1
|
Schaefer TM, Fahey JV, Wright JA, Wira CR. Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). THE JOURNAL OF IMMUNOLOGY 2005; 174:992-1002. [PMID: 15634923 DOI: 10.4049/jimmunol.174.2.992] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The objective of this study was to examine the expression of TLR by human primary uterine epithelial cells (UEC) and to determine whether exposure to the TLR agonist poly(I:C) would induce an antiviral response. The secretion of several cytokines and chemokines was examined as well as the mRNA expression of human beta-defensin-1 and -2 (HBD1 and HBD2), IFN-beta, and the IFN-beta-stimulated genes myxovirus resistance gene 1 and 2',5' oligoadenylate synthetase. The expression of TLR1-9 by UEC was demonstrated by RT-PCR, with only TLR10 not expressed. Stimulation of UEC with the TLR3 agonist poly(I:C) induced the expression of the proinflammatory cytokines TNF-alpha, IL-6, GM-CSF, and G-CSF, as well as the chemokines CXCL8/IL-8, CCL2/MCP-1, and CCL4/MIP-1beta. In addition, poly(I:C) exposure induced the mRNA expression of HBD1 and HBD2 by 6- and 4-fold, respectively. Furthermore, upon exposure to poly(I:C) UEC initiated a potent antiviral response resulting in the induction of IFN-beta mRNA expression 70-fold and myxovirus resistance gene 1 and 2',5' oligoadenylate synthetase mRNA expression (107- and 96-fold), respectively. These results suggest that epithelial cells that line the uterine cavity are sensitive to viral infection and/or exposure to viral dsRNA released from killed epithelial cells. Not only do UEC release proinflammatory cytokines and chemokines that mediate the initiation of an inflammatory response and recruitment of immune cells to the site of infection, but they also express beta-defensins, IFN-beta, and IFN-beta-stimulated genes that can have a direct inhibiting effect on viral replication.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
210 |
2
|
Maidji E, McDonagh S, Genbacev O, Tabata T, Pereira L. Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1210-26. [PMID: 16565496 PMCID: PMC1606573 DOI: 10.2353/ajpath.2006.050482] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
How human cytomegalovirus (CMV) reaches the fetus across the placenta is unknown. The major viral cause of congenital disease, CMV infects the uterine-placental interface with varied outcomes depending on the strength of maternal humoral immunity and gestational age. Covering the surface of villi that float in blood, syncytiotrophoblasts express the neonatal Fc receptor (FcRn) that transports IgG for passive immunity. Immunohistochemical analysis of early-gestation biopsy specimens showed an unusual pattern of CMV replication proteins in underlying villus cytotrophoblasts, whereas syncytiotrophoblasts were spared. Found in placentas with low to moderate CMV-neutralizing antibody titers, this pattern suggested virion transcytosis across the surface. In contrast, syncytiotrophoblasts from placentas with high neutralizing titers contained viral DNA and caveolin-1-positive vesicles in which IgG and CMV glycoprotein B co-localized. In villus explants, IgG-virion transcytosis and macrophage uptake were blocked with trypsin-treatment and soluble protein A. Quantitative analysis in polarized epithelial cells showed that FcRn-mediated transcytosis was blocked by the Fc fragment of IgG, but not F(ab')(2). Our results suggest that CMV virions could disseminate to the placenta by co-opting the receptor-mediated transport pathway for IgG. These findings could explain the efficacy of hyperimmune IgG for treatment of primary CMV infection during gestation and support vaccination.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
185 |
3
|
Yockey LJ, Jurado KA, Arora N, Millet A, Rakib T, Milano KM, Hastings AK, Fikrig E, Kong Y, Horvath TL, Weatherbee S, Kliman HJ, Coyne CB, Iwasaki A. Type I interferons instigate fetal demise after Zika virus infection. Sci Immunol 2018; 3:eaao1680. [PMID: 29305462 PMCID: PMC6049088 DOI: 10.1126/sciimmunol.aao1680] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/02/2017] [Indexed: 01/05/2023]
Abstract
Zika virus (ZIKV) infection during pregnancy is associated with adverse fetal outcomes, including microcephaly, growth restriction, and fetal demise. Type I interferons (IFNs) are essential for host resistance against ZIKV, and IFN-α/β receptor (IFNAR)-deficient mice are highly susceptible to ZIKV infection. Severe fetal growth restriction with placental damage and fetal resorption is observed after ZIKV infection of type I IFN receptor knockout (Ifnar1-/-) dams mated with wild-type sires, resulting in fetuses with functional type I IFN signaling. The role of type I IFNs in limiting or mediating ZIKV disease within this congenital infection model remains unknown. In this study, we challenged Ifnar1-/- dams mated with Ifnar1+/- sires with ZIKV. This breeding scheme enabled us to examine pregnant dams that carry a mixture of fetuses that express (Ifnar1+/-) or do not express IFNAR (Ifnar1-/-) within the same uterus. Virus replicated to a higher titer in the placenta of