1
|
Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell 2004; 117:399-412. [PMID: 15109499 PMCID: PMC3619734 DOI: 10.1016/s0092-8674(04)00400-3] [Citation(s) in RCA: 2268] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 02/24/2004] [Accepted: 03/17/2004] [Indexed: 11/25/2022]
Abstract
Skeletal muscle atrophy is a debilitating response to fasting, disuse, cancer, and other systemic diseases. In atrophying muscles, the ubiquitin ligase, atrogin-1 (MAFbx), is dramatically induced, and this response is necessary for rapid atrophy. Here, we show that in cultured myotubes undergoing atrophy, the activity of the PI3K/AKT pathway decreases, leading to activation of Foxo transcription factors and atrogin-1 induction. IGF-1 treatment or AKT overexpression inhibits Foxo and atrogin-1 expression. Moreover, constitutively active Foxo3 acts on the atrogin-1 promoter to cause atrogin-1 transcription and dramatic atrophy of myotubes and muscle fibers. When Foxo activation is blocked by a dominant-negative construct in myotubes or by RNAi in mouse muscles in vivo, atrogin-1 induction during starvation and atrophy of myotubes induced by glucocorticoids are prevented. Thus, forkhead factor(s) play a critical role in the development of muscle atrophy, and inhibition of Foxo factors is an attractive approach to combat muscle wasting.
Collapse
|
|
21 |
2268 |
2
|
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010; 8:e1000298. [PMID: 20126261 PMCID: PMC2811155 DOI: 10.1371/journal.pbio.1000298] [Citation(s) in RCA: 2231] [Impact Index Per Article: 148.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 12/18/2009] [Indexed: 12/21/2022] Open
Abstract
Mutations in PINK1 or Parkin lead to familial parkinsonism. The authors suggest that PINK1 and Parkin form a pathway that senses damaged mitochondria and selectively targets them for degradation. Loss-of-function mutations in PINK1 and Parkin cause parkinsonism in humans and mitochondrial dysfunction in model organisms. Parkin is selectively recruited from the cytosol to damaged mitochondria to trigger their autophagy. How Parkin recognizes damaged mitochondria, however, is unknown. Here, we show that expression of PINK1 on individual mitochondria is regulated by voltage-dependent proteolysis to maintain low levels of PINK1 on healthy, polarized mitochondria, while facilitating the rapid accumulation of PINK1 on mitochondria that sustain damage. PINK1 accumulation on mitochondria is both necessary and sufficient for Parkin recruitment to mitochondria, and disease-causing mutations in PINK1 and Parkin disrupt Parkin recruitment and Parkin-induced mitophagy at distinct steps. These findings provide a biochemical explanation for the genetic epistasis between PINK1 and Parkin in Drosophila melanogaster. In addition, they support a novel model for the negative selection of damaged mitochondria, in which PINK1 signals mitochondrial dysfunction to Parkin, and Parkin promotes their elimination. Mutations in the PINK1 or Parkin genes lead to an inherited form of Parkinson disease. Understanding how the products of these genes work may give us insights into what goes wrong in these patients and in Parkinson disease more generally. Previous studies in flies and mice, and in human cells suggest that PINK1 and Parkin are part of a common pathway that protects against damaged mitochondria; these organelles power the cell when healthy but can produce harmful reactive oxygen species when damaged. Exactly how PINK1 and Parkin work together to protect against damaged mitochondria is unclear. The findings we report in this paper suggest a new model in which PINK1 and Parkin together sense mitochondria in distress and selectively target them for degradation. In this pathway, PINK1 acts as a flag that accumulates on dysfunctional mitochondria and then signals to Parkin, which tags these mitochondria for destruction. Since disease-causing mutations in PINK1 or Parkin disrupt this pathway, patients with these mutations may not be able to clean up their damaged mitochondria, leading to the neuronal damage typical of parkinsonism.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
2231 |
3
|
Abstract
Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.
