1
|
Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, Wu F, Chao J, Liu P, Hu G, Zhang JH, Yao H. Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity. J Neurosci 2018; 38:32-50. [PMID: 29114076 PMCID: PMC6705810 DOI: 10.1523/jneurosci.1348-17.2017] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the CNS and regulate physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, we show that the circRNA DLGAP4 (circDLGAP4) functions as an endogenous microRNA-143 (miR-143) sponge to inhibit miR-143 activity, resulting in the inhibition of homologous to the E6-AP C-terminal domain E3 ubiquitin protein ligase 1 expression. circDLGAP4 levels were significantly decreased in the plasma of acute ischemic stroke patients (13 females and 13 males) and in a mouse stroke model. Upregulation of circDLGAP4 expression significantly attenuated neurological deficits and decreased infarct areas and blood-brain barrier damage in the transient middle cerebral artery occlusion mouse stroke model. Endothelial-mesenchymal transition contributes to blood-brain barrier disruption and circDLGAP4 overexpression significantly inhibited endothelial-mesenchymal transition by regulating tight junction protein and mesenchymal cell marker expression. Together, the results of our study are illustrative of the involvement of circDLGAP4 and its coupling mechanism in cerebral ischemia, providing translational evidence that circDLGAP4 serves as a novel therapeutic target for acute cerebrovascular protection.SIGNIFICANCE STATEMENT Circular RNAs (circRNAs) are involved in the regulation of physiological and pathophysiological processes. However, whether circRNAs are involved in ischemic injury, particularly cerebrovascular disorders, remains largely unknown. Here, we demonstrate a critical role for circular RNA DLGAP4 (circDLGAP4), a novel circular RNA originally identified as a sponge for microRNA-143 (miR-143), in ischemic stroke outcomes. Overexpression of circDLGAP4 significantly attenuated neurological deficits and decreased infarct areas and blood-brain barrier damage in the transient middle cerebral artery occlusion mouse stroke model. To our knowledge, this is the first report describing the efficacy of circRNA injection in an ischemic stroke model. Our investigation suggests that circDLGAP4 may serve as a novel therapeutic target for acute ischemic injury.
Collapse
|
research-article |
7 |
308 |
2
|
Gribben JG, Fowler N, Morschhauser F. Mechanisms of Action of Lenalidomide in B-Cell Non-Hodgkin Lymphoma. J Clin Oncol 2015; 33:2803-11. [PMID: 26195701 PMCID: PMC5320950 DOI: 10.1200/jco.2014.59.5363] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lenalidomide is an orally active immunomodulatory drug that has direct antineoplastic activity and indirect effects mediated through multiple types of immune cells found in the tumor microenvironment, including B, T, natural killer (NK), and dendritic cells. Recently, the E3 ubiquitin ligase cereblon was identified as a molecular target that may underlie the effects of lenalidomide on tumor cells, as well as on cells in the tumor microenvironment. Decreases in cereblon attenuate these effects and also confer resistance to lenalidomide. Tumoricidal effects of lenalidomide are associated with reduced interferon regulatory factor 4, a downstream target of cereblon. Lenalidomide stimulates proliferation and activation of NK cells, thereby enhancing NK cell-mediated cytotoxicity and antibody-dependent cellular cytotoxicity. These effects appear to be secondary to cytokine production from T cells. Lenalidomide has been shown to produce synergistic effects in experimental models when evaluated in combination with rituximab, dexamethasone, bortezomib, and B-cell receptor signaling inhibitors, consistent with mechanisms complementary to these agents. These experimental findings have translated to the clinic, where single-agent use displays durable responses in relapsed/refractory non-Hodgkin lymphoma, and combination with rituximab and other agents leads to improved responses at first line and in relapsed/refractory disease. The activity of lenalidomide is evident across multiple lymphoma subtypes, including indolent and aggressive forms. The interaction among cell types in the immune microenvironment is increasingly recognized as important to tumor cell recognition and destruction, as well as to protection of normal immune cells, as reflected by lenalidomide studies across multiple types of B-cell lymphomas.
Collapse
|
Review |
10 |
235 |
3
|
Wang C, Ko HS, Thomas B, Tsang F, Chew KCM, Tay SP, Ho MWL, Lim TM, Soong TW, Pletnikova O, Troncoso J, Dawson VL, Dawson TM, Lim KL. Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. Hum Mol Genet 2005; 14:3885-97. [PMID: 16278233 DOI: 10.1093/hmg/ddi413] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in parkin are currently recognized as the most common cause of familial Parkinsonism. Emerging evidence also suggests that parkin expression variability may confer a risk for the development of the more common, sporadic form of Parkinson's disease (PD). Supporting this, we have recently demonstrated that parkin solubility in the human brain becomes altered with age. As parkin apparently functions as a broad-spectrum neuroprotectant, the resulting decrease in the availability of soluble parkin with age may underlie the progressive susceptibility of the brain to stress. Interestingly, we also observed that many familial-PD mutations of parkin alter its solubility in a manner that is highly reminiscent of our observations with the aged brain. The converging effects on parkin brought about by aging and PD-causing mutations are probably not trivial and suggest that environmental modulators affecting parkin solubility would increase an individual's risk of developing PD. Using both cell culture and in vivo models, we demonstrate here that several PD-linked stressors, including neurotoxins (MPP+, rotenone, 6-hydroxydopamine), paraquat, NO, dopamine and iron, induce alterations in parkin solubility and result in its intracellular aggregation. Furthermore, the depletion of soluble, functional forms of parkin is associated with reduced proteasomal activities and increased cell death. Our results suggest that exogenously introduced stress as well as endogenous dopamine could affect the native structure of parkin, promote its misfolding, and concomitantly compromise its protective functions. Mechanistically, our results provide a link between the influence of environmental and intrinsic factors and genetic susceptibilities in PD pathogenesis.