Ifnar1-/- than within the Ifnar1+/- concepti. Yet, rather unexpectedly, we found that only Ifnar1+/- fetuses were resorbed after ZIKV infection during early pregnancy, whereas their Ifnar1-/- littermates continue to develop. Analyses of the fetus and placenta revealed that, after ZIKV infection, IFNAR signaling in the conceptus inhibits development of the placental labyrinth, resulting in abnormal architecture of the maternal-fetal barrier. Exposure of midgestation human chorionic villous explants to type I IFN, but not type III IFNs, altered placental morphology and induced cytoskeletal rearrangements within the villous core. Our results implicate type I IFNs as a possible mediator of pregnancy complications, including spontaneous abortions and growth restriction, in the context of congenital viral infections.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
177 |
4
|
Williamson MM, Hooper PT, Selleck PW, Westbury HA, Slocombe RF. Experimental hendra virus infectionin pregnant guinea-pigs and fruit Bats (Pteropus poliocephalus). J Comp Pathol 2000; 122:201-7. [PMID: 10684689 DOI: 10.1053/jcpa.1999.0364] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibodies to Hendra virus (HeV) have been found in a high percentage of fruit bats (Pteropus spp.) in Australia, indicating a possible reservoir for the virus. The aim of the experiments reported here was to investigate transplacental infection as a possible mode of transmission of the virus in fruit bats and other animals. In a first experiment, 18 pregnant guinea-pigs in the mid-stage of gestation were inoculated with HeV, as an experimental model in a conventional laboratory animal. Nine developed HeV disease as confirmed by viral isolation, histopathology and immunohistochemistry. In five of the nine clinically affected guinea-pigs there was necrosis and strong positive immunostaining in the placentas in an indirect immunoperoxidase (IPX) test for HeV antigen. One of these five guinea-pigs aborted and HeV was isolated from its three fetuses, one of which was also positive to the IPX test. In three other sick guinea-pig dams, virus was isolated from fetuses, and there was positive immunostaining in two of the latter. In a second experiment, four fruit bats were inoculated with a similar dose of HeV. (A further four guinea-pigs inoculated at the same time developed severe disease, indicating adequate virulence.) Two bats were killed at 10 days post-inoculation and two were killed at 21 days. In these bats, no overt clinical disease was observed, but subclinical disease occurred, as indicated by viral isolation, seroconversion, vascular lesions and positive immunostaining. Transplacental transmission was indicated by positive immunostaining in two placentas and confirmed by isolation of virus from one of the associated fetuses.
Collapse
|
|
25 |
125 |
5
|
Pereira L, Maidji E, McDonagh S, Tabata T. Insights into viral transmission at the uterine-placental interface. Trends Microbiol 2005; 13:164-74. [PMID: 15817386 DOI: 10.1016/j.tim.2005.02.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During human gestation, viruses can cause intrauterine infections associated with pregnancy complications and fetal abnormalities. The ability of viruses to spread from the infected mother to the fetus arises from the architecture of the placenta, which anchors the fetus to the uterus. Placental cytotrophoblasts differentiate, assume an endothelial phenotype, breach uterine blood vessels and form a hybrid vasculature that amplifies the maternal blood supply for fetal development. Human cytomegalovirus - the major cause of congenital disease - infects the uterine wall and the adjacent placenta, suggesting adaptation for pathogen survival in this microenvironment. Infection of villus explants and differentiating and/or invading cytotrophoblasts offers an in vitro model for studying viruses associated with prenatal infections.
Collapse
|
Review |
20 |
108 |
6
|
Abstract
AIM: To explore the possible mechanism of intrauterine infection of hepatitis B virus (HBV).
METHODS: HBV DNA was detected in vaginal secretion and amniotic fluid from 59 HBsAg-positive mothers and in venous blood of their newborns by PCR. HBsAg and HBcAg in placenta were determined by ABC immunohistochemistry.
RESULTS: The rate of HBV intrauterine infection was 40.1% (24/59). HBV DNA was detected in 47.5% of amniotic fluid samples and 52.5% of vaginal secretion samples respectively. HBsAg and HBcAg were detected in placentas from HBsAg-positive mothers. The concentration of the two antigens decreased from the mother’s side to the fetus’s side, in the following order: maternal decidual cells > trophoblastic cells > villous mesenchymal cells > villous capillary endothelial cells. However, in 4 placentas the distribution was in the reverse order. HBsAg and HBcAg were detected in amniotic epithelial cells from 32 mothers.
CONCLUSION: The main route of HBV transmission from mother to fetus is transplacental, from the mother side of placenta to the fetus side. However, HBV intrauterine infection may take place through other routes.
