1
|
Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 1999; 122 ( Pt 8):1437-48. [PMID: 10430830 DOI: 10.1093/brain/122.8.1437] [Citation(s) in RCA: 1222] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To achieve accuracy in studying the patterns of loss of midbrain dopamine-containing neurons in Parkinson's disease, we used compartmental patterns of calbindin D(28K) immunostaining to subdivide the substantia nigra with landmarks independent of the degenerative process. Within the substantia nigra pars compacta, we identified dopamine-containing neurons in the calbindin-rich regions ('matrix') and in five calbindin-poor pockets ('nigrosomes') defined by analysis of the three-dimensional networks formed by the calbindin-poor zones. These zones were recognizable in all of the brains, despite severe loss of dopamine-containing neurons. The degree of loss of dopamine-containing neurons in the substantia nigra pars compacta was related to the duration of the disease, and the cell loss followed a strict order. The degree of neuronal loss was significantly higher in the nigrosomes than in the matrix. Depletion was maximum (98%) in the main pocket (nigrosome 1), located in the caudal and mediolateral part of the substantia nigra pars compacta. Progressively less cell loss was detectable in more medial and more rostral nigrosomes, following the stereotyped order of nigrosome 1 > nigrosome 2 > nigrosome 4 > nigrosome 3 > nigrosome 5. A parallel, but lesser, caudorostral gradient of cell loss was observed for dopamine-containing neurons included in the matrix. This pattern of neuronal loss was consistent from one parkinsonian substantia nigra pars compacta to another. The spatiotemporal progression of neuronal loss related to disease duration can thus be drawn in the substantia nigra pars compacta for each Parkinson's disease patient: depletion begins in the main pocket (nigrosome 1) and then spreads to other nigrosomes and the matrix along rostral, medial and dorsal axes of progression.
Collapse
|
|
26 |
1222 |
2
|
Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 1988; 334:345-8. [PMID: 2899295 DOI: 10.1038/334345a0] [Citation(s) in RCA: 972] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In idiopathic Parkinson's disease massive cell death occurs in the dopamine-containing substantia nigra. A link between the vulnerability of nigral neurons and the prominent pigmentation of the substantia nigra, though long suspected, has not been proved. This possibility is supported by evidence that N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolite MPP+, the latter of which causes destruction of nigral neurons, bind to neuromelanin. We have directly tested this hypothesis by a quantitative analysis of neuromelanin-pigmented neurons in control and parkinsonian midbrains. The findings demonstrate first that the dopamine-containing cell groups of the normal human midbrain differ markedly from each other in the percentage of neuromelanin-pigmented neurons they contain. Second, the estimated cell loss in these cell groups in Parkinson's disease is directly correlated (r = 0.97, P = 0.0057) with the percentage of neuromelanin-pigmented neurons normally present in them. Third, within each cell group in the Parkinson's brains, there is greater relative sparing of non-pigmented than of neuromelanin-pigmented neurons. This evidence suggests a selective vulnerability of the neuromelanin-pigmented subpopulation of dopamine-containing mesencephalic neurons in Parkinson's disease.
Collapse
|
|
37 |
972 |
3
|
Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB J 2005; 19:533-42. [PMID: 15791003 DOI: 10.1096/fj.04-2751com] [Citation(s) in RCA: 948] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A growing body of evidence indicates that an inflammatory process in the substantia nigra, characterized by activation of resident microglia, likely either initiates or aggravates nigral neurodegeneration in Parkinson's disease (PD). To study the mechanisms by which nigral microglia are activated in PD, the potential role of alpha-synuclein (a major component of Lewy bodies that can cause neurodegeneration when aggregated) in microglial activation was investigated. The results demonstrated that in a primary mesencephalic neuron-glia culture system, extracellular aggregated human alpha-synuclein indeed activated microglia; microglial activation enhanced dopaminergic neurodegeneration induced by aggregated alpha-synuclein. Furthermore, microglial enhancement of alpha-synuclein-mediated neurotoxicity depended on phagocytosis of alpha-synuclein and activation of NADPH oxidase with production of reactive oxygen species. These results suggest that nigral neuronal damage, regardless of etiology, may release aggregated alpha-synuclein into substantia nigra, which activates microglia with production of proinflammatory mediators, thereby leading to persistent and progressive nigral neurodegeneration in PD. Finally, NADPH oxidase could be an ideal target for potential pharmaceutical intervention, given that it plays a critical role in alpha-synuclein-mediated microglial activation and associated neurotoxicity.