Collapse
|
Review |
20 |
1991 |
4
|
Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004; 24:7130-9. [PMID: 15282312 PMCID: PMC479737 DOI: 10.1128/mcb.24.16.7130-7139.2004] [Citation(s) in RCA: 1783] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcription factor Nrf2 is a major regulator of genes encoding phase 2 detoxifying enzymes and antioxidant stress proteins in response to electrophilic agents and oxidative stress. In the absence of such stimuli, Nrf2 is inactive owing to its cytoplasmic retention by Keap1 and rapid degradation through the proteasome system. We examined the contribution of Keap1 to the rapid turnover of Nrf2 (half-life of less than 20 min) and found that a direct association between Keap1 and Nrf2 is required for Nrf2 degradation. In a series of domain function analyses of Keap1, we found that both the BTB and intervening-region (IVR) domains are crucial for Nrf2 degradation, implying that these two domains act to recruit ubiquitin-proteasome factors. Indeed, Cullin 3 (Cul3), a subunit of the E3 ligase complex, was found to interact specifically with Keap1 in vivo. Keap1 associates with the N-terminal region of Cul3 through the IVR domain and promotes the ubiquitination of Nrf2 in cooperation with the Cul3-Roc1 complex. These results thus provide solid evidence that Keap1 functions as an adaptor of Cul3-based E3 ligase. To our knowledge, Nrf2 and Keap1 are the first reported mammalian substrate and adaptor, respectively, of the Cul3-based E3 ligase system.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
1783 |
5
|
Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005; 7:77-85. [PMID: 15652751 DOI: 10.1016/j.ccr.2004.11.022] [Citation(s) in RCA: 1569] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 10/27/2004] [Accepted: 11/05/2004] [Indexed: 01/13/2023]
Abstract
Several mitochondrial proteins are tumor suppressors. These include succinate dehydrogenase (SDH) and fumarate hydratase, both enzymes of the tricarboxylic acid (TCA) cycle. However, to date, the mechanisms by which defects in the TCA cycle contribute to tumor formation have not been elucidated. Here we describe a mitochondrion-to-cytosol signaling pathway that links mitochondrial dysfunction to oncogenic events: succinate, which accumulates as a result of SDH inhibition, inhibits HIF-alpha prolyl hydroxylases in the cytosol, leading to stabilization and activation of HIF-1alpha. These results suggest a mechanistic link between SDH mutations and HIF-1alpha induction, providing an explanation for the highly vascular tumors that develop in the absence of VHL mutations.
Collapse
|
|
20 |
1569 |
6
|
Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430:694-9. [PMID: 15258597 DOI: 10.1038/nature02794] [Citation(s) in RCA: 1511] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 06/29/2004] [Indexed: 12/15/2022]
Abstract
NF-kappaB transcription factors mediate the effects of pro-inflammatory cytokines such as tumour necrosis factor-alpha and interleukin-1beta. Failure to downregulate NF-kappaB transcriptional activity results in chronic inflammation and cell death, as observed in A20-deficient mice. A20 is a potent inhibitor of NF-kappaB signalling, but its mechanism of action is unknown. Here we show that A20 downregulates NF-kappaB signalling through the cooperative activity of its two ubiquitin-editing domains. The amino-terminal domain of A20, which is a de-ubiquitinating (DUB) enzyme of the OTU (ovarian tumour) family, removes lysine-63 (K63)-linked ubiquitin chains from receptor interacting protein (RIP), an essential mediator of the proximal TNF receptor 1 (TNFR1) signalling complex. The carboxy-terminal domain of A20, composed of seven C2/C2 zinc fingers, then functions as a ubiquitin ligase by polyubiquitinating RIP with K48-linked ubiquitin chains, thereby targeting RIP for proteasomal degradation. Here we define a novel ubiquitin ligase domain and identify two sequential mechanisms by which A20 downregulates NF-kappaB signalling. We also provide an example of a protein containing separate ubiquitin ligase and DUB domains, both of which participate in mediating a distinct regulatory effect.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
1511 |
7
|
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 2010; 189:211-21. [PMID: 20404107 PMCID: PMC2856912 DOI: 10.1083/jcb.200910140] [Citation(s) in RCA: 1504] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/22/2010] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder. Recent identification of genes linked to familial forms of PD such as Parkin and PINK1 (PTEN-induced putative kinase 1) has revealed that ubiquitylation and mitochondrial integrity are key factors in disease pathogenesis. However, the exact mechanism underlying the functional interplay between Parkin-catalyzed ubiquitylation and PINK1-regulated mitochondrial quality control remains an enigma. In this study, we show that PINK1 is rapidly and constitutively degraded under steady-state conditions in a mitochondrial membrane potential-dependent manner and that a loss in mitochondrial membrane potential stabilizes PINK1 mitochondrial accumulation. Furthermore, PINK1 recruits Parkin from the cytoplasm to mitochondria with low membrane potential to initiate the autophagic degradation of damaged mitochondria. Interestingly, the ubiquitin ligase activity of Parkin is repressed in the cytoplasm under steady-state conditions; however, PINK1-dependent mitochondrial localization liberates the latent enzymatic activity of Parkin. Some pathogenic mutations of PINK1 and Parkin interfere with the aforementioned events, suggesting an etiological importance. These results provide crucial insight into the pathogenic mechanisms of PD.