Collapse
|
Brief Reports |
21 |
104 |
7
|
Pereira L, Maidji E, McDonagh S, Genbacev O, Fisher S. Human cytomegalovirus transmission from the uterus to the placenta correlates with the presence of pathogenic bacteria and maternal immunity. J Virol 2004; 77:13301-14. [PMID: 14645586 PMCID: PMC296088 DOI: 10.1128/jvi.77.24.13301-13314.2003] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prenatal cytomegalovirus infection may cause pregnancy complications such as intrauterine growth restriction and birth defects. How virus from the mother traverses the placenta is unknown. PCR analysis of biopsy specimens of the maternal-fetal interface revealed that DNA sequences from cytomegalovirus were commonly found with those of herpes simplex viruses and pathogenic bacteria. Cytomegalovirus DNA and infected cell proteins were found more often in the decidua than in the placenta, suggesting that the uterus functions as a reservoir for infection. In women with low neutralizing titers, cytomegalovirus replicated in diverse decidual cells and placental trophoblasts and capillaries. In women with intermediate to high neutralizing titers, decidual infection was suppressed and the placenta was spared. Overall, cytomegalovirus virions and maternal immunoglobulin G were detected in syncytiotrophoblasts, villus core macrophages, and dendritic cells. These results suggest that the outcome of cytomegalovirus infection depends on the presence of other pathogens and coordinated immune responses to viral replication at the maternal-fetal interface.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
100 |
8
|
Feng W, Laster SM, Tompkins M, Brown T, Xu JS, Altier C, Gomez W, Benfield D, McCaw MB. In utero infection by porcine reproductive and respiratory syndrome virus is sufficient to increase susceptibility of piglets to challenge by Streptococcus suis type II. J Virol 2001; 75:4889-95. [PMID: 11312360 PMCID: PMC114243 DOI: 10.1128/jvi.75.10.4889-4895.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) consistently elevates the frequency of disease and mortality in young pigs. Many different secondary bacterial diseases occur in PRRS virus (PRRSV)-infected pigs. However, to date, establishing a reproducible experimental model of PRRSV infection in weaned pigs, with subsequent clinical disease following secondary bacterial challenge, has been difficult. PRRSV is frequently isolated during outbreaks from weak-born piglets affected by secondary bacterial diseases. This study was performed to investigate the potential role of intrauterine PRRSV infection on piglet susceptibility to secondary bacterial infection. PRRSV-free pregnant sows were intranasally infected at 98 days of gestation with PRRSV strain SD 23983. All piglets born to the PRRSV-infected sows were viremic. Piglets were removed from the sows at birth and deprived of colostrum. Piglets from PRRSV-infected and noninfected sows were randomly assigned to Streptococcus suis challenge or control subgroups. At 5 days of age, piglets were challenged intranasally with strain MN 87555 of S. suis type II. Total and differential leukocyte counts were performed on blood samples collected at 3 days of age. The numbers of leukocytes, lymphocytes, and monocytes were significantly reduced in the PRRSV-infected piglets. Lesions were observed in bone marrow, brain, lung, heart, spleen, lymph node, tonsil, and thymus of PRRSV-infected piglets. Thymus/body weight ratios of in utero PRRSV-infected piglets were significantly reduced compared to those of non-PRRSV-infected piglets, and thymic lesions were characterized by severe cortical depletion of thymocytes. Lesions were not observed in piglets born to PRRSV-free sows. Overall, 20 out of 22 piglets in the PRRSV-S. suis dual-infection group died within 1 week after challenge with S. suis (10 of 11 in each of two trials). This contrasts with 1 of 18 piglets in the PRRSV-infection-only group and 5 of 23 piglets in the S. suis-challenge-only group (1 of 12 in trial 1 and 4 of 11 in trial 2). No piglets died in the uninfected control groups. Most of the piglets in the PRRSV-S. suis dual-infection group developed suppurative meningitis. S. suis type II was recovered from their brains and joints. These results indicate that in utero infection by PRRSV makes piglets more susceptible to infection and disease following challenge by S. suis type II. In utero infection by PRRSV may provide a useful model to study the interaction between PRRSV and bacterial coinfections in piglets.
Collapse
|
research-article |
24 |
90 |
9
|
Tobiasch E, Rabreau M, Geletneky K, Laruë-Charlus S, Severin F, Becker N, Schlehofer JR. Detection of adeno-associated virus DNA in human genital tissue and in material from spontaneous abortion. J Med Virol 1994; 44:215-22. [PMID: 7852963 DOI: 10.1002/jmv.1890440218] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The human helper virus-dependent parvovirus, adeno-associated virus (AAV) has never been associated with disease in humans [Berns et al. (1987): Advances in Virus Research 32:243-306; Siegl et al. (1985): Intervirology 23:61-73]. However, in pregnant mice, infection with AAV induces early abortion [Botquin et al. (1993): Journal of Cancer Research and Clinical Oncology 119:24]. We investigated whether this common human virus may be found in human genital tissue or in curettage material from spontaneous abortion. Using the polymerase chain reaction (PCR) AAV type 2 DNA was amplified in histological sections of 19 of 30 biopsies of the uterine mucosa. In addition, AAV-2 DNA was detected in abortion material during the first trimester of pregnancy (12/30 cases were positive) but not in material of abortion from the second or third trimester (9 cases). Whereas in tissues from the uterus AAV DNA was found only by PCR, large amounts of viral DNA were detectable by Southern blot analysis in abortion material. In situ hybridization revealed DNA of AAV to be present in the villous moiety (trophoblast) of the placenta but not in the embryo or decidua. in the same cells, AAV proteins (including the replication-associated rep proteins) were detected by immunofluorescence analysis. These results suggest (1) that AAV infects the uterine mucosa (possibly persistently) and (2) that it can replicate in trophoblast cells. This might disturb placenta development and may play a role in early miscarriage.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