Collapse
|
Journal Article |
20 |
948 |
4
|
Swanson LW, Sawchenko PE. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 1980; 31:410-7. [PMID: 6109264 DOI: 10.1159/000123111] [Citation(s) in RCA: 749] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have summarized here recent evidence that clarifies the cellular organization and connections of the paraventricular nucleus of the hypothalamus (PVH) in the rat. The nucleus consists of a magnocellular division, with three distinct parts, and a parvocellular division with five distinct parts. Most neurons in the magnocellular division contain either oxytocin or vasopressin, and project to the posterior lobe of the pituitary gland. Separate cell populations centered in the parvocellular division give rise to projections to the median eminence, or to the brain stem and spinal cord including the intermediolateral column; some cells project both to the dorsal vagal complex and to the spinal cord. Cells with long descending projections may contain either oxytocin, vasopressin, somatostatin, or dopamine, although the biochemical specificity of most such neurons has not been determined. Noradrenergic fibers are found preferentially within those parts of the magnocellular division that are predominantly vasopressinergic. The parvocellular division is innervated by adrenergic as well as noradrenergic fibers from the brain stem, and by fibers from the dorsal vagal complex and the parabrachial nucleus. The bed nucleus of the stria terminalis and adjacent parts of the hypothalamus also innervate the PVH. The evidence indicates that subpopulations of neurons in the PVH are directly related to autonomic and neuroendocrine effector mechanisms, and suggest that the nucleus plays an important role in the regulation of visceral responses in the periphery and in the CNS itself.
Collapse
|
Review |
45 |
749 |
5
|
Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 1994; 59:401-15. [PMID: 7516500 DOI: 10.1016/0306-4522(94)90605-x] [Citation(s) in RCA: 602] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In order to develop a rodent model displaying a progressive degeneration of the dopamine neurons of the substantia nigra, we bilaterally injected the tracer substance FluoroGold into the terminal field of the nigrostriatal projection, i.e. the striatum. One week later, rats received unilateral injections of 20 micrograms 6-hydroxydopamine into one of the two striatal tracer deposits. Groups of animals were killed one, two, four, eight and 16 weeks later. Ipsilateral to the lesion there was a progressive loss of FluoroGold-labelled nigral cells, with cell counts dropping from 96% of the contralateral side at one week to 59% at two weeks, 35% at four weeks, 23% at eight weeks and down to 15% at 16 weeks. Labelled nigral neurons ipsilateral to the lesion showed a moderate to marked atrophy at all investigated time points. The number of tyrosine hydroxylase-immunoreactive cells was decreased to 83% of contralateral at one week, 39% at two weeks, 44% at four weeks, 34% at eight weeks and 52% at 16 weeks postlesion. Rhodamine fluorescence immunocytochemistry showed that the proportion of surviving ipsilateral fluorogold-labelled cells displaying immunoreactivity for tyrosine hydroxylase was 69% at one week postlesion, 51% at two weeks, 63% at four weeks, 69% at eight weeks and 76% at 16 weeks. We conclude that injection of 6-hydroxydopamine into the terminal field of nigral dopaminergic neurons causes a progressive degeneration of these cells, starting between one and two weeks after lesion and continuing over eight to 16 weeks. This degeneration is preceded, and accompanied by, cellular atrophy and a partial loss of marker enzyme expression, thus yielding an animal model which mimics the degenerative processes in Parkinson's disease more closely than the animal models available so far. The present model may be helpful in investigating the in vivo effects of putative neuroprotective agents and neurotrophic factors.
Collapse
|
|
31 |
602 |
6
|
McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA. Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 2002; 10:119-27. [PMID: 12127150 DOI: 10.1006/nbdi.2002.0507] [Citation(s) in RCA: 548] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Environmental toxicants and, in particular, pesticides have been implicated as risk factors in Parkinson's disease (PD). The purpose of this study was to determine if selective nigrostriatal degeneration could be reproduced by systemic exposure of mice to the widely used herbicide paraquat. Repeated intraperitoneal paraquat injections killed dopaminergic neurons in the substantia nigra (SN) pars compacta, as assessed by stereological counting of tyrosine hydroxylase (TH)-immunoreactive and Nissl-stained neurons. This cell loss was dose- and age-dependent. Several lines of evidence indicated selective vulnerability of dopaminergic neurons to paraquat. The number of GABAergic cells was not decreased in the SN pars reticulata, and counting of Nissl-stained neurons in the hippocampus did not reveal any change in paraquat-treated mice. Degenerating cell bodies were observed by silver staining, but only in the SN pars compacta, and glial response was present in the ventral mesencephalon but not in the frontal cortex and cerebellum. No significant depletion of striatal dopamine followed paraquat administration. On the other hand, enhanced dopamine synthesis was suggested by an increase in TH activity. These findings unequivocally show that selective dopaminergic degeneration, one of the pathological hallmarks of PD, is also a characteristic of paraquat neurotoxicity. The apparent discrepancy between pathological (i.e., neurodegeneration) and neurochemical (i.e., lack of significant dopamine loss) effects represents another important feature of this paraquat model and is probably a reflection of compensatory mechanisms by which neurons that survive damage are capable of restoring neurotransmitter tissue levels.
