2019; 18:165. [PMID: 31747941 PMCID: PMC6864970 DOI: 10.1186/s12943-019-1073-4] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The ATLANTIC trial reported that higher PD-L1 expression in tumors was involved in a higher objective response in patients with EGFR+/ALK+ non-small cell lung cancer (NSCLC), indicating the possibility of anti-PD-1/PD-L1 therapy as a third-line (or later) treatment for advanced NSCLC. Therefore, the determination of status and regulatory mechanisms of PD-L1 in EGFR mutant NSCLC before and after acquired EGFR-TKIs resistance are meaningful. METHODS The correlation among PD-L1, c-MET, and HGF was analyzed based on TCGA datasheets and paired NSCLC specimens before and after acquired EGFR-TKI resistance. EGFR-TKI resistant NSCLC cells with three well-known mechanisms, c-MET amplification, hepatocyte growth factor (HGF), and EGFR-T790M, were investigated to determinate PD-L1 expression status and immune escape ability. PD-L1-deleted EGFR-TKIs sensitive and resistant cells were used to evaluate the immune escape ability of tumors in mice xenograft models. RESULTS Positive correlations were found among PD-L1, c-MET, and HGF, based on TCGA datasheets and paired NSCLC specimens. Moreover, the above three resistant mechanisms increased PD-L1 expression and attenuated activation and cytotoxicity of lymphocytes in vitro and in vivo, and downregulation of PD-L1 partially restored the cytotoxicity of lymphocytes. Both MAPK and PI3K pathways were involved in the three types of resistance mechanism-induced PD-L1 overexpression, whereas the NF-kappa B pathway was only involved in T790M-induced PD-L1 expression. CONCLUSIONS HGF, MET-amplification, and EGFR-T790M upregulate PD-L1 expression in NSCLC and promote the immune escape of tumor cells through different mechanisms.
Collapse
|
research-article |
6 |
176 |
21
|
Cervantes-Villagrana RD, Albores-García D, Cervantes-Villagrana AR, García-Acevez SJ. Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduct Target Ther 2020; 5:99. [PMID: 32555170 PMCID: PMC7303203 DOI: 10.1038/s41392-020-0205-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Normal cells are hijacked by cancer cells forming together heterogeneous tumor masses immersed in aberrant communication circuits that facilitate tumor growth and dissemination. Besides the well characterized angiogenic effect of some tumor-derived factors; others, such as BDNF, recruit peripheral nerves and leukocytes. The neurogenic switch, activated by tumor-derived neurotrophins and extracellular vesicles, attracts adjacent peripheral fibers (autonomic/sensorial) and neural progenitor cells. Strikingly, tumor-associated nerve fibers can guide cancer cell dissemination. Moreover, IL-1β, CCL2, PGE2, among other chemotactic factors, attract natural immunosuppressive cells, including T regulatory (Tregs), myeloid-derived suppressor cells (MDSCs), and M2 macrophages, to the tumor microenvironment. These leukocytes further exacerbate the aberrant communication circuit releasing factors with neurogenic effect. Furthermore, cancer cells directly evade immune surveillance and the antitumoral actions of natural killer cells by activating immunosuppressive mechanisms elicited by heterophilic complexes, joining cancer and immune cells, formed by PD-L1/PD1 and CD80/CTLA-4 plasma membrane proteins. Altogether, nervous and immune cells, together with fibroblasts, endothelial, and bone-marrow-derived cells, promote tumor growth and enhance the metastatic properties of cancer cells. Inspired by the demonstrated, but restricted, power of anti-angiogenic and immune cell-based therapies, preclinical studies are focusing on strategies aimed to inhibit tumor-induced neurogenesis. Here we discuss the potential of anti-neurogenesis and, considering the interplay between nervous and immune systems, we also focus on anti-immunosuppression-based therapies. Small molecules, antibodies and immune cells are being considered as therapeutic agents, aimed to prevent cancer cell communication with neurons and leukocytes, targeting chemotactic and neurotransmitter signaling pathways linked to perineural invasion and metastasis.