31 |
83 |
10
|
Palmarini M, Mura M, Spencer TE. Endogenous betaretroviruses of sheep: teaching new lessons in retroviral interference and adaptation. J Gen Virol 2004; 85:1-13. [PMID: 14718613 DOI: 10.1099/vir.0.19547-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The endogenous betaretroviruses of small ruminants offer an excellent model to investigate the biological relevance of endogenous retroviruses (ERVs). Approximately twenty copies of endogenous betaretroviruses (enJSRVs) are present in the genome of sheep and goats. enJSRVs are highly related to Jaagsiekte sheep retrovirus (JSRV) and the Enzootic nasal tumour virus (ENTV), the causative agents of naturally occurring carcinomas of the respiratory tract of sheep. enJSRVs interact/interfere at different levels both with the host and with their exogenous and pathogenic counterparts. enJSRVs blocks the exogenous JSRV replication by a novel two-step interference mechanism acting both early and late during the virus replication cycle. enJSRVs are highly active, they are abundantly and specifically expressed in the epithelium of most of the ovine female reproductive tract. The specific spatial and temporal expression of enJSRVs supports a role in trophoblast development and differentiation as well as conceptus implantation. In addition, enJSRVs are expressed during fetal ontogeny leading to the apparent tolerance of sheep towards the pathogenic JSRV. Thus, the sheep/enJSRVs system is a model that can be utilized to study many different aspects of ERVs and retrovirus biology. The impressive technologies developed to study the sheep reproductive biology, in conjunction with the knowledge gained on the molecular biology of enJSRVs, makes the ovine system an ideal model to design experiments that can functionally address the role of ERVs in mammalian physiology.
Collapse
|
Review |
21 |
81 |
11
|
Bai H, Zhang L, Ma L, Dou XG, Feng GH, Zhao GZ. Relationship of hepatitis B virus infection of placental barrier and hepatitis B virus intra-uterine transmission mechanism. World J Gastroenterol 2007; 13:3625-30. [PMID: 17659715 PMCID: PMC4146804 DOI: 10.3748/wjg.v13.i26.3625] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the mechanism of intra-uterine transmission, the HBV infection status of placental tissue and in vitro cultured placental trophoblastic cells was tested through in vivo and in vitro experiments.
METHODS: A variety of methods, such as ELISA, RT-PCR, IHC staining and immunofluorescent staining were employed to test the HBV marker positive pregnant women's placenta and in vitro cultured placental trophoblastic cells.
RESULTS: The HBV DNA levels in pregnant women's serum and fetal cord blood were correlated. For those cord blood samples positive for HBV DNA, their maternal blood levels of HBV DNA were at a high level. The HBsAg IHC staining positive cells could be seen in the placental tissues and the presence of HBV DNA detected. After co-incubating the trophoblastic cells and HBV DNA positive serum in vitro, the expressions of both HBsAg and HBV DNA could be detected.
CONCLUSION: The mechanism of HBV intra-uterine infection may be due to that HBV breaches the placental barrier and infects the fetus.
Collapse
|
Rapid Communication |
18 |
80 |
12
|
Barry PA, Lockridge KM, Salamat S, Tinling SP, Yue Y, Zhou SS, Gospe SM, Britt WJ, Tarantal AF. Nonhuman primate models of intrauterine cytomegalovirus infection. ILAR J 2006; 47:49-64. [PMID: 16391431 DOI: 10.1093/ilar.47.1.49] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection has long been recognized as a threat to the developing fetus, even though studies have shown that only a subset of congenital infections results in clinical signs of disease. Among the estimated 8000 children who develop sequelae from congenital CMV infection each year in the United States alone, most suffer permanent developmental defects within the central nervous system. Because there is currently no approved vaccine for HCMV, and anti-HCMV drugs are not administered to gravid women with congenital infection because of potential toxicity to the fetus, there is a clear clinical need for effective strategies that minimize infection in the mother, transplacental transmission of the virus, and/or fetal disease. Animal models provide a method to understand the mechanisms of HCMV persistence and pathogenesis, and allow for testing of novel strategies that limit prenatal infection and disease. The rhesus macaque model is especially well suited for these tasks because monkeys and humans share strong developmental, immunological, anatomical, and biochemical similarities due to their close phylogenetic relationship. This nonhuman primate model provides an invaluable system to accelerate the clinical development of promising new therapies for the treatment of human disease. This review addresses salient findings with the macaque model as they relate to HCMV infection and potential avenues of discovery, including studies of intrauterine CMV infection. The complexity of the natural history of HCMV is discussed, along with the ethical and logistical issues associated with studies during pregnancy, the recent contributions of animal research in this field of study, and future prospects for increasing our understanding of immunity against HCMV disease.