Collapse
|
Comparative Study |
23 |
548 |
7
|
Kuhar MJ, Pert CB, Snyder SH. Regional distribution of opiate receptor binding in monkey and human brain. Nature 1973; 245:447-50. [PMID: 4127185 DOI: 10.1038/245447a0] [Citation(s) in RCA: 521] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
Comparative Study |
52 |
521 |
8
|
Kirik D, Rosenblad C, Björklund A. Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 1998; 152:259-77. [PMID: 9710526 DOI: 10.1006/exnr.1998.6848] [Citation(s) in RCA: 521] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Partial lesions of the nigrostriatal dopamine system have been investigated with respect to their ability to induce consistent long-lasting deficits in movement initiation and skilled forelimb use. In eight different lesion groups 6-hydroxydopamine (6-OHDA) was injected at one, two, three, or four sites into the lateral sector of the right striatum, in a total dose of 20-30 microgram. Impairments in movement initiation in a forelimb stepping test, and in skilled paw use in a paw-reaching test, was seen only in animals where the severity of the lesion exceeded a critical threshold, which was different for the different tests used: single (1 x 20 microgram) or two-site (2 x 10 microgram) injections into the striatum had only small affects on forelimb stepping, no effect on skilled paw use. More pronounced deficits were obtained in animals where the same total dose of 6-OHDA was distributed over three or four sites along the rostro-caudal extent of the lateral striatum or where the injections were made close to the junction of the globus pallidus. The results show that a 60-70% reduction in tyrosine hydroxylase (TH)-positive fiber density in the lateral striatum, accompanied by a 50-60% reduction in TH-positive cells in substantia nigra (SN), is sufficient for the induction of significant impairment in initiation of stepping. Impaired skilled paw-use, on the other hand, was obtained only with a four-site (4 x 7 microgram) lesion, which induced 80-95% reduction in TH fiber density throughout the rostrocaudal extent of the lateral striatum and a 75% loss of TH-positive neurons in SN. Drug-induced rotation, by contrast, was observed also in animals with more restricted presymptomatic lesions. The results indicate that the four-site intrastriatal 6-OHDA lesion may be a relevant model of the neuropathology seen in parkinsonian patients in a manifest symptomatic stage of the disease and may be particularly useful experimentally since it leaves a significant portion of the nigrostriatal projection intact which can serve as a substrate for regeneration and functional recovery in response to growth promoting and neuroprotective agents.
Collapse
|
|
27 |
521 |
9
|
Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. NEURODEGENERATION : A JOURNAL FOR NEURODEGENERATIVE DISORDERS, NEUROPROTECTION, AND NEUROREGENERATION 1995; 4:257-69. [PMID: 8581558 DOI: 10.1016/1055-8330(95)90015-2] [Citation(s) in RCA: 469] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mechanisms responsible for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine (DA) neuronal death remain unknown and in mice it is even unclear whether neuronal death does occur. In vitro studies suggest that 1-methyl-4-phenylpyridinium ion (MPP+), the active metabolite of MPTP, kills neurons by apoptosis. Herein, we investigated whether MPTP induces DA neuronal death in vivo in mice and whether the mechanism is that of apoptosis. C57/bl Mice received different doses of MPTP administered in four intraperitoneal injections every 2 hours and were sacrificed at different time points for analyses of tyrosine hydroxylase (TH) immunohistochemistry, silver staining, and Nissl staining within the mesencephalon. We found that MPTP induces neuronal destruction in the substantia nigra pars compacta (SNpc) and the ventral tegmental area (VTA). The active phase of degeneration began at 12 h postinjection and continued up to 4 days. During this period, there was a greater decrease in TH-defined neurons than in Nissl-stained neurons suggesting that MPTP can cause a loss in TH without necessarily destroying the neuron. Thereafter, neuronal counts by both techniques equalized and there was no further loss of DA neurons. Dying neurons showed shrunken eosinophilic cytoplasm and shrunken darkly stained nuclei. Double staining revealed degenerating neurons solely among TH positive neurons of SNpc and VTA. At no time point and at no dose of MPTP was apoptosis observed. In addition, in situ labelling revealed no evidence of DNA fragmentation. This study demonstrates that the MPTP mouse model replicates several key features of neurodegeneration of DA neurons in PD and provides no in vivo evidence that, using this specific paradigm of injection, MPTP kills DA neurons by apoptosis.