Collapse
|
research-article |
15 |
1504 |
8
|
Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ. The IGF-1/PI3K/Akt Pathway Prevents Expression of Muscle Atrophy-Induced Ubiquitin Ligases by Inhibiting FOXO Transcription Factors. Mol Cell 2004; 14:395-403. [PMID: 15125842 DOI: 10.1016/s1097-2765(04)00211-4] [Citation(s) in RCA: 1451] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/23/2004] [Accepted: 02/26/2004] [Indexed: 12/31/2022]
Abstract
Skeletal muscle size depends upon a dynamic balance between anabolic (or hypertrophic) and catabolic (or atrophic) processes. Previously, no link between the molecular mediators of atrophy and hypertrophy had been reported. We demonstrate a hierarchy between the signals which mediate hypertrophy and those which mediate atrophy: the IGF-1/PI3K/Akt pathway, which has been shown to induce hypertrophy, prevents induction of requisite atrophy mediators, namely the muscle-specific ubiquitin ligases MAFbx and MuRF1. Moreover, the mechanism for this inhibition involves Akt-mediated inhibition of the FoxO family of transcription factors; a mutant form of FOXO1, which prevents Akt phosphorylation, thereby prevents Akt-mediated inhibition of MuRF1 and MAFbx upregulation. Our study thus defines a previously uncharacterized function for Akt, which has important therapeutic relevance: Akt is not only capable of activating prosynthetic pathways, as previously demonstrated, but is simultaneously and dominantly able to suppress catabolic pathways, allowing it to prevent glucocorticoid and denervation-induced muscle atrophy.
Collapse
|
|
21 |
1451 |
9
|
Abstract
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.
Collapse
|
Review |
9 |
1430 |
10
|
Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007; 446:916-920. [PMID: 17392790 DOI: 10.1038/nature05732] [Citation(s) in RCA: 1333] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 03/08/2007] [Indexed: 12/20/2022]
Abstract
Retinoic-acid-inducible gene-I (RIG-I; also called DDX58) is a cytosolic viral RNA receptor that interacts with MAVS (also called VISA, IPS-1 or Cardif) to induce type I interferon-mediated host protective innate immunity against viral infection. Furthermore, members of the tripartite motif (TRIM) protein family, which contain a cluster of a RING-finger domain, a B box/coiled-coil domain and a SPRY domain, are involved in various cellular processes, including cell proliferation and antiviral activity. Here we report that the amino-terminal caspase recruitment domains (CARDs) of RIG-I undergo robust ubiquitination induced by TRIM25 in mammalian cells. The carboxy-terminal SPRY domain of TRIM25 interacts with the N-terminal CARDs of RIG-I; this interaction effectively delivers the Lys 63-linked ubiquitin moiety to the N-terminal CARDs of RIG-I, resulting in a marked increase in RIG-I downstream signalling activity. The Lys 172 residue of RIG-I is critical for efficient TRIM25-mediated ubiquitination and for MAVS binding, as well as the ability of RIG-I to induce antiviral signal transduction. Furthermore, gene targeting demonstrates that TRIM25 is essential not only for RIG-I ubiquitination but also for RIG-I-mediated interferon- production and antiviral activity in response to RNA virus infection. Thus, we demonstrate that TRIM25 E3 ubiquitin ligase induces the Lys 63-linked ubiquitination of RIG-I, which is crucial for the cytosolic RIG-I signalling pathway to elicit host antiviral innate immunity.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
1333 |
11
|
Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y. Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004; 431:873-8. [PMID: 15386022 DOI: 10.1038/nature02985] [Citation(s) in RCA: 1313] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 09/02/2004] [Indexed: 11/09/2022]
Abstract