Collapse
|
Review |
19 |
78 |
13
|
Britt WJ. Maternal Immunity and the Natural History of Congenital Human Cytomegalovirus Infection. Viruses 2018; 10:v10080405. [PMID: 30081449 PMCID: PMC6116058 DOI: 10.3390/v10080405] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) is the most common viral infection of the developing fetus, and a significant cause of neurodevelopmental abnormalities in infants and children. Congenital HCMV infections account for an estimated 25% of all cases of hearing loss in the US. It has long been argued that maternal adaptive immune responses to HCMV can modify both the likelihood of intrauterine transmission of HCMV, and the severity of fetal infection and risk of long term sequelae in infected infants. Over the last two decades, multiple studies have challenged this paradigm, including findings that have demonstrated that the vast majority of infants with congenital HCMV infections in most populations are born to women with established immunity prior to conception. Furthermore, the incidence of clinically apparent congenital HCMV infection in infants born to immune and non-immune pregnant women appears to be similar. These findings from natural history studies have important implications for the design, development, and testing of prophylactic vaccines and biologics for this perinatal infection. This brief overview will provide a discussion of existing data from human natural history studies and animal models of congenital HCMV infections that have described the role of maternal immunity in the natural history of this perinatal infection.
Collapse
|
Review |
7 |
78 |
14
|
Palmarini M, Gray CA, Carpenter K, Fan H, Bazer FW, Spencer TE. Expression of endogenous betaretroviruses in the ovine uterus: effects of neonatal age, estrous cycle, pregnancy, and progesterone. J Virol 2001; 75:11319-27. [PMID: 11689612 PMCID: PMC114717 DOI: 10.1128/jvi.75.23.11319-11327.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ovine genome contains 15 to 20 copies of endogenous retroviruses (enJSRVs) highly related to the oncogenic jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus. enJSRVs are highly expressed in the endometrial lumenal epithelia (LE) and glandular epithelia (GE) of the ovine uterus. The effects of neonatal age, estrous cycle, pregnancy, and progesterone on expression of enJSRVs in the ovine uterus were determined. Expression of enJSRV RNAs was absent from the uterus of ewes at birth, but enJSRV RNAs were expressed specifically in the LE and developing GE from postnatal day (PND) 7 to PND 56. In adult ewes, enJSRV RNAs were detected only in the epithelia of the uterine endometrium, as well as epithelia of the oviduct, cervix, and vagina. In cyclic ewes, endometrial enJSRV RNA abundance was lowest on day 1, increased 12-fold between days 1 and 13, and then decreased to day 15. In pregnant ewes, levels of endometrial enJSRV RNAs were high on day 11, increased to day 13, and then decreased to day 19. In day 17 and 19 conceptuses, enJSRV RNAs were also detected in binucleate cells of the trophectoderm. Immunoreactive JSRV capsid and envelope proteins were detected in the endometrial LE and GE, as well as in the binucleate cells of the conceptus. In transfection assays utilizing ovine endometrial LE cells, progesterone increased transcriptional activity of several enJSRV long terminal repeats. Collectively, these results indicate that transcription of enJSRVs in the endometrial epithelia of the ovine uterus is increased by progesterone and might support a role for enJSRVs in conceptus-endometrium interactions during the peri-implantation period and early placental morphogenesis.
Collapse
|
research-article |
24 |
57 |
15
|
Duggal NK, McDonald EM, Ritter JM, Brault AC. Sexual transmission of Zika virus enhances in utero transmission in a mouse model. Sci Rep 2018; 8:4510. [PMID: 29540804 PMCID: PMC5852059 DOI: 10.1038/s41598-018-22840-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne virus that can cause ZIKV congenital syndrome when a pregnant woman is infected. Sexual transmission has also been described for ZIKV, though the relationship between sexual transmission and vertical transmission has not been investigated. Here, viral dissemination to the female reproductive tract and fetuses was assessed in immunodeficient (AG129) female mice that were exposed to ZIKV by subcutaneous (s.c.) inoculation, intravaginal (ivag.) inoculation, or sexual transmission from infected male AG129 mice. Pregnant females had significantly increased ZIKV dissemination to the female reproductive tract compared to non-pregnant females when exposed by s.c. or ivag. inoculation. Sexual transmission resulted in significantly greater morbidity and mortality in females and higher ZIKV titers in the female reproductive tract than s.c. or ivag. inoculation. Ovaries from females infected sexually contained ZIKV RNA within the ovarian follicles. Furthermore, ZIKV titers were significantly higher in fetuses from dams exposed sexually compared to fetuses from dams exposed by s.c. or ivag. inoculation. These results demonstrate that sexual transmission enhances dissemination of ZIKV to the female reproductive tract and developing fetuses in a mouse model.
Collapse
|
research-article |
7 |
52 |
16
|
Moore KM, Suthar MS. Comprehensive analysis of COVID-19 during pregnancy. Biochem Biophys Res Commun 2021; 538:180-186. [PMID: 33384142 PMCID: PMC7759124 DOI: 10.1016/j.bbrc.2020.12.064] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic resulting from the emergence of the coronavirus SARS-CoV-2 remains a major global health concern. Pregnant individuals are more likely to develop severe COVID-19 and a number of pregnancy complications have been observed in COVID-19 patients. To date, little is known about the impact of COVID-19 on pregnancy. In this review, we examine key aspects of pregnancy that may be impacted by COVID-19 and summarize the current literature on SARS-CoV-2 infection of the placenta and in utero vertical transmission. Furthermore, we highlight recent studies exploring the role of the maternal antibody response to SARS-CoV-2 during pregnancy and the passive transfer of maternal antibodies from mothers with COVID-19 to fetus.