Collapse
|
|
30 |
469 |
10
|
Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O'Leary P, Mantyh PW. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 2002; 113:155-66. [PMID: 12123694 DOI: 10.1016/s0306-4522(02)00165-3] [Citation(s) in RCA: 468] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although skeletal pain plays a major role in reducing the quality of life in patients suffering from osteoarthritis, Paget's disease, sickle cell anemia and bone cancer, little is known about the mechanisms that generate and maintain this pain. To define the peripheral fibers involved in transmitting and modulating skeletal pain, we used immunohistochemistry with antigen retrieval, confocal microscopy and three-dimensional image reconstruction of the bone to examine the sensory and sympathetic innervation of mineralized bone, bone marrow and periosteum of the normal mouse femur. Thinly myelinated and unmyelinated peptidergic sensory fibers were labeled with antibodies raised against calcitonin gene-related peptide (CGRP) and the unmyelinated, non-peptidergic sensory fibers were labeled with the isolectin B4 (Bandeira simplicifolia). Myelinated sensory fibers were labeled with an antibody raised against 200-kDa neurofilament H (clone RT-97). Sympathetic fibers were labeled with an antibody raised against tyrosine hydroxylase. CGRP, RT-97, and tyrosine hydroxylase immunoreactive fibers, but not isolectin B4 positive fibers, were present throughout the bone marrow, mineralized bone and the periosteum. While the periosteum is the most densely innervated tissue, when the total volume of each tissue is considered, the bone marrow receives the greatest total number of sensory and sympathetic fibers followed by mineralized bone and then periosteum. Understanding the sensory and sympathetic innervation of bone should provide a better understanding of the mechanisms that drive bone pain and aid in developing therapeutic strategies for treating skeletal pain.
Collapse
|
|
23 |
468 |
11
|
Abstract
Measurements on human brain samples of some enzymes concerned with neurotransmitter synthesis suggest serious losses with age. The most severe loss found was that in striatal tyrosine hydroxylase activity, the rate-controlling enzyme in the synthesis of dopamine. Cell counts in the substantia nigra where this dopaminergic tract originates suggest that the decrease in enzyme activity is partly due to cell loss, but must largely reflect decreased activity of residual cells. It is possible that this loss may account for some of the difficulties in movement seen in aged individuals and that it might be less if pigment formation in these cells could be inhibited.
Collapse
|
|
48 |
432 |
12
|
Narita M, Nagumo Y, Hashimoto S, Narita M, Khotib J, Miyatake M, Sakurai T, Yanagisawa M, Nakamachi T, Shioda S, Suzuki T. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 2006; 26:398-405. [PMID: 16407535 PMCID: PMC6674410 DOI: 10.1523/jneurosci.2761-05.2006] [Citation(s) in RCA: 420] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study, we investigated the role of orexinergic systems in dopamine-related behaviors induced by the mu-opioid receptor agonist morphine in rodents. Extensive coexpression of tyrosine hydroxylase with orexin receptors was observed in the mouse ventral tegmental area (VTA). The levels of dopamine and its major metabolites in the nucleus accumbens were markedly increased by the microinjection of orexin A and orexin B into the VTA. The subcutaneous morphine-induced place preference and hyperlocomotion observed in wild-type mice were abolished in mice that lacked the prepro-orexin gene. An intra-VTA injection of a selective orexin receptor antagonist SB334867A [1-(2-methylbenzoxazol-6-yl)-3-[1.5]naphthyridin-4-yl urea] significantly suppressed the morphine-induced place preference in rats. Furthermore, the increased level of dialysate dopamine produced by morphine in the mouse brain was significantly decreased by deletion of the prepro-orexin gene. These findings provide new evidence that orexin-containing neurons in the VTA are directly implicated in the rewarding effect and hyperlocomotion induced by morphine through activation of the mesolimbic dopamine pathway in rodents.