Covalent modification of histones is important in regulating chromatin dynamics and transcription. One example of such modification is ubiquitination, which mainly occurs on histones H2A and H2B. Although recent studies have uncovered the enzymes involved in histone H2B ubiquitination and a 'cross-talk' between H2B ubiquitination and histone methylation, the responsible enzymes and the functions of H2A ubiquitination are unknown. Here we report the purification and functional characterization of an E3 ubiquitin ligase complex that is specific for histone H2A. The complex, termed hPRC1L (human Polycomb repressive complex 1-like), is composed of several Polycomb-group proteins including Ring1, Ring2, Bmi1 and HPH2. hPRC1L monoubiquitinates nucleosomal histone H2A at lysine 119. Reducing the expression of Ring2 results in a dramatic decrease in the level of ubiquitinated H2A in HeLa cells. Chromatin immunoprecipitation analysis demonstrated colocalization of dRing with ubiquitinated H2A at the PRE and promoter regions of the Drosophila Ubx gene in wing imaginal discs. Removal of dRing in SL2 tissue culture cells by RNA interference resulted in loss of H2A ubiquitination concomitant with derepression of Ubx. Thus, our studies identify the H2A ubiquitin ligase, and link H2A ubiquitination to Polycomb silencing.
Collapse
|
|
21 |
1313 |
12
|
Abstract
Parkinson's disease (PD) is a complex disorder with many different causes, yet they may intersect in common pathways, raising the possibility that neuroprotective agents may have broad applicability in the treatment of PD. Current evidence suggests that mitochondrial complex I inhibition may be the central cause of sporadic PD and that derangements in complex I cause alpha-synuclein aggregation, which contributes to the demise of dopamine neurons. Accumulation and aggregation of alpha-synuclein may further contribute to the death of dopamine neurons through impairments in protein handling and detoxification. Dysfunction of parkin (a ubiquitin E3 ligase) and DJ-1 could contribute to these deficits. Strategies aimed at restoring complex I activity, reducing oxidative stress and alpha-synuclein aggregation, and enhancing protein degradation may hold particular promise as powerful neuroprotective agents in the treatment of PD.
Collapse
|
Review |
22 |
1242 |
13
|
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2013; 3:461-91. [PMID: 24252804 PMCID: PMC4135313 DOI: 10.3233/jpd-130230] [Citation(s) in RCA: 1163] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
1163 |
14
|
Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011; 16:123-40. [PMID: 21251164 DOI: 10.1111/j.1365-2443.2010.01473.x] [Citation(s) in RCA: 1162] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Keap1–Nrf2 regulatory pathway plays a central role in the protection of cells against oxidative and xenobiotic damage. Under unstressed conditions, Nrf2 is constantly ubiquitinated by the Cul3–Keap1 ubiquitin E3 ligase complex and rapidly degraded in proteasomes. Upon exposure to electrophilic and oxidative stresses, reactive cysteine residues of Keap1 become modified, leading to a decline in the E3 ligase activity, stabilization of Nrf2 and robust induction of a battery of cytoprotective genes. Biochemical and structural analyses have revealed that the intact Keap1 homodimer forms a cherry-bob structure in which one molecule of Nrf2 associates with two molecules of Keap1 by using two binding sites within the Neh2 domain of Nrf2. This two-site binding appears critical for Nrf2 ubiquitination. In many human cancers, missense mutations in KEAP1 and NRF2 genes have been identified. These mutations disrupt the Keap1–Nrf2 complex activity involved in ubiquitination and degradation of Nrf2 and result in constitutive activation of Nrf2. Elevated expression of Nrf2 target genes confers advantages in terms of stress resistance and cell proliferation in normal and cancer cells. Discovery and development of selective Nrf2 inhibitors should make a critical contribution to improved cancer therapy.