Collapse
|
Review |
5 |
159 |
22
|
Dunn J, Rao S. Epigenetics and immunotherapy: The current state of play. Mol Immunol 2017; 87:227-239. [PMID: 28511092 DOI: 10.1016/j.molimm.2017.04.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/14/2017] [Accepted: 04/22/2017] [Indexed: 12/14/2022]
Abstract
Cancer cells employ a number of mechanisms to escape immunosurveillance and facilitate tumour progression. The recent explosion of interest in immunotherapy, especially immune checkpoint blockade, is a result of discoveries about the fundamental ligand-receptor interactions that occur between immune and cancer cells within the tumour microenvironment. Distinct ligands expressed by cancer cells engage with cell surface receptors on immune cells, triggering inhibitory pathways (such as PD-1/PD-L1) that render immune cells immunologically tolerant. Importantly, recent studies on the role of epigenetics in immune evasion have exposed a key role for epigenetic modulators in augmenting the tumour microenvironment and restoring immune recognition and immunogenicity. Epigenetic drugs such as DNA methyltransferase and histone deacetylase inhibitors can reverse immune suppression via several mechanisms such as enhancing expression of tumour-associated antigens, components of the antigen processing and presenting machinery pathways, immune checkpoint inhibitors, chemokines, and other immune-related genes. These discoveries have established a highly promising basis for studies using combined epigenetic and immunotherapeutic agents as anti-cancer therapies. In this review, we discuss the exciting role of epigenetic immunomodulation in tumour immune escape, emphasising its significance in priming and sensitising the host immune system to immunotherapies through mechanisms such as the activation of the viral defence pathway. With this background in mind, we highlight the promise of combined epigenetic therapy and immunotherapy, focusing on immune checkpoint blockade, to improve outcomes for patients with many different cancer types.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
151 |
23
|
Frangieh CJ, Melms JC, Thakore PI, Geiger-Schuller KR, Ho P, Luoma AM, Cleary B, Jerby-Arnon L, Malu S, Cuoco MS, Zhao M, Ager CR, Rogava M, Hovey L, Rotem A, Bernatchez C, Wucherpfennig KW, Johnson BE, Rozenblatt-Rosen O, Schadendorf D, Regev A, Izar B. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat Genet 2021; 53:332-341. [PMID: 33649592 PMCID: PMC8376399 DOI: 10.1038/s41588-021-00779-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023]
Abstract
Resistance to immune checkpoint inhibitors (ICIs) is a key challenge in cancer therapy. To elucidate underlying mechanisms, we developed Perturb-CITE-sequencing (Perturb-CITE-seq), enabling pooled clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 perturbations with single-cell transcriptome and protein readouts. In patient-derived melanoma cells and autologous tumor-infiltrating lymphocyte (TIL) co-cultures, we profiled transcriptomes and 20 proteins in ~218,000 cells under ~750 perturbations associated with cancer cell-intrinsic ICI resistance (ICR). We recover known mechanisms of resistance, including defects in the interferon-γ (IFN-γ)-JAK/STAT and antigen-presentation pathways in RNA, protein and perturbation space, and new ones, including loss/downregulation of CD58. Loss of CD58 conferred immune evasion in multiple co-culture models and was downregulated in tumors of melanoma patients with ICR. CD58 protein expression was not induced by IFN-γ signaling, and CD58 loss conferred immune evasion without compromising major histocompatibility complex (MHC) expression, suggesting that it acts orthogonally to known mechanisms of ICR. This work provides a framework for the deciphering of complex mechanisms by large-scale perturbation screens with multimodal, single-cell readouts, and discovers potentially clinically relevant mechanisms of immune evasion.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
139 |
24
|
Hicklin DJ, Wang Z, Arienti F, Rivoltini L, Parmiani G, Ferrone S. beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest 1998; 101:2720-9. [PMID: 9637706 PMCID: PMC508863 DOI: 10.1172/jci498] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The potential negative impact of HLA class I antigen abnormalities on the outcome of T cell-based immunotherapy of melanoma has prompted us to investigate the mechanisms underlying lack of HLA class I antigen expression by melanoma cell lines Me18105, Me9923, and Me1386. Distinct mutations in the beta2-microglobulin (beta2m) gene were identified in each cell line which result in loss of functional beta2m. In Me18105 cells, an aberrant splicing mechanism caused by an A--> G point mutation in the splice acceptor site of intron 1 of the beta2m gene, deletes 11 bp from the beta2m mRNA creating a shift in the reading frame. In Me9923 cells a 14-bp deletion in exon 2 and in Me1386 cells a CT deletion in exon 1 of the beta2m gene produce a frameshift mutation. The beta2m gene mutations identified in Me18105, Me9923, and Me1386 cells were also detected in the surgically removed melanoma lesions from which the cell lines originated. Transfection of each melanoma cell line with a wild-type beta2m gene restored HLA class I antigen expression and, in Me18105 cells, recognition by Melan-A/MART-1-specific, HLA-A2-restricted cytotoxic T lymphocytes. Interestingly, the beta2m mutation present in Me9923 cells that were derived from a metastatic lesion was also found in the Me9923P cell line that originated from the autologous primary lesion. These data suggest that beta2m mutations in melanoma cells may be an early event in progression to the malignant phenotype.
Collapse
|
research-article |
27 |
132 |
25
|
Li J, Wang W, Zhang Y, Cieślik M, Guo J, Tan M, Green MD, Wang W, Lin H, Li W, Wei S, Zhou J, Li G, Jing X, Vatan L, Zhao L, Bitler B, Zhang R, Cho KR, Dou Y, Kryczek I, Chan TA, Huntsman D, Chinnaiyan AM, Zou W. Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy. J Clin Invest 2020; 130:2712-2726. [PMID: 32027624 PMCID: PMC7190935 DOI: 10.1172/jci134402] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Whether mutations in cancer driver genes directly affect cancer immune phenotype and T cell immunity remains a standing question. ARID1A is a core member of the polymorphic BRG/BRM-associated factor chromatin remodeling complex. ARID1A mutations occur in human cancers and drive cancer development. Here, we studied the molecular, cellular, and clinical impact of ARID1A aberrations on cancer immunity. We demonstrated that ARID1A aberrations resulted in limited chromatin accessibility to IFN-responsive genes, impaired IFN gene expression, anemic T cell tumor infiltration, poor tumor immunity, and shortened host survival in many human cancer histologies and in murine cancer models. Impaired IFN signaling was associated with poor immunotherapy response. Mechanistically, ARID1A interacted with EZH2 via its carboxyl terminal and antagonized EZH2-mediated IFN responsiveness. Thus, the interaction between ARID1A and EZH2 defines cancer IFN responsiveness and immune evasion. Our work indicates that cancer epigenetic driver mutations can shape cancer immune phenotype and immunotherapy.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
132 |