Collapse
MESH Headings
- Animals
- Benzoxazoles/pharmacology
- Conditioning, Operant/drug effects
- Desipramine/pharmacology
- Dopamine/physiology
- Female
- Haloperidol/pharmacology
- Injections, Intraventricular
- Injections, Subcutaneous
- Intracellular Signaling Peptides and Proteins
- Limbic System/drug effects
- Limbic System/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Microdialysis
- Microinjections
- Morphine/pharmacology
- Motor Activity/drug effects
- Naphthyridines
- Neuropeptides/deficiency
- Neuropeptides/genetics
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/physiology
- Orexins
- Oxidopamine/toxicity
- Protein Precursors/deficiency
- Protein Precursors/genetics
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
- Reward
- Tyrosine 3-Monooxygenase/analysis
- Urea/analogs & derivatives
- Urea/pharmacology
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/physiology
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
420 |
13
|
Berod A, Hartman BK, Pujol JF. Importance of fixation in immunohistochemistry: use of formaldehyde solutions at variable pH for the localization of tyrosine hydroxylase. J Histochem Cytochem 1981; 29:844-50. [PMID: 6167611 DOI: 10.1177/29.7.6167611] [Citation(s) in RCA: 411] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Adequate fixative in immunohistochemistry requires not only a rapid and total immobilization of the antigen, but also a sufficient preservation of its immunoreactivity and maintenance of its accessibility to the immunochemical reagents for localization. Thus, the optimal fixation condition for a specific antigen necessitates a compromise between these opposing variables and can be determined by the preparation of a series of tissues with a progressively increasing degree of fixation. Unless the results of localization using such a series is available, one must be satisfied with adequate but less than optimal results. In the present study, this principle is demonstrated using the localization of tyrosine hydroxylase in the dopaminergic system with formaldehyde as the fixative. The rate and degree of fixation with formaldehyde was shown to be highly pH dependent. By perfusing the tissue with formaldehyde at pH 6.5 (where the rate of fixation is extremely slow) it is possible to rapidly distribute the fixative homogeneously into the tissue. By suddenly changing to a formaldehyde perfusate of higher pH, the cross-linking reaction is rapidly increased. This two-step fixation procedure provides a means of obtaining a rapid and uniform immobilization of the antigen, so that its translocation can be avoided. The final degree of fixation is controlled by the duration and pH of the second fixative solution. The results obtained by increasing the pH of the second solution demonstrated that complete fixation of tyrosine hydroxylase in the dopaminergic system with formaldehyde maybe obtained using a very basic formaldehyde solution (pH 11) while still retaining immunoreactivity of the enzyme. The localization that was achieved at lower pH appeared adequate until it was compared to the results obtained by perfusion at pH 11 in the second step.
Collapse
|
|
44 |
411 |
14
|
Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL. D-beta-hydroxybutyrate protects neurons in models of Alzheimer's and Parkinson's disease. Proc Natl Acad Sci U S A 2000; 97:5440-4. [PMID: 10805800 PMCID: PMC25847 DOI: 10.1073/pnas.97.10.5440] [Citation(s) in RCA: 404] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heroin analogue 1-methyl-4-phenylpyridinium, MPP(+), both in vitro and in vivo, produces death of dopaminergic substantia nigral cells by inhibiting the mitochondrial NADH dehydrogenase multienzyme complex, producing a syndrome indistinguishable from Parkinson's disease. Similarly, a fragment of amyloid protein, Abeta(1-42), is lethal to hippocampal cells, producing recent memory deficits characteristic of Alzheimer's disease. Here we show that addition of 4 mM d-beta-hydroxybutyrate protected cultured mesencephalic neurons from MPP(+) toxicity and hippocampal neurons from Abeta(1-42) toxicity. Our previous work in heart showed that ketone bodies, normal metabolites, can correct defects in mitochondrial energy generation. The ability of ketone bodies to protect neurons in culture suggests that defects in mitochondrial energy generation contribute to the pathophysiology of both brain diseases. These findings further suggest that ketone bodies may play a therapeutic role in these most common forms of human neurodegeneration.
Collapse
|
research-article |
25 |
404 |
15
|
Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001; 78:1073-82. [PMID: 11553681 DOI: 10.1046/j.1471-4159.2001.00490.x] [Citation(s) in RCA: 401] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study we demonstrate neuroprotective property of green tea extract and (-)-epigallocatechin-3-gallate in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson's disease. N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxin caused dopamine neuron loss in substantia nigra concomitant with a depletion in striatal dopamine and tyrosine hydroxylase protein levels. Pretreatment of mice with either green tea extract (0.5 and 1 mg/kg) or (-)-epigallocatechin-3-gallate (2 and 10 mg/kg) prevented these effects. In addition, the neurotoxin caused an elevation in striatal antioxidant enzymes superoxide dismutase (240%) and catalase (165%) activities, both effects being prevented by (-)-epigallocatechin-3-gallate. (-)-Epigallocatechin-3-gallate itself also increased the activities of both enzymes in the brain. The neuroprotective effects are not likely to be caused by inhibition of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine conversion to its active metabolite 1-methyl-4-phenylpyridinium by monoamine oxidase-B, as both green tea and (-)-epigallocatechin-3-gallate are very poor inhibitors of this enzyme in vitro (770 microg/mL and 660 microM, respectively). Brain penetrating property of polyphenols, as well as their antioxidant and iron-chelating properties may make such compounds an important class of drugs to be developed for treatment of neurodegenerative diseases where oxidative stress has been implicated.