Collapse
|
|
20 |
175 |
4
|
Lozano-Durán R, Rosas-Díaz T, Gusmaroli G, Luna AP, Taconnat L, Deng XW, Bejarano ER. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. THE PLANT CELL 2011; 23:1014-32. [PMID: 21441437 PMCID: PMC3082251 DOI: 10.1105/tpc.110.080267] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/15/2011] [Accepted: 03/04/2011] [Indexed: 05/19/2023]
Abstract
Viruses must create a suitable cell environment and elude defense mechanisms, which likely involves interactions with host proteins and subsequent interference with or usurpation of cellular machinery. Here, we describe a novel strategy used by plant DNA viruses (Geminiviruses) to redirect ubiquitination by interfering with the activity of the CSN (COP9 signalosome) complex. We show that geminiviral C2 protein interacts with CSN5, and its expression in transgenic plants compromises CSN activity on CUL1. Several responses regulated by the CUL1-based SCF ubiquitin E3 ligases (including responses to jasmonates, auxins, gibberellins, ethylene, and abscisic acid) are altered in these plants. Impairment of SCF function is confirmed by stabilization of yellow fluorescent protein-GAI, a substrate of the SCF(SLY1). Transcriptomic analysis of these transgenic plants highlights the response to jasmonates as the main SCF-dependent process affected by C2. Exogenous jasmonate treatment of Arabidopsis thaliana plants disrupts geminivirus infection, suggesting that the suppression of the jasmonate response might be crucial for infection. Our findings suggest that C2 affects the activity of SCFs, most likely through interference with the CSN. As SCFs are key regulators of many cellular processes, the capability of viruses to selectively interfere with or hijack the activity of these complexes might define a novel and powerful strategy in viral infections.
Collapse
|
research-article |
14 |
160 |
5
|
Bronner C, Achour M, Arima Y, Chataigneau T, Saya H, Schini-Kerth VB. The UHRF family: Oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther 2007; 115:419-34. [PMID: 17658611 DOI: 10.1016/j.pharmthera.2007.06.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 12/21/2022]
Abstract
In this paper, we review the current literature about the UHRF family that in particular includes the UHRF1 and UHRF2 genes. Its members play a fundamental role in cell proliferation through different structural domains. These domains include a ubiquitin-like domain (NIRF_N), a plant homeodomain (PHD) domain, a SRA domain and a RING domain. The SRA domain has only been observed in this family probably conferring unique properties to it. The unique enzymatic activity so far identified in this family involves the RING finger that contains a ubiquitin E3 ligase activity toward, for instance, histones. The physiological roles played by the UHRF family are most likely exerted during embryogenic development and when proliferation is required in adults. Interestingly, UHRF members are putative oncogenes regulated by tumor suppressor genes, but they exert also a feedback control on these latter. Finally, we propose some new roles for this family, including regulation and/or inheritance of the epigenetic code. Alteration of these regulatory mechanisms, such as those occurring in cancer cells, may be involved in carcinogenesis. The reasons why the UHRF family could be an interesting target for developing anticancer drugs is also developed.
Collapse
|
|
18 |
136 |
6
|
JeBailey L, Rudich A, Huang X, Di Ciano-Oliveira C, Kapus A, Klip A. Skeletal muscle cells and adipocytes differ in their reliance on TC10 and Rac for insulin-induced actin remodeling. Mol Endocrinol 2003; 18:359-72. [PMID: 14615606 DOI: 10.1210/me.2003-0294] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Insulin causes distinct cortical actin remodeling in muscle and fat cells, and interfering with actin dynamics halts glucose transporter 4 (GLUT4) translocation to the membrane. Phosphatidylinositol 3-kinase (PI3-K) and the small G protein Rac govern myocyte actin remodeling, whereas TC10 alpha contributes to adipocyte actin dynamics downstream of Cbl-associated protein (CAP) and Cbl, independently of PI3-K. Given the importance of insulin action in both cell types, it is paramount to determine whether signaling pathways and actin manifestations are cell type specific. We found CAP expression and insulin-mediated Cbl phosphorylation in differentiated myotubes but not in myoblasts. Unlike adipocytes, Cbl is phosphorylated on Y774 and Y731 in myotubes. TC10 alpha and beta-transcripts are amplified by RT-PCR in muscle cells, but the endogenous proteins are barely detectable using two unrelated antibodies. TC10 alpha transfected into myoblasts is activated by insulin despite the lack of CAP expression and Cbl phosphorylation. Moreover, dominant-negative TC10 alpha mutants do not prevent insulin-induced actin remodeling in either myoblasts or myotubes and do not interfere with insulin-mediated recruitment of c-myc epitope-tagged GLUT4 to the cell surface. In contrast to TC10 alpha, endogenous Rac is readily detectable in both muscle cells and adipocytes and binds GTP after insulin in a PI3-K-dependent manner. These data suggest that whereas individual components of the CAP to TC10 pathway are regulated by insulin, a functional TC10-dependent signaling pathway leading to actin remodeling and GLUT4 translocation may not operate in myocytes, as it does in adipocytes.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
118 |
7
|
Yi S, Zheng B, Zhu Y, Cai Y, Sun H, Zhou J. Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS. Am J Physiol Endocrinol Metab 2020; 319:E91-E101. [PMID: 32343612 DOI: 10.1152/ajpendo.00006.2020] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial injury in granulosa cells is associated with the pathogenesis of polycystic ovary syndrome (PCOS). However, the protective effects of melatonin against mitochondrial injury in the granulosa cells of PCOS remain unclear. In this study, decreased mitochondrial membrane potential and mtDNA content, increased number of autophagosomes were found in the granulosa cells of PCOS patients and the dihydrotestosterone (DHT)-treated KGN cells, with decreased protein level of the autophagy substrate p62 and increased levels of the cellular autophagy markers Beclin 1 and LC3B-II, while the protein levels of PTEN-induced kinase-1 (PINK1) and Parkin were increased and the level of sirtuin 1 (SIRT1) was decreased. DHT-induced PCOS-like mice also showed enhanced mitophagy and decreased SIRT1 mRNA expression. Melatonin treatment significantly increased the protein level of SIRT1 and decreased the levels of PINK1/Parkin, whereas it ameliorated the mitochondrial dysfunction and PCOS phenotype in vitro and in vivo. However, when the KGN cells were treated with SIRT1 siRNA to knock down SIRT1 expression, melatonin treatment failed to repress the excessive mitophagy. In conclusion, melatonin protects against mitochondrial injury in granulosa cells of PCOS by enhancing SIRT1 expression to inhibit excessive PINK1/Parkin-mediated mitophagy.