Collapse
|
brief-report |
4 |
51 |
17
|
Asin SN, Fanger MW, Wildt-Perinic D, Ware PL, Wira CR, Howell AL. Transmission of HIV‐1 by Primary Human Uterine Epithelial Cells and Stromal Fibroblasts. J Infect Dis 2004; 190:236-45. [PMID: 15216456 DOI: 10.1086/421910] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 01/23/2004] [Indexed: 11/03/2022] Open
Abstract
Women can become infected with human immunodeficiency virus type 1 (HIV-1) after the heterosexual transmission of virus from an infected male partner. To understand the events that result in transmission of HIV-1 across the female reproductive tract, we characterized the life-cycle events of HIV-1 in primary cultures of human uterine epithelial cells and stromal fibroblasts. Epithelial cells and stromal fibroblasts released virus particles after exposure to either X4- or R5-tropic strains of HIV-1. Virus released by these cells was able to infect CD4(+) T cells. When exposed to an X4-tropic strain of HIV-1, these cells supported HIV-1 reverse transcription, integration, and viral DNA transcription. When exposed to an R5-tropic strain, however, these cells released unmodified virus. These data suggest that uterine cells are targets for productive infection with X4-tropic strains and release unmodified R5-tropic viruses that would then be able to infect submucosal target cells, including T cells and macrophages.
Collapse
|
|
21 |
50 |
18
|
Givens MD, Galik PK, Riddell KP, Brock KV, Stringfellow DA. Replication and persistence of different strains of bovine viral diarrhea virus in an in vitro embryo production system. Theriogenology 2000; 54:1093-107. [PMID: 11131328 DOI: 10.1016/s0093-691x(00)00418-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent studies have shown that exposed, in vitro-derived embryos remain contaminated with bovine viral diarrhea virus (BVDV) after washing. However, introduction of a Genotype II versus Genotype I strain of BVDV into an IVF system was reported to provide greater potential for transmission of disease. The primary objective of this study was to compare the potentials for different strains of noncytopathic BVDV to replicate in an IVF system, associate with IVF embryos and infect co-cultured cells via association with washed embryos. The secondary objective was to compare the effect of different strains of BVDV on embryonic development. Two Genotype I (SD-1 and NY-1) and 2 Genotype II (CD-87 and PA-131) strains of BVDV were evaluated. After IVM and IVF of oocytes, presumptive zygotes were washed and transferred into in vitro cultures containing uterine tubal cells (UTC) and medium that was free of BVDV-neutralizing activity. Immediately before addition of zygotes, the cultures were inoculated with 10(5) cell culture infective doses (50%, CCID50) of a strain of BVDV or maintained as a negative control. Cultures of zygotes were then incubated for 7 d. Embryonic development was observed on Days 3 and 7, and attempts were made to isolate BVDV from UTC and medium on Day 7. Also on Day 7, groups of intact, washed blastocysts were either transferred into virus-free secondary cultures containing UTC or sonicated with sonicate fluid assayed by both virus isolation and single-closed-tube reverse transcription nested polymerase chain reaction (RT-nPCR). After 3 d in secondary culture, hatched embryos were enumerated, and medium from the cultures, washed UTC and embryos were tested for BVDV by virus isolation. In addition, washed UTC and embryos were tested for BVDV using RT-nPCR. All strains of BVDV persisted and replicated in the embryo culture environment, but cleavage beyond the 4-cell stage, blastocyst development and hatching varied among cultures contaminated with different strains of virus. Further, the quantity of BVDV associated with washed embryos from both initial and secondary cultures varied among strains, but the variation was unrelated to difference in genotype (SD-1 and PA-131 greater than NY-1 and CD-87). Although all strains of BVDV replicated in UTC in the initial in vitro cultures and remained associated with washed blastocysts, susceptible UTC in the secondary in vitro cultures were seldom infected by any strain of virus.
Collapse
|
|
25 |
50 |
19
|
Lager KM, Halbur PG. Gross and microscopic lesions in porcine fetuses infected with porcine reproductive and respiratory syndrome virus. J Vet Diagn Invest 1996; 8:275-82. [PMID: 8844568 DOI: 10.1177/104063879600800301] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Diagnosis of porcine reproductive and respiratory syndrome virus (PRRSV)-induced reproductive failure in swine is difficult because of the rapid inactivation of virus in fetuses that have died prior to abortion or farrowing. In this report, we describe gross and microscopic lesions of diagnostic value found in fetuses transplacentally infected with PRRSV during late gestation. Seven sows free of PRRSV-specific antibody and 1 sow (#8) that had been previously infected with PRRSV were oronasally exposed to a PRRSV inoculum at or about 90 days of gestation (DG). One control sow (#9) was oronasally exposed to a sham inoculum at 90 DG. Sows were euthanized 21 days postexposure, and fetuses were tested for virus. Transplacental infection was detected in litters 1-7, and gross lesions of the umbilical cord were observed in some fetuses in 6 of the 7 litters. No transplacental infection or fetal lesions were found in litters 8 and 9. The gross lesions in the umbilical cords ranged from segmental hemorrhagic areas 1-2 cm in length to a full length involvement of the cord, which was grossly distended with frank hemorrhage. All live fetuses that had gross lesions in the umbilical cord were viremic, and histopathologic examination revealed a necrotizing umbilical arteritis with periarterial hemorrhage. This was the most consistent microscopic lesion in fetuses infected with PRRSV. Sows 1-7 had endometritis and myometritis of various degrees, suggesting PRRSV also may induce these lesions. Careful gross and microscopic examination of the umbilical cord may aid in the diagnosis of PRRSV-induced reproductive failure.