Collapse
|
|
24 |
401 |
16
|
Waymire JC, Bjur R, Weiner N. Assay of tyrosine hydroxylase by coupled decarboxylation of DOPA formed from 1- 14 C-L-tyrosine. Anal Biochem 1971; 43:588-600. [PMID: 4400965 DOI: 10.1016/0003-2697(71)90291-0] [Citation(s) in RCA: 370] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
Comparative Study |
54 |
370 |
17
|
Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, Czer L, Wolf PL, Denton TA, Shintaku IP, Chen PS, Chen LS. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 2000; 101:1960-9. [PMID: 10779463 DOI: 10.1161/01.cir.101.16.1960] [Citation(s) in RCA: 347] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sympathetic nerve activity is known to be important in ventricular arrhythmogenesis, but there is little information on the relation between the distribution of cardiac sympathetic nerves and the occurrence of spontaneous ventricular arrhythmias in humans. METHODS AND RESULTS We studied 53 native hearts of transplant recipients, 5 hearts obtained at autopsy of patients who died of noncardiac causes, and 7 ventricular tissues that had been surgically resected from the origin of ventricular tachycardia. The history was reviewed to determine the presence (group 1A) or absence (group 1B) of spontaneous ventricular arrhythmias. Immunocytochemical staining for S100 protein, neurofilament protein, tyrosine hydroxylase, and protein gene product 9.5 was performed to study the distribution and the density of sympathetic nerves. The average left ventricular ejection fraction was 0.22+/-0.07. A total of 30 patients had documented ventricular arrhythmias, including ventricular tachycardia and sudden cardiac death. A regional increase in sympathetic nerves was observed around the diseased myocardium and blood vessels in all 30 hearts. The density of nerve fibers as determined morphometrically was significantly higher in group 1A patients (total nerve number 19.6+/-11.2/mm(2), total nerve length 3.3+/-3.0 mm/mm(2)) than in group 1B patients (total nerve number 13.5+/-6.1/mm(2), total nerve length 2.0+/-1.1 mm/mm(2), P<0. 05 and P<0.01, respectively). CONCLUSIONS There is an association between a history of spontaneous ventricular arrhythmia and an increased density of sympathetic nerves in patients with severe heart failure. These findings suggest that abnormally increased postinjury sympathetic nerve density may be in part responsible for the occurrence of ventricular arrhythmia and sudden cardiac death in these patients.
Collapse
|
|
25 |
347 |
18
|
Abstract
Dopamine is the putative transmitter of eight neurons in the hermaphrodite form of the nematode Caenorhabditis elegans. These include the cephalic and deirid neurons, which are believed to be mechanosensory. The male has an additional six dopaminergic neurons in the tail. Mutants have been selected which have defects in the formaldehyde induced fluorescence and lack dopamine to varying degrees, but they are not insensitive to touch. The dopaminergic neurons of C. elegans are compared with the homologous neurons in Ascaris lumbricoides.
Collapse
|
Comparative Study |
50 |
344 |
19
|
Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa SI, Nakatsuji N, Sasai Y. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A 2002; 99:1580-5. [PMID: 11818560 PMCID: PMC122233 DOI: 10.1073/pnas.032662199] [Citation(s) in RCA: 342] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We previously identified a stromal cell-derived inducing activity (SDIA), which induces differentiation of neural cells, including midbrain tyrosine hydroxylase-positive (TH(+)) dopaminergic neurons, from mouse embryonic stem cells. We report here that SDIA induces efficient neural differentiation also in primate embryonic stem cells. Induced neurons contain TH(+) neurons at a frequency of 35% and produce a significant amount of dopamine. Interestingly, differentiation of TH(+) neurons from undifferentiated embryonic cells occurs much faster in vitro (10 days) than it does in the embryo (approximately 5 weeks). In addition, 8% of the colonies contain large patches of Pax6(+)-pigmented epithelium of the retina. The SDIA method provides an unlimited source of primate cells for the study of pathogenesis, drug development, and transplantation in degenerative diseases such as Parkinson's disease and retinitis pigmentosa.