Collapse
|
|
5 |
93 |
8
|
Smith MP, Ferguson J, Arozarena I, Hayward R, Marais R, Chapman A, Hurlstone A, Wellbrock C. Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J Natl Cancer Inst 2013; 105:33-46. [PMID: 23250956 PMCID: PMC3536641 DOI: 10.1093/jnci/djs471] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The mitogen-activated protein-kinase pathway consisting of the kinases RAF, MEK, and ERK is central to cell proliferation and survival and is deregulated in more than 90% of melanomas. MEK inhibitors are currently trialled in the clinic, but despite efficient target inhibition, cytostatic rather than cytotoxic activity limits their efficacy. METHODS We assessed the cytotoxicity to MEK inhibitors (PD184352 and selumetinib) in melanoma cells by toluidine-blue staining, caspase 3 cleavage, and melanoma-sphere growth. Western blotting and quantitative real-time polymerase chain reaction were applied to determine SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2), PAX3, and MITF expression. Human melanoma samples (n = 77) from various stages were analyzed for SMURF2 and PAX3 expression. RNA interference was performed to target SMURF2 during MEK inhibition in vivo in melanoma xenografts in mice and zebrafish. All statistical tests were two-sided. RESULTS Activation of transforming growth factor β (TGF-β) signalling sensitized melanoma cells to the cytotoxic effects of MEK inhibition. Melanoma cells resistant to the cytotoxic effects of MEK inhibitors counteracted TGF-β signalling through overexpression of the E3 ubiquitin ligase SMURF2, which resulted in increased expression of the transcription factors PAX3 and MITF. High MITF expression protected melanoma cells against MEK inhibitor cytotoxicity. Depleting SMURF2 reduced MITF expression and substantially lowered the threshold for MEK inhibitor-induced apoptosis. Moreover, SMURF2 depletion sensitized melanoma cells to the cytotoxic effects of selumetinib, leading to cell death at concentrations approximately 100-fold lower than the concentration required to induce cell death in SMURF2-expressing cells. Mice treated with selumetinib alone at a dosage of 10mg/kg body weight once daily produced no response, but in combination with SMURF2 depletion, selumetinib suppressed tumor growth by 97.9% (95% confidence interval = 38.65% to 155.50%, P = .005). CONCLUSIONS Targeting SMURF2 may be a novel therapeutic approach for increasing the antitumor efficacy of MEK inhibitors.
Collapse
|
research-article |
12 |
84 |
9
|
Meyerson NR, Zhou L, Guo YR, Zhao C, Tao YJ, Krug RM, Sawyer SL. Nuclear TRIM25 Specifically Targets Influenza Virus Ribonucleoproteins to Block the Onset of RNA Chain Elongation. Cell Host Microbe 2017; 22:627-638.e7. [PMID: 29107643 PMCID: PMC6309188 DOI: 10.1016/j.chom.2017.10.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/21/2017] [Accepted: 09/26/2017] [Indexed: 11/20/2022]
Abstract
TRIM25 is an E3 ubiquitin ligase that activates RIG-I to promote the antiviral interferon response. The NS1 protein from all strains of influenza A virus binds TRIM25, although not all virus strains block the interferon response, suggesting alternative mechanisms for TRIM25 action. Here we present a nuclear role for TRIM25 in specifically restricting influenza A virus replication. TRIM25 inhibits viral RNA synthesis through a direct mechanism that is independent of its ubiquitin ligase activity and the interferon pathway. This activity can be inhibited by the viral NS1 protein. TRIM25 inhibition of viral RNA synthesis results from its binding to viral ribonucleoproteins (vRNPs), the structures containing individual viral RNA segments, the viral polymerase, and multiple viral nucleoproteins. TRIM25 binding does not inhibit initiation of capped-RNA-primed viral mRNA synthesis by the viral polymerase. Rather, the onset of RNA chain elongation is inhibited because TRIM25 prohibits the movement of RNA into the polymerase complex.