Collapse
|
Review |
14 |
1162 |
15
|
Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 2010; 191:1367-80. [PMID: 21173115 PMCID: PMC3010068 DOI: 10.1083/jcb.201007013] [Citation(s) in RCA: 1104] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/29/2010] [Indexed: 12/21/2022] Open
Abstract
Damage to mitochondria can lead to the depolarization of the inner mitochondrial membrane, thereby sensitizing impaired mitochondria for selective elimination by autophagy. However, fusion of uncoupled mitochondria with polarized mitochondria can compensate for damage, reverse membrane depolarization, and obviate mitophagy. Parkin, an E3 ubiquitin ligase that is mutated in monogenic forms of Parkinson's disease, was recently found to induce selective autophagy of damaged mitochondria. Here we show that ubiquitination of mitofusins Mfn1 and Mfn2, large GTPases that mediate mitochondrial fusion, is induced by Parkin upon membrane depolarization and leads to their degradation in a proteasome- and p97-dependent manner. p97, a AAA+ ATPase, accumulates on mitochondria upon uncoupling of Parkin-expressing cells, and both p97 and proteasome activity are required for Parkin-mediated mitophagy. After mitochondrial fission upon depolarization, Parkin prevents or delays refusion of mitochondria, likely by the elimination of mitofusins. Inhibition of Drp1-mediated mitochondrial fission, the proteasome, or p97 prevents Parkin-induced mitophagy.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
1104 |
16
|
Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007; 446:640-5. [PMID: 17410169 DOI: 10.1038/nature05731] [Citation(s) in RCA: 1085] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 03/08/2007] [Indexed: 01/08/2023]
Abstract
Auxin is a pivotal plant hormone that controls many aspects of plant growth and development. Perceived by a small family of F-box proteins including transport inhibitor response 1 (TIR1), auxin regulates gene expression by promoting SCF ubiquitin-ligase-catalysed degradation of the Aux/IAA transcription repressors, but how the TIR1 F-box protein senses and becomes activated by auxin remains unclear. Here we present the crystal structures of the Arabidopsis TIR1-ASK1 complex, free and in complexes with three different auxin compounds and an Aux/IAA substrate peptide. These structures show that the leucine-rich repeat domain of TIR1 contains an unexpected inositol hexakisphosphate co-factor and recognizes auxin and the Aux/IAA polypeptide substrate through a single surface pocket. Anchored to the base of the TIR1 pocket, auxin binds to a partially promiscuous site, which can also accommodate various auxin analogues. Docked on top of auxin, the Aux/IAA substrate peptide occupies the rest of the TIR1 pocket and completely encloses the hormone-binding site. By filling in a hydrophobic cavity at the protein interface, auxin enhances the TIR1-substrate interactions by acting as a 'molecular glue'. Our results establish the first structural model of a plant hormone receptor.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
1085 |
17
|
Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 2004; 24:10941-53. [PMID: 15572695 PMCID: PMC533977 DOI: 10.1128/mcb.24.24.10941-10953.2004] [Citation(s) in RCA: 1019] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bZIP transcription factor Nrf2 controls a genetic program that protects cells from oxidative damage and maintains cellular redox homeostasis. Keap1, a BTB-Kelch protein, is the major upstream regulator of Nrf2 and controls both the subcellular localization and steady-state levels of Nrf2. In this report, we demonstrate that Keap1 functions as a substrate adaptor protein for a Cul3-dependent E3 ubiquitin ligase complex. Keap1 assembles into a functional E3 ubiquitin ligase complex with Cul3 and Rbx1 that targets multiple lysine residues located in the N-terminal Neh2 domain of Nrf2 for ubiquitin conjugation both in vivo and in vitro. Keap1-dependent ubiquitination of Nrf2 is inhibited following exposure of cells to quinone-induced oxidative stress and sulforaphane, a cancer-preventive isothiocyanate. A mutant Keap1 protein containing a single cysteine-to-serine substitution at residue 151 within the BTB domain of Keap1 is markedly resistant to inhibition by either quinone-induced oxidative stress or sulforaphane. Inhibition of Keap1-dependent ubiquitination of Nrf2 correlates with decreased association of Keap1 with Cul3. Neither quinone-induced oxidative stress nor sulforaphane disrupts association between Keap1 and Nrf2. Our results suggest that the ability of Keap1 to assemble into a functional E3 ubiquitin ligase complex is the critical determinant that controls steady-state levels of Nrf2 in response to cancer-preventive compounds and oxidative stress.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
1019 |
18
|
Abstract
Mutations in TP53, the gene that encodes the tumour suppressor p53, are found in 50% of human cancers, and increased levels of its negative regulators MDM2 and MDM4 (also known as MDMX) downregulate p53 function in many of the rest. Understanding p53 regulation remains a crucial goal to design broadly applicable anticancer strategies based on this pathway. This Review of in vitro studies, human tumour data and recent mouse models shows that p53 post-translational modifications have modulatory roles, and MDM2 and MDM4 have more profound roles for regulating p53. Importantly, MDM4 emerges as an independent target for drug development, as its inactivation is crucial for full p53 activation.