Collapse
|
research-article |
23 |
342 |
20
|
Mendez I, Sanchez-Pernaute R, Cooper O, Viñuela A, Ferrari D, Björklund L, Dagher A, Isacson O. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. ACTA ACUST UNITED AC 2005; 128:1498-510. [PMID: 15872020 PMCID: PMC2610438 DOI: 10.1093/brain/awh510] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the first post-mortem analysis of two patients with Parkinson's disease who received fetal midbrain transplants as a cell suspension in the striatum, and in one case also in the substantia nigra. These patients had a favourable clinical evolution and positive 18F-fluorodopa PET scans and did not develop motor complications. The surviving transplanted dopamine neurons were positively identified with phenotypic markers of normal control human substantia nigra (n = 3), such as tyrosine hydroxylase, G-protein-coupled inward rectifying current potassium channel type 2 (Girk2) and calbindin. The grafts restored the cell type that provides specific dopaminergic innervation to the most affected striatal regions in the parkinsonian brain. Such transplants were able to densely reinnervate the host putamen with new dopamine fibres. The patients received only 6 months of standard immune suppression, yet by post-mortem analysis 3-4 years after surgery the transplants appeared only mildly immunogenic to the host brain, by analysis of microglial CD45 and CD68 markers. This study demonstrates that, using these methods, dopamine neuronal replacement cell therapy can be beneficial for patients with advanced disease, and that changing technical approaches could have a favourable impact on efficacy and adverse events following neural transplantation.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
340 |
21
|
Armstrong DM, Ross CA, Pickel VM, Joh TH, Reis DJ. Distribution of dopamine-, noradrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. J Comp Neurol 1982; 212:173-87. [PMID: 6142061 DOI: 10.1002/cne.902120207] [Citation(s) in RCA: 334] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The immunocytochemical localization of the biosynthetic enzymes--tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH), and phenylethanolamine-N-methyltransferase (PNMT)--was used to determine the cytological features and precise neuroanatomical location of catecholaminergic neurons in the medulla oblongata of rat. Perikarya labeled with TH were detected in two bilaterally symmetrical columns located in the ventrolateral and dorsomedial medulla. The distribution and the number of neuronal perikarya containing TH were the same as those containing DBH, except in the dorsal motor nucleus of the vagus at the level of the area postrema where the number of neurons immunocytochemically labeled for TH was considerably greater than those labeled for DBH. The detection of perikarya which show immunoreactivity for TH, used in the biosynthesis of dopamine, noradrenaline, and adrenaline, but not DBH, which converts dopamine to noradrenaline, suggests the existence of dopamine-synthesizing neurons in the medulla. Perikarya labeled with PNMT, used in the biosynthesis of adrenaline, were localized in more restricted regions corresponding to rostral subsets of the dorsal and ventral groups labeled for TH and DBH. Counts of neurons immunocytochemically labeled for TH or PNMT were obtained in order to determine the relative ratio of neurons which contain the enzymes necessary for the synthesis of dopamine, noradrenaline, or adrenaline at various levels of the medulla. At the most caudal levels no PNMT labeled neurons were detected. Further rostral, PNMT-labeled neurons were first detected in the ventrolateral medulla. At the level of the area postrema, the number of PNMT-labeled neurons in the ventrolateral medulla was approximately half of the number of cells showing immunoreactivity for TH. In contrast, few PNMT-labeled cells were detected in the dorsomedial medulla at the level of the area postrema compared to many neurons labeled for TH. At rostral medullary levels, in both the ventrolateral and the dorsomedial regions, the number of neurons labeled for TH and PNMT was essentially the same. Thus most, if not all, of the catecholaminergic neurons in the rostral medulla have PNMT, necessary for the synthesis of adrenaline.
Collapse
|
|
43 |
334 |
22
|
Sesack SR, Pickel VM. In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res 1990; 527:266-79. [PMID: 1701338 DOI: 10.1016/0006-8993(90)91146-8] [Citation(s) in RCA: 323] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleus accumbens septi (Acb) represents an interface between limbic and motor systems and a site for modulation of these integrative functions by ascending catecholaminergic, principally dopaminergic, axons. This modulatory regulation is most likely attributed to pre- or postsynaptic associations between limbic telencephalic and brainstem afferents. In the present investigation, we examined the ultrastructure and synaptic associations of hippocampal afferents, as well as their relation to catecholaminergic terminals, in the medial Acb of adult rats. Hippocampal afferents were identified by anterograde transport of wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) injected in the ventral subiculum, and by anterograde degeneration seen 2-3 days following lesion of the fimbria. Specific comparisons between these methods were made (1) to determine whether similar populations of terminals were labeled and (2) to assess the feasibility of combining degeneration with immunoperoxidase labeling for the catecholamine synthesizing enzyme, tyrosine hydroxylase (TH). Hippocampal afferents labeled with HRP were finely myelinated or unmyelinated and gave rise to small terminals (mean diameter 0.58 micron) containing mostly clear, round vesicles. Of the HRP-labeled terminals which made recognizable junctions, 85% (104/122) formed asymmetric synapses with the heads of dendritic spines. The remainder either formed asymmetric axodendritic synapses or symmetric junctions. Degenerating terminals were significantly smaller (mean diameter 0.35 micron) than terminals labeled with HRP. However, these also formed principally asymmetric axospinous synapses (89/102, 87%). Whether identified by HRP transport or anterograde degeneration, the hippocampal afferents comprised approximately 10% of all terminals and 30% of all asymmetric axospinous synapses in the medial Acb. In contrast to hippocampal afferents, TH-labeled terminals formed primarily symmetric contacts with dendritic shafts and the heads and necks of spines. Quantitative analysis of sections containing both anterograde degeneration and TH-immunoreactivity showed that 25% (26/104) of associations formed by degenerating hippocampal terminals involved convergent inputs with TH-labeled terminals on the same postsynaptic structure. These included dual input either to the same spine head or to different parts of the same dendrite. In addition, the plasma membranes of hippocampal and TH-labeled terminals were often directly apposed to each other (10/58, 17% of axo-axonal associations formed by degenerating terminals), without recognizable synaptic specializations.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
35 |
323 |
23
|
Svendsen CN, Caldwell MA, Shen J, ter Borg MG, Rosser AE, Tyers P, Karmiol S, Dunnett SB. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease. Exp Neurol 1997; 148:135-46. [PMID: 9398456 DOI: 10.1006/exnr.1997.6634] [Citation(s) in RCA: 322] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Progenitor cells were isolated from the developing human central nervous system (CNS), induced to divide using a combination of epidermal growth factor and fibroblast growth factor-2, and then transplanted into the striatum of adult rats with unilateral dopaminergic lesions. Large grafts were found at 2 weeks survival which contained many undifferentiated cells, some of which were migrating into the host striatum. However, by 20 weeks survival, only a thin strip of cells remained at the graft core while a large number of migrating astrocytes labeled with a human-specific antibody could be seen throughout the striatum. Fully differentiated graft-derived neurons, also labeled with a human-specific antibody, were seen close to the transplant site in some animals. A number of these neurons expressed tyrosine hydroxylase and were sufficient to partially ameliorate lesion-induced behavioral deficits in two animals. These results show that expanded populations of human CNS progenitor cells maintained in a proliferative state in culture can migrate and differentiate into both neurons and astrocytes following intracerebral grafting. As such these cells may have potential for development as an alternative source of tissue for neural transplantation in degenerative diseases.