Collapse
|
research-article |
8 |
84 |
10
|
LaVoie MJ, Cortese GP, Ostaszewski BL, Schlossmacher MG. The effects of oxidative stress on parkin and other E3 ligases. J Neurochem 2007; 103:2354-68. [PMID: 17883392 DOI: 10.1111/j.1471-4159.2007.04911.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autosomal recessive mutations within the Parkin gene are associated with degeneration of the substantia nigra and locus coeruleus and an inherited form of Parkinson's disease (PD). As loss-of-function mutations in parkin are responsible for a familial variant of PD, conditions that affect wild-type parkin are likely to be associated with increased risk of idiopathic disease. Previous studies uncovered a unique vulnerability of the parkin protein to dopamine (DA)-induced aggregation and inactivation. In this study, we compared several proteins that share structural elements or ubiquitinating activity with parkin. We report that oxidative stress in several cell lines and primary neurons induces the aggregation of parkin into high molecular weight species, at least a portion of which are self-associated homo-multimers. While parkin was preferentially affected by excess DA, each of the E3 proteins tested were made more insoluble by oxidative stress, and they varied in degree of susceptibility (e.g. parkin > HHARI congruent with CHIP > c-Cbl > E6AP). These conditions of oxidative stress were also associated with decreased parkin E3 ligase activity. Similar to recently conducted studies on alpha-synuclein processing, both macroautophagy and the proteasome participate in parkin degradation, with the proteasome playing the predominant role for normal parkin turnover and macroautophagy being more important in the degradation of aggregated parkin. These data further highlight the selective vulnerability of parkin to DA-induced modifications, demonstrating for the first time the ability of both endogenous and ectopically expressed parkin to transition into an insoluble state in part through self-association and oligomer formation.
Collapse
|
|
18 |
67 |
11
|
Wang K, Zou C, Wang X, Huang C, Feng T, Pan W, Wu Q, Wang P, Dai J. Interferon-stimulated TRIM69 interrupts dengue virus replication by ubiquitinating viral nonstructural protein 3. PLoS Pathog 2018; 14:e1007287. [PMID: 30142214 PMCID: PMC6126873 DOI: 10.1371/journal.ppat.1007287] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 09/06/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
In order to eliminate viral infections, hundreds of interferon-stimulated genes (ISGs) are induced via type I interferons (IFNs). However, the functions and mechanisms of most ISGs are largely unclear. A tripartite motif (TRIM) protein encoding gene TRIM69 is induced by dengue virus (DENV) infection as an ISG. TRIM69 restricts DENV replication, and its RING domain, which has the E3 ubiquitin ligase activity, is critical for its antiviral activity. An in vivo study further confirmed that TRIM69 contributes to the control of DENV infection in immunocompetent mice. Unlike many other TRIM family members, TRIM69 is not involved in modulation of IFN signaling. Instead, TRIM69 interacts with DENV Nonstructural Protein 3 (NS3) directly and mediates its polyubiquitination and degradation. Finally, Lys104 of NS3 is identified as the target of TRIM69-mediated ubiquitination. Our study demonstrates that TRIM69 restricts DENV replication by specifically ubiquitinating a viral nonstructural protein.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
61 |
12
|
Mukai R, Nakao R, Yamamoto H, Nikawa T, Takeda E, Terao J. Quercetin prevents unloading-derived disused muscle atrophy by attenuating the induction of ubiquitin ligases in tail-suspension mice. JOURNAL OF NATURAL PRODUCTS 2010; 73:1708-10. [PMID: 20853873 DOI: 10.1021/np100240y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The effects of quercetin (1) were investigated on disused muscle atrophy using mice that underwent tail suspension. Periodic injection of 1 into the gastrocnemius muscle suppressed muscle weight loss and ubiquitin ligase expression. Compound 1 reduced the enhancement of lipid peroxidation in the muscle. Injection of N-acetyl-l-cysteine, but not flavone (2), also prevented muscle weight loss and enhancement of lipid peroxidation. These findings demonstrate that 1 can prevent disused muscle atrophy by attenuating the expression of ubiquitin ligases and that such prevention originates from its antioxidant activity.