Collapse
|
Review |
19 |
987 |
19
|
Abstract
Ubiquitin E3 ligases control every aspect of eukaryotic biology by promoting protein ubiquitination and degradation. At the end of a three-enzyme cascade, ubiquitin ligases mediate the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to specific substrate proteins. Early investigations of E3s of the RING (really interesting new gene) and HECT (homologous to the E6AP carboxyl terminus) types shed light on their enzymatic activities, general architectures, and substrate degron-binding modes. Recent studies have provided deeper mechanistic insights into their catalysis, activation, and regulation. In this review, we summarize the current progress in structure-function studies of ubiquitin ligases as well as exciting new discoveries of novel classes of E3s and diverse substrate recognition mechanisms. Our increased understanding of ubiquitin ligase function and regulation has provided the rationale for developing E3-targeting therapeutics for the treatment of human diseases.
Collapse
|
Review |
8 |
977 |
20
|
Abstract
The transcription factor NF-kappaB (nuclear factor kappa enhancer binding protein) controls many processes, including immunity, inflammation and apoptosis. Ubiquitination regulates at least three steps in the NF-kappaB pathway: degradation of IkappaB (inhibitor of NF-kappaB), processing of NF-kappaB precursors, and activation of the IkappaB kinase (IKK). Recent studies have revealed several enzymes involved in the ubiquitination and deubiquitination of signalling proteins that mediate IKK activation through a degradation-independent mechanism.
Collapse
|
Review |
20 |
965 |
21
|
Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 2008; 358:1327-35. [PMID: 18367735 DOI: 10.1056/nejmoa070447] [Citation(s) in RCA: 957] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The combination of complete diaphragm inactivity and mechanical ventilation (for more than 18 hours) elicits disuse atrophy of myofibers in animals. We hypothesized that the same may also occur in the human diaphragm. METHODS We obtained biopsy specimens from the costal diaphragms of 14 brain-dead organ donors before organ harvest (case subjects) and compared them with intraoperative biopsy specimens from the diaphragms of 8 patients who were undergoing surgery for either benign lesions or localized lung cancer (control subjects). Case subjects had diaphragmatic inactivity and underwent mechanical ventilation for 18 to 69 hours; among control subjects diaphragmatic inactivity and mechanical ventilation were limited to 2 to 3 hours. We carried out histologic, biochemical, and gene-expression studies on these specimens. RESULTS As compared with diaphragm-biopsy specimens from controls, specimens from case subjects showed decreased cross-sectional areas of slow-twitch and fast-twitch fibers of 57% (P=0.001) and 53% (P=0.01), respectively, decreased glutathione concentration of 23% (P=0.01), increased active caspase-3 expression of 100% (P=0.05), a 200% higher ratio of atrogin-1 messenger RNA (mRNA) transcripts to MBD4 (a housekeeping gene) (P=0.002), and a 590% higher ratio of MuRF-1 mRNA transcripts to MBD4 (P=0.001). CONCLUSIONS The combination of 18 to 69 hours of complete diaphragmatic inactivity and mechanical ventilation results in marked atrophy of human diaphragm myofibers. These findings are consistent with increased diaphragmatic proteolysis during inactivity.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
957 |
22
|
Abstract
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) eliminates misfolded or unassembled proteins from the ER. ERAD targets are selected by a quality control system within the ER lumen and are ultimately destroyed by the cytoplasmic ubiquitin-proteasome system (UPS). The spatial separation between substrate selection and degradation in ERAD requires substrate transport from the ER to the cytoplasm by a process termed dislocation. In this review, we will summarize advances in various aspects of ERAD and discuss new findings on how substrate dislocation is achieved.