Collapse
|
|
29 |
49 |
20
|
Peçanha PM, Gomes Junior SC, Pone SM, Pone MVDS, Vasconcelos Z, Zin A, Vilibor RHH, Costa RP, Meio MDBB, Nielsen-Saines K, Brasil P, Brickley E, Lopes Moreira ME. Neurodevelopment of children exposed intra-uterus by Zika virus: A case series. PLoS One 2020; 15:e0229434. [PMID: 32109947 PMCID: PMC7048286 DOI: 10.1371/journal.pone.0229434] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/06/2020] [Indexed: 11/23/2022] Open
Abstract
The main goal of this manuscript was to investigate the neurodevelopment of children exposed by Zika virus in the intrauterine period who are asymptomatic at birth. Newborns with documented Zika virus exposure during the intrauterine period who were asymptomatic at birth were followed in the first two years of life for neurodevelopment using Bayley III test. Children were classified as having normal or delayed neurodevelopment for age based on most recent Bayley III evaluation results. Eighty-four infants were included in the study. The first Bayley III evaluation was performed at a mean chronological age of 9.7±3.1 month; 13 children (15%) had a delay in one of the three domains, distributed as follow: 10 (12%) in the language domain and 3 (3.5%) in the motor domain. The most recent Bayley III evaluation was performed at a mean age 15.3±3.1 months; 42 children (50%) had a delay in one of the three domains: 4 (5%) in cognition, 31 (37%) in language, and 20 (24%) in motor performance. There were no statistical differences in Gender, Gestational Age, Birth Weight and Head Circurference at birth between children with normal and delayed neurodevelopment for age. A very high proportion of children exposed ZIKV during pregnancy who were asymptomatic at birth demonstrated a delay in neurodevelopment, mainly in the language domain, the first two years of life.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
48 |
21
|
Malhomme O, Dutheil N, Rabreau M, Armbruster-Moraes E, Schlehofer JR, Dupressoir T. Human genital tissues containing DNA of adeno-associated virus lack DNA sequences of the helper viruses adenovirus, herpes simplex virus or cytomegalovirus but frequently contain human papillomavirus DNA. J Gen Virol 1997; 78 ( Pt 8):1957-62. [PMID: 9266994 DOI: 10.1099/0022-1317-78-8-1957] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The detection of DNA of the helper virus-dependent adeno-associated virus type 2 (AAV-2) in biopsies of material from spontaneous abortion and in tissue samples from the uterus raises the question of whether sequences of known helper viruses can be detected simultaneously within the same specimen despite the lack of histological evidence for the presence of lytic viruses. Therefore, we performed PCR analyses with primers detecting DNA sequences of viruses (adenovirus, herpes simplex virus and human cytomegalovirus) known for their helper activity in the replication of adeno-associated viruses. In addition, PCR was performed to detect DNA of human papillomaviruses (HPV), which were recently shown to be able to help AAV replication in vitro. In no cases were sequences of the known helper viruses found. However, HPV DNA was detected in approximately 60% of paraffin sections from uterus biopsies and cervical lesions containing AAV DNA and in approximately 70% of material from early miscarriage. This finding suggests that HPV may be a helper virus for AAV.
Collapse
|
|
28 |
45 |
22
|
Hermant P, Francius C, Clotman F, Michiels T. IFN-ε is constitutively expressed by cells of the reproductive tract and is inefficiently secreted by fibroblasts and cell lines. PLoS One 2013; 8:e71320. [PMID: 23951133 PMCID: PMC3739789 DOI: 10.1371/journal.pone.0071320] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/03/2013] [Indexed: 12/24/2022] Open
Abstract
Type-I interferons (IFNs) form a large family of cytokines that primarily act to control the early development of viral infections. Typical type-I IFN genes, such as those encoding IFN-α or IFN-β are upregulated by viral infection in many cell types. In contrast, the gene encoding IFN-ε was reported to be constitutively expressed by cells of the female reproductive tract and to contribute to the protection against vaginal infections with herpes simplex virus 2 and Chlamydia muridarum. Our data confirm the lack of induction of IFN-ε expression after viral infection and the constitutive expression of IFN-ε by cells of the female but also of the male reproductive organs. Interestingly, when expressed from transfected expression plasmids in 293T, HeLa or Neuro2A cells, the mouse and human IFN-ε precursors were inefficiently processed and secretion of IFN-ε was minimal. Analysis of chimeric constructs produced between IFN-ε and limitin (IFN-ζ) showed that both the signal peptide and the mature moiety of IFN-ε contribute to poor processing of the precursor. Immunofluorescent detection of FLAG-tagged IFN-ε in transfected cells suggested that IFN-ε and chimeric proteins were defective for progression through the secretory pathway. IFN-ε did not, however, act intracellularly and impart an antiviral state to producing cells. Given the constitutive expression of IFN-ε in specialized cells and the poor processing of IFN-ε precursor in fibroblasts and cell lines, we hypothesize that IFN-ε secretion may require a co-factor specifically expressed in cells of the reproductive organs, that might secure the system against aberrant release of this IFN.