Collapse
|
|
15 |
52 |
13
|
Evenson AR, Fareed MU, Menconi MJ, Mitchell JC, Hasselgren PO. GSK-3beta inhibitors reduce protein degradation in muscles from septic rats and in dexamethasone-treated myotubes. Int J Biochem Cell Biol 2005; 37:2226-38. [PMID: 16051512 DOI: 10.1016/j.biocel.2005.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/04/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
Sepsis is associated with muscle wasting, mainly reflecting increased muscle proteolysis. Recent studies suggest that inhibition of GSK-3beta activity may counteract catabolic stimuli in skeletal muscle. We tested the hypothesis that treatment of muscles from septic rats with the GSK-3beta inhibitors LiCl and TDZD-8 would reduce sepsis-induced muscle proteolysis. Because muscle wasting during sepsis is, at least in part, mediated by glucocorticoids, we also tested the effects of GSK-3beta inhibitors on protein degradation in dexamethasone-treated cultured myotubes. Treatment of incubated extensor digitorum longus muscles with LiCl or TDZD-8 reduced basal and sepsis-induced protein breakdown rates. When cultured myotubes were treated with LiCl or one of the GSK-3beta inhibitors SB216763 or SB415286, protein degradation was reduced. Treatment of incubated muscles or cultured myotubes with LiCl, but not the other GSK-3beta inhibitors, resulted in increased phosphorylation of GSK-3beta at Ser9, consistent with inactivation of the kinase and suggesting that the other inhibitors used in the present experiments inhibit GSK-3beta by phosphorylation-independent mechanisms. The present results suggest that GSK-3beta inhibitors may be used to prevent or treat sepsis-induced, glucocorticoid-regulated muscle proteolysis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
44 |
14
|
Gureev AP, Popov VN. Nrf2/ARE Pathway as a Therapeutic Target for the Treatment of Parkinson Diseases. Neurochem Res 2019; 44:2273-2279. [PMID: 30617864 DOI: 10.1007/s11064-018-02711-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 02/07/2023]
Abstract
Instead of the progress in the understanding of etiology of Parkinson's disease (PD), effective methods to prevent the progression of the disease have not been developed and only symptomatic treatment is currently possible. One of possible pathways to slow the progression of the disease is protection of dopaminergic neurons by maintaining mitochondrial quality control in neuron cells. Recent studies showed that the most promising target for pharmacological effects on mitochondria is the Nrf2/ARE signaling cascade. It participates in the maintenance of mitochondrial homeostasis, which is provided by an optimal ratio in the processes of mitochondrial biogenesis and mitophagy, as well as the optimal ratio of ROS production and ROS scavenging. Nrf2 activators are capable of modulating these processes, maintaining mitochondrial homeostasis in neurons. In addition, Nrf2 can synergistically interact with other transcription factors, for example, PGC-1a in the regulation of mitochondrial biogenesis and YY1 with the increase of antioxidant defense. All this makes Nrf2 an optimal target for drugs that could support the mitochondrial quality control, which, in combination with antioxidant protection, can significantly slow down the pathogenesis of PD. Some of these compounds have undergone laboratory studies and are at the stage of clinical trials now.
Collapse
|
Review |
6 |
43 |
15
|
Sperling AS, Burgess M, Keshishian H, Gasser JA, Bhatt S, Jan M, Słabicki M, Sellar RS, Fink EC, Miller PG, Liddicoat BJ, Sievers QL, Sharma R, Adams DN, Olesinski EA, Fulciniti M, Udeshi ND, Kuhn E, Letai A, Munshi NC, Carr SA, Ebert BL. Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Blood 2019; 134:160-170. [PMID: 31043423 PMCID: PMC6624968 DOI: 10.1182/blood.2019000789] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacologic agents that modulate ubiquitin ligase activity to induce protein degradation are a major new class of therapeutic agents, active in a number of hematologic malignancies. However, we currently have a limited understanding of the determinants of activity of these agents and how resistance develops. We developed and used a novel quantitative, targeted mass spectrometry (MS) assay to determine the relative activities, kinetics, and cell-type specificity of thalidomide and 4 analogs, all but 1 of which are in clinical use or clinical trials for hematologic malignancies. Thalidomide analogs bind the CRL4CRBN ubiquitin ligase and induce degradation of particular proteins, but each of the molecules studied has distinct patterns of substrate specificity that likely underlie the clinical activity and toxicities of each drug. Our results demonstrate that the activity of molecules that induce protein degradation depends on the strength of ligase-substrate interaction in the presence of drug, the levels of the ubiquitin ligase, and the expression level of competing substrates. These findings highlight a novel mechanism of resistance to this class of drugs mediated by competition between substrates for access to a limiting pool of the ubiquitin ligase. We demonstrate that increased expression of a nonessential substrate can lead to decreased degradation of other substrates that are critical for antineoplastic activity of the drug, resulting in drug resistance. These studies provide general rules that govern drug-dependent substrate degradation and key differences between thalidomide analog activity in vitro and in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
41 |
16
|
Genbacev O, McMaster MT, Zdravkovic T, Fisher SJ. Disruption of oxygen-regulated responses underlies pathological changes in the placentas of women who smoke or who are passively exposed to smoke during pregnancy. Reprod Toxicol 2004; 17:509-18. [PMID: 14555188 DOI: 10.1016/s0890-6238(03)00094-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previously, we showed that maternal smoking harms human placental development by changing the balance between cytotrophoblast (CTB) proliferation and differentiation. To understand the mechanisms involved, we studied the effects of maternal smoking and in vitro exposure of CTBs to nicotine and on CTB expression of molecules that govern cellular responses to oxygen tension: the von Hippel-Lindau tumor suppressor protein (pVHL), the hypoxia-inducible transcription factors (HIFs), and the vascular endothelial growth factors (VEGFs). We previously reported that hypoxia upregulates CTB pVHL expression (1). Here we show that in vitro exposure of CTBs to nicotine has the same effect. Maternal smoking also dysregulated CTB expression of all three molecules. Remarkably, we found that passive exposure to cigarette smoke had many of the same effects as active smoking, a graphic demonstration of the ill effects of cigarette smoke, even secondhand, on placental development. Together, these findings explain, in part, how smoking damages the placenta by altering expression of key mediators of placental development.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