Collapse
|
|
20 |
940 |
23
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that results primarily from the death of dopaminergic neurons in the substantia nigra. Although the etiology of PD is incompletely understood, the recent discovery of genes associated with rare monogenic forms of the disease, together with earlier studies and new experimental animal models, has provided important and novel insight into the molecular pathways involved in disease pathogenesis. Increasing evidence indicates that deficits in mitochondrial function, oxidative and nitrosative stress, the accumulation of aberrant or misfolded proteins, and ubiquitin-proteasome system dysfunction may represent the principal molecular pathways or events that commonly underlie the pathogenesis of sporadic and familial forms of PD .
Collapse
|
Review |
20 |
920 |
24
|
Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR, McGeough MD, Ellisman MH, Seki E, Gustafsson AB, Hoffman HM, Diaz-Meco MT, Moscat J, Karin M. NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell 2016; 164:896-910. [PMID: 26919428 PMCID: PMC4769378 DOI: 10.1016/j.cell.2015.12.057] [Citation(s) in RCA: 914] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/12/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022]
Abstract
Nuclear factor κB (NF-κB), a key activator of inflammation, primes the NLRP3-inflammasome for activation by inducing pro-IL-1β and NLRP3 expression. NF-κB, however, also prevents excessive inflammation and restrains NLRP3-inflammasome activation through a poorly defined mechanism. We now show that NF-κB exerts its anti-inflammatory activity by inducing delayed accumulation of the autophagy receptor p62/SQSTM1. External NLRP3-activating stimuli trigger a form of mitochondrial (mt) damage that is caspase-1- and NLRP3-independent and causes release of direct NLRP3-inflammasome activators, including mtDNA and mtROS. Damaged mitochondria undergo Parkin-dependent ubiquitin conjugation and are specifically recognized by p62, which induces their mitophagic clearance. Macrophage-specific p62 ablation causes pronounced accumulation of damaged mitochondria and excessive IL-1β-dependent inflammation, enhancing macrophage death. Therefore, the "NF-κB-p62-mitophagy" pathway is a macrophage-intrinsic regulatory loop through which NF-κB restrains its own inflammation-promoting activity and orchestrates a self-limiting host response that maintains homeostasis and favors tissue repair.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
914 |
25
|
Abstract
Since eukaryotic cells constantly encounter various environmental insults, they have evolved defense mechanisms to cope with toxicant- and carcinogen-induced oxidative stress or electrophiles. One of the most important cellular defense mechanisms against oxidative stress or electrophiles is mediated by the transcription factor Nrf2. Under the basal condition, Nrf2-dependent transcription is repressed by a negative regulator Keap1. When cells are exposed to oxidative stress, electrophiles, or chemopreventive agents, Nrf2 escapes Keap1-mediated repression and activates antioxidant responsive element (ARE)-dependent gene expression to maintain cellular redox homeostasis. Beyond its antioxidant function, Nrf2 has recently been recognized as a key factor regulating an array of genes that defend cells against the deleterious effects of environmental insults. Since this Nrf2-dependent cellular defense response is able to protect multi-organs or multi-tissues, activation of Nrf2 has been implicated in conferring protection against many human diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, acute and chronic lung injury, autoimmune diseases, and inflammation. Therefore, understanding of Nrf2 regulation is crucial in the development of drugs for therapeutic intervention. This review will discuss recent progress in the field of the Nrf2-Keap1 signaling pathway, with emphasis on the mechanistic studies of Nrf2 regulation by Keap1, oxidative stress, or chemopreventive compounds.
Collapse
|
Review |
18 |
846 |