Collapse
|
|
28 |
322 |
24
|
Kaslin J, Panula P. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 2001; 440:342-77. [PMID: 11745628 DOI: 10.1002/cne.1390] [Citation(s) in RCA: 322] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The histaminergic system and its relationships to the other aminergic transmitter systems in the brain of the zebrafish were studied by using confocal microscopy and immunohistochemistry on brain whole-mounts and sections. All monoaminergic systems displayed extensive, widespread fiber systems that innervated all major brain areas, often in a complementary manner. The ventrocaudal hypothalamus contained all monoamine neurons except noradrenaline cells. Histamine (HA), tyrosine hydroxylase (TH), and serotonin (5-HT) -containing neurons were all found around the posterior recess (PR) of the caudal hypothalamus. TH- and 5-HT-containing neurons were found in the periventricular cell layer of PR, whereas the HA-containing neurons were in the surrounding cell layer as a distinct boundary. Histaminergic neurons, which send widespread ascending and descending fibers, were all confined to the ventrocaudal hypothalamus. Histaminergic neurons were medium in size (approximately 12 microm) with varicose ascending and descending ipsilateral and contralateral fiber projections. Histamine was stored in vesicles in two types of neurons and fibers. A close relationship between HA fibers and serotonergic raphe neurons and noradrenergic locus coeruleus neurons was evident. Putative synaptic contacts were occasionally detected between HA and TH or 5-HT neurons. These results indicate that reciprocal contacts between monoaminergic systems are abundant and complex. The results also provide evidence of homologies to mammalian systems and allow identification of several previously uncharacterized systems in zebrafish mutants.
Collapse
|
Comparative Study |
24 |
322 |
25
|
Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain 1999; 122 ( Pt 8):1421-36. [PMID: 10430829 DOI: 10.1093/brain/122.8.1421] [Citation(s) in RCA: 309] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Parkinson's disease is characterized by massive degeneration of dopamine-containing neurons in the midbrain. However, the vulnerability of these neurons is heterogeneous both across different midbrain dopamine-containing cell groups and within the substantia nigra, the brain structure most affected in this disease. To determine the exact pattern of cell loss and to map the cellular distribution of candidate pathogenic molecules, it is necessary to have landmarks independent of the degenerative process by which to subdivide the substantia nigra. We have developed a protocol for this purpose based on immunostaining for calbindin D(28K), a protein present in striatonigral afferent fibres. We used it to examine post-mortem brain samples from seven subjects who had had no history of neurological or psychiatric disease. We found intense immunostaining for calbindin D(28K) associated with the neuropil of the ventral midbrain. Within the calbindin-positive region, there were conspicuous calbindin-poor zones. Analysed in serial sections, many of the calbindin-poor zones seen in individual sections were continuous with one another, forming elements of larger, branched three-dimensional structures. Sixty per cent of all dopamine-containing neurons in the substantia nigra pars compacta were located within the calbindin-rich zone, which we named the nigral matrix, and 40% were packed together within the calbindin-poor zones, which we named nigrosomes. We identified five different nigrosomes. This organization was consistent from one control brain to another. We propose that subdivision of the human substantia nigra based on patterns of calbindin immunostaining provides a key tool for analysing the organization of the substantia nigra and offers a new approach to analysing molecular expression patterns in the substantia nigra and the specific patterns of nigral cell degeneration in Parkinson's disease.
Collapse
|
|
26 |
309 |