40 |
17
|
Zanchi NE, de Siqueira Filho MA, Lira FS, Rosa JC, Yamashita AS, de Oliveira Carvalho CR, Seelaender M, Lancha AH. Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3beta and p70S6K levels in rats. Eur J Appl Physiol 2009; 106:415-23. [PMID: 19306017 DOI: 10.1007/s00421-009-1033-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2009] [Indexed: 12/01/2022]
Abstract
Long-term adaptation to resistance training is probably due to the cumulative molecular effects of each exercise session. Therefore, we studied in female Wistar rats the molecular effects of a chronic resistance training regimen (3 months) leading to skeletal muscle hypertrophy in the plantaris muscle. Our results demonstrated that muscle proteolytic genes MuRF-1 and Atrogin-1 were significantly decreased in the exercised group measured 24 h after the last resistance exercise session (41.64 and 61.19%, respectively; P < 0.05). Nonetheless, when measured at the same time point, 4EBP-1, GSK-3beta and eIF2Bepsilon mRNA levels and Akt, GSK-3beta and p70S6K protein levels (regulators of translation initiation) were not modified. Such data suggests that if gene transcription constitutes a control point in the protein synthesis pathway this regulation probably occurs in early adaptation periods or during extreme situations leading to skeletal muscle remodeling. However, proteolytic gene expression is modified even after a prolonged resistance training regimen leading to moderate skeletal muscle hypertrophy.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
39 |
18
|
Liu H, Liang Y, Wang L, Tian L, Song R, Han T, Pan S, Liu L. In vivo and in vitro suppression of hepatocellular carcinoma by EF24, a curcumin analog. PLoS One 2012; 7:e48075. [PMID: 23118928 PMCID: PMC3485291 DOI: 10.1371/journal.pone.0048075] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/19/2012] [Indexed: 01/11/2023] Open
Abstract
The synthetic compound 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24) is a potent analog of curcumin that exhibits enhanced biological activity and bioavailability without increasing toxicity. EF24 exerts antitumor activity by arresting the cell cycle and inducing apoptosis, suppressing many types of cancer cells in vitro. The antiproliferative and antiangiogenic properties of EF24 provide theoretical support for its development and application to liver cancers. We investigated the in vitro and in vivo activities of EF24 on liver cancer to better understand its therapeutic effects and mechanisms. EF24 induced significant apoptosis and G2/M-phase cell cycle arrest in mouse liver cancer cell lines, Hepa1-6 and H22. The expression levels of G2/M cell cycle regulating factors, cyclin B1 and Cdc2, were significantly decreased, pp53, p53, and p21 were significantly increased in EF24-treated cells. In addition, EF24 treatment significantly reduced Bcl-2 concomitant with an increase in Bax, enhanced the release of cytochrome c from the mitochondria into the cytosol, resulting in an upregulation of cleaved-caspase-3, which promoted poly (ADP-ribose) polymerase cleavage. EF24-treated cells also displayed decreases in phosphorylated Akt, phosphorylated extracellular signal-regulated kinase and vascular endothelial growth factor. Our in vitro protein expression data were confirmed in vivo using a subcutaneous hepatocellular carcinoma (HCC) tumor model. This mouse HCC model confirmed that total body weight was unchanged following EF24 treatment, although tumor weight was significantly decreased. Using an orthotopic HCC model, EF24 significantly reduced the liver/body weight ratio and relative tumor areas compared to the control group. In situ detection of apoptotic cells and quantification of Ki-67, a biomarker of cell proliferation, all indicated significant tumor suppression with EF24 treatment. These results suggest that EF24 exhibits anti-tumor activity on liver cancer cells via mitochondria-dependent apoptosis and inducing cell cycle arrest coupled with antiangiogenesis. The demonstrated activities of EF24 support its further evaluation as a treatment for human liver cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
36 |
19
|
Rahman MS, Kim YS. PINK1-PRKN mitophagy suppression by mangiferin promotes a brown-fat-phenotype via PKA-p38 MAPK signalling in murine C3H10T1/2 mesenchymal stem cells. Metabolism 2020; 107:154228. [PMID: 32289346 DOI: 10.1016/j.metabol.2020.154228] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/20/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Mangiferin (MF), a xanthonoid derived from Mangifera indica, has shown therapeutic effects on various human diseases including cancer, diabetes, and obesity. Nonetheless, the influence of MF on non-shivering thermogenesis and its underlying mechanism in browning remains unclear. Here, our aim was to investigate the effects of MF on browning and its molecular mechanisms in murine C3H10T1/2 mesenchymal stem cells (MSCs). MATERIALS/METHODS To determine the function of MF on browning, murine C3H10T1/2 MSCs were treated with MF in an adipogenic differentiation cocktail and the thermogenic and correlated metabolic responses were assessed using MF-mediated signalling. Human adipose-derived MSCs were differentiated and treated with MF to confirm its role in thermogenic induction. RESULTS MF treatment induced the expression of a brown-fat signature, UCP1, and reduced triglyceride (TG) in C3H10T1/2 MSCs. MF also induced the expression of major thermogenesis regulators: PGC1α, PRDM16, and PPARγ and up-regulated the expression of beiging markers CD137, HSPB7, TBX1, and COX2 in both murine C3H10T1/2 MSCs and human adipose-derived mesenchymal stem cells (hADMSC). We also observed that MF treatment increased the mitochondrial DNA and improved mitochondrial homeostasis by regulating mitofission-fusion plasticity via suppressing PINK1-PRKN-mediated mitophagy. Furthermore, MF treatment improved mitochondrial respiratory function by increasing mitochondrial oxygen consumption and expression of oxidative-phosphorylation (OXPHOS)-related proteins. Chemical-inhibition and gene knockdown experiments revealed that β3-AR-dependent PKA-p38 MAPK-CREB signalling is crucial for MF-mediated brown-fat formation via suppression of mitophagy in C3H10T1/2 MSCs. CONCLUSIONS MF promotes the brown adipocyte phenotype by suppressing mitophagy, which is regulated by PKA-p38MAPK-CREB signalling in C3H10T1/2 MSCs. Thus, we propose that MF may be a good browning inducer that can ameliorate obesity.