Collapse
|
research-article |
12 |
42 |
23
|
Frazier K, Pence M, Mauel MJ, Liggett A, Hines ME, Sangster L, Lehmkuhl HD, Miller D, Styer E, West J, Baldwin CA. Endometritis in postparturient cattle associated with bovine herpesvirus-4 infection: 15 cases. J Vet Diagn Invest 2001; 13:502-8. [PMID: 11724141 DOI: 10.1177/104063870101300608] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Suppurative, ulcerative endometritis associated with bovine herpesvirus-4 (BHV-4) infection was identified in 15 postparturient dairy cows from 5 separate dairies. Characteristic eosinophilic to amphophilic intranuclear viral inclusion bodies were identified within degenerate endometrial lining epithelium and endothelial cells. Bovine herpesvirus-4 was confirmed as the etiology by a combination of fluorescent antibody assays, viral isolation, heminested PCR, ultrastructural examination of the uterus and inoculated tissue culture cells, and negative-stain electron microscopy of tissue culture supernatant. Viral particles measuring 70-95 nm were demonstrated in uterine epithelial and endothelial cells by electron microscopy. Bacteria including Arcanobacterium pyogenes, Escherichia coli, and an alpha-Streptococcus isolate were isolated from all uteri. Bovine herpesvirus-4-associated endometritis has been previously reported in sporadic cases in Europe but has not been previously reported in the United States. Endometritis associated with BHV-4 appears to be an emerging syndrome in Georgia dairy herds.
Collapse
|
Case Reports |
24 |
42 |
24
|
Bielanski A, Sapp T, Lutze-Wallace C. Association of bovine embryos produced by in vitro fertilization with a noncytopathic strain of bovine viral diarrhea virus type II. Theriogenology 1998; 49:1231-8. [PMID: 10732060 DOI: 10.1016/s0093-691x(98)00070-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the first experiment, heifers were infected experimentally with bovine viral diarrhea virus type II (BVDV-type II, strain CD87; characterized by high morbidity and mortality). Subsequently, in vitro fertilized embryos were produced from oocytes collected on Day 4, 8, and 16 post infection. In a total of 29 heifers, the infectious virus was detected in 55% of the samples of the follicular fluid, in 10% of the oviductal cells, in 10% of the uterine flushes and in 41% of the in vitro fertilized embryos. The highest number of embryos associated with the virus was detected in the group of animals slaughtered on Day 8 post infection (58%). The amount of the virus (10(1.5-2.0) TCID50/mL) associated with the washed single embryos generated from oocytes of heifers 8 and 16 d post infection was sufficient for disease transmission by intravenous inoculation to the seronegative recipients (6/15). In the second experiment, uninfected oocytes were exposed in vitro to BVDV (10(5) TCID50/mL) in the maturation medium and then fertilized and cultured prior to viral assay. Virus was detected in 4 of 7 samples containing embryos but not in samples of embryos produced from the control group of uninfected oocytes. The presence of BVDV in the IVF system did not affect embryonic development in vitro. In conclusion, it appears that BVDV-type II has the ability to be transferred with oocytes through the IVF system, resulting in infectious embryos with normal morphological appearance which may have a potential for disease transmission.
Collapse
|
|
27 |
41 |
25
|
Ahn K, Kim HS. Structural and quantitative expression analyses of HERV gene family in human tissues. Mol Cells 2009; 28:99-103. [PMID: 19669627 DOI: 10.1007/s10059-009-0107-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/11/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of several human diseases as multi-copy members in the human genome. Their gene expression profiling could provide us with important insights into the pathogenic relationship between HERVs and cancer. In this study, we have evaluated the genomic structure and quantitatively determined the expression patterns in the env gene of a variety of HERV family members located on six specific loci by the RetroTector 10 program, as well as real-time RT-PCR amplification. The env gene transcripts evidenced significant differences in the human tumor/normal adjacent tissues (colon, liver, uterus, lung and testis). As compared to the adjacent normal tissues, high levels of expression were noted in testis tumor tissues for HERV-K, in liver and lung tumor tissues for HERV-R, in liver, lung, and testis tumor tissues for HERV-H, and in colon and liver tumor tissues for HERV-P. These data warrant further studies with larger groups of patients to develop biomarkers for specific human cancers.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 7/genetics
- Colon/virology
- Endogenous Retroviruses/classification
- Endogenous Retroviruses/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Viral
- Genome, Human/genetics
- Genome, Viral/genetics
- Humans
- Liver/virology
- Lung/virology
- Male
- Neoplasms/genetics
- Neoplasms/pathology
- Neoplasms/virology
- Reverse Transcriptase Polymerase Chain Reaction
- Species Specificity
- Testis/virology
- Uterus/virology
- Viral Envelope Proteins/genetics
Collapse
|
|
16 |
40 |