Collapse
|
|
5 |
31 |
20
|
Guiliano DB, Fussell H, Lenart I, Tsao E, Nesbeth D, Fletcher AJ, Campbell EC, Yousaf N, Williams S, Santos S, Cameron A, Towers GJ, Kellam P, Hebert DN, Gould K, Powis SJ, Antoniou AN. Endoplasmic reticulum degradation-enhancing α-mannosidase-like protein 1 targets misfolded HLA-B27 dimers for endoplasmic reticulum-associated degradation. Arthritis Rheumatol 2014; 66:2976-88. [PMID: 25132672 PMCID: PMC4399817 DOI: 10.1002/art.38809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 07/29/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVE HLA-B27 forms misfolded heavy chain dimers, which may predispose individuals to inflammatory arthritis by inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). This study was undertaken to define the role of the UPR-induced ER-associated degradation (ERAD) pathway in the disposal of HLA-B27 dimeric conformers. METHODS HeLa cell lines expressing only 2 copies of a carboxy-terminally Sv5-tagged HLA-B27 were generated. The ER stress-induced protein ER degradation-enhancing α-mannosidase-like protein 1 (EDEM1) was overexpressed by transfection, and dimer levels were monitored by immunoblotting. EDEM1, the UPR-associated transcription factor X-box binding protein 1 (XBP-1), the E3 ubiquitin ligase hydroxymethylglutaryl-coenzyme A reductase degradation 1 (HRD1), and the degradation-associated proteins derlin 1 and derlin 2 were inhibited using either short hairpin RNA or dominant-negative mutants. The UPR-associated ERAD of HLA-B27 was confirmed using ER stress-inducing pharamacologic agents in kinetic and pulse chase assays. RESULTS We demonstrated that UPR-induced machinery can target HLA-B27 dimers and that dimer formation can be controlled by alterations to expression levels of components of the UPR-induced ERAD pathway. HLA-B27 dimers and misfolded major histocompatibility complex class I monomeric molecules bound to EDEM1 were detected, and overexpression of EDEM1 led to inhibition of HLA-B27 dimer formation. EDEM1 inhibition resulted in up-regulation of HLA-B27 dimers, while UPR-induced ERAD of dimers was prevented in the absence of EDEM1. HLA-B27 dimer formation was also enhanced in the absence of XBP-1, HRD1, and derlins 1 and 2. CONCLUSION The present findings indicate that the UPR ERAD pathway can dispose of HLA-B27 dimers, thus presenting a potential novel therapeutic target for modulation of HLA-B27-associated inflammatory disease.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
28 |
21
|
Ceci R, Duranti G, Rossi A, Savini I, Sabatini S. Skeletal muscle differentiation: role of dehydroepiandrosterone sulfate. Horm Metab Res 2011; 43:702-7. [PMID: 21932174 DOI: 10.1055/s-0031-1285867] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfonated form dehydroepiandrosterone sulfate (DHEAS) are the main circulating steroid hormones and many epidemiological studies show an inverse relationship between DHEA/DHEAS levels and muscle loss for which the primary cause is the accelerated protein breakdown. The aim of this work was to determine whether DHEA/DHEAS supplementation in differentiating C2C12 skeletal muscle cells might influence the expression of the atrophy-related ubiquitin ligase, MuRF-1, and thereby impact key molecules of the differentiation program. DHEA is the prohormone crucial for sex steroid synthesis, and DHEAS is thought to be its reservoir. However, our preliminary experiments showed that DHEAS, but not DHEA, is able to influence MuRF-1 expression. Therefore, we treated differentiating C2C12 cells with various concentrations of DHEAS and analyzed the expression of MuRF-1, Hsp70, myosin heavy chain (MHC), myogenin, and the activity of creatine kinase. We observed that DHEAS at physiological concentrations downregulates MuRF-1 expression and affects muscle differentiation, as shown by the increased levels of MHC, which is a sarcomeric protein that undergoes MuRF-1-dependent degradation, and also by an increase in creatine kinase activity and myogenin expression, which are two other well-known markers of differentiation. Moreover, we found that DHEAS might have a protective effect on differentiating cells as suggested by the augmented levels of Hsp70, a member of heat shock proteins family that, besides its cytoprotective action, seems to have a regulatory role on key atrophy genes such as MuRF-1. In conclusion, our data shed light on the role of DHEAS at physiologic concentrations in maintaining muscle mass.
Collapse
|
|
14 |
22 |
22
|
Le Clorennec C, Lazrek Y, Dubreuil O, Larbouret C, Poul MA, Mondon P, Melino G, Pèlegrin A, Chardès T. The anti-HER3 (ErbB3) therapeutic antibody 9F7-F11 induces HER3 ubiquitination and degradation in tumors through JNK1/2- dependent ITCH/AIP4 activation. Oncotarget 2016; 7:37013-37029. [PMID: 27203743 PMCID: PMC5095055 DOI: 10.18632/oncotarget.9455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/16/2016] [Indexed: 01/28/2023] Open
Abstract
We characterized the mechanism of action of the neuregulin-non-competitive anti-HER3 therapeutic antibody 9F7-F11 that blocks the PI3K/AKT pathway, leading to cell cycle arrest and apoptosis in vitro and regression of pancreatic and breast cancer in vivo. We found that 9F7-F11 induces rapid HER3 down-regulation. Specifically, 9F7-F11-induced HER3 ubiquitination and degradation in pancreatic, breast and prostate cancer cell lines was driven mainly by the itchy E3 ubiquitin ligase (ITCH/AIP4). Overexpression of the ITCH/AIP4 inhibitor N4BP1 or small-interfering RNA-mediated knockdown of ITCH/AIP4 inhibited HER3 ubiquitination/degradation and PI3K/AKT signaling blockade induced by 9F7-F11. Moreover, 9F7-F11-mediated JNK1/2 phosphorylation led to ITCH/AIP4 activation and recruitment to HER3 for receptor ubiquitination and degradation. ITCH/AIP4 activity was activated by the deubiquitinases USP8 and USP9X, as demonstrated by RNA interference. Taken together, our results suggest that 9F7-F11-induced HER3 ubiquitination and degradation in cancer cells mainly occurs through JNK1/2-dependent ITCH/AIP4 activation.
Collapse
|
research-article |
9 |
20 |
23
|
Deng W, Bates JA, Wei H, Bartoschek MD, Conradt B, Leonhardt H. Tunable light and drug induced depletion of target proteins. Nat Commun 2020; 11:304. [PMID: 31949141 PMCID: PMC6965615 DOI: 10.1038/s41467-019-14160-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022] Open
Abstract
Biological processes in development and disease are controlled by the abundance, localization and modification of cellular proteins. We have developed versatile tools based on recombinant E3 ubiquitin ligases that are controlled by light or drug induced heterodimerization for nanobody or DARPin targeted depletion of endogenous proteins in cells and organisms. We use this rapid, tunable and reversible protein depletion for functional studies of essential proteins like PCNA in DNA repair and to investigate the role of CED-3 in apoptosis during Caenorhabditis elegans development. These independent tools can be combined for spatial and temporal depletion of different sets of proteins, can help to distinguish immediate cellular responses from long-term adaptation effects and can facilitate the exploration of complex networks.
Collapse
|
research-article |
5 |
20 |
24
|
Gasic I, Groendyke BJ, Nowak RP, Yuan JC, Kalabathula J, Fischer ES, Gray NS, Mitchison TJ. Tubulin Resists Degradation by Cereblon-Recruiting PROTACs. Cells 2020; 9:E1083. [PMID: 32349222 PMCID: PMC7290497 DOI: 10.3390/cells9051083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of microtubules and tubulin homeostasis has been linked to developmental disorders, neurodegenerative diseases, and cancer. In general, both microtubule-stabilizing and destabilizing agents have been powerful tools for studies of microtubule cytoskeleton and as clinical agents in oncology. However, many cancers develop resistance to these agents, limiting their utility. We sought to address this by developing a different kind of agent: tubulin-targeted small molecule degraders. Degraders (also known as proteolysis-targeting chimeras (PROTACs)) are compounds that recruit endogenous E3 ligases to a target of interest, resulting in the target's degradation. We developed and examined several series of α- and β-tubulin degraders, based on microtubule-destabilizing agents. Our results indicate, that although previously reported covalent tubulin binders led to tubulin degradation, in our hands, cereblon-recruiting PROTACs were not efficient. In summary, while we consider tubulin degraders to be valuable tools for studying the biology of tubulin homeostasis, it remains to be seen whether the PROTAC strategy can be applied to this target of high clinical relevance.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
18 |
25
|
Qin T, Liu S, Zhang Z, Sun L, He X, Lindsey K, Zhu L, Zhang X. GhCyP3 improves the resistance of cotton to Verticillium dahliae by inhibiting the E3 ubiquitin ligase activity of GhPUB17. PLANT MOLECULAR BIOLOGY 2019; 99:379-393. [PMID: 30671725 DOI: 10.1007/s11103-019-00824-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 01/12/2019] [Indexed: 05/02/2023]
Abstract
A U-box E3 ubiquitin ligase GhPUB17 is inhibited by GhCyP3 with antifungal activity and acts as a negative regulator involved in cotton resistance to Verticillium dahliae. E3 ubiquitin ligases, the key component enzymes of the ubiquitin-proteasome system, which contains the most diverse structural and functional members involved in the determination of target specificity and the regulation of metabolism, have been well documented in previous studies. Here, we identify GhPUB17, a U-box E3 ligase in cotton that has ubiquitination activity and is involved in the cotton immune response to Verticillium dahliae. The expression level of GhPUB17 is downregulated in the ssn mutant with a constitutively activated immune response (Sun et al., Nat Commun 5:5372, 2014). Infection with V. dahliae or exogenous hormone treatment, including jasmonic acid and salicylic acid, significantly upregulated GhPUB17 in cotton roots, which suggested a possible role for this E3 ligase in the plant immune response to pathogens. Moreover, GhPUB17-knockdown cotton plants are more resistant to V. dahliae, whereas GhPUB17-overexpressing plants are more susceptible to the pathogen, which indicated that GhPUB17 is a negative regulator of cotton resistance to V. dahliae. A yeast two-hybrid (Y2H) assay identified GhCyP3 as a protein that interacts with GhPUB17, and this finding was confirmed by further protein interaction assays. The downregulation of GhCyP3 in cotton seedlings attenuated the plants' resistance to V. dahliae. In addition, GhCyP3 showed antifungal activity against V. dahliae, and the E3 ligase activity of GhPUB17 was repressed by GhCyP3 in vitro. These results suggest that GhPUB17 negatively regulates cotton immunity to V. dahliae and that the antifungal protein GhCyP3 likely interacts with and inhibits the ligase activity of GhPUB17 and plays an important role in the cotton-Verticillium interaction.
Collapse
|
|
6 |
17 |