1
|
Lanzer P, Boehm M, Sorribas V, Thiriet M, Janzen J, Zeller T, St Hilaire C, Shanahan C. Medial vascular calcification revisited: review and perspectives. Eur Heart J 2014; 35:1515-25. [PMID: 24740885 PMCID: PMC4072893 DOI: 10.1093/eurheartj/ehu163] [Citation(s) in RCA: 546] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 03/06/2014] [Accepted: 03/21/2014] [Indexed: 12/17/2022] Open
Abstract
Vascular calcifications (VCs) are actively regulated biological processes associated with crystallization of hydroxyapatite in the extracellular matrix and in cells of the media (VCm) or intima (VCi) of the arterial wall. Both patterns of VC often coincide and occur in patients with type II diabetes, chronic kidney disease, and other less frequent disorders; VCs are also typical in senile degeneration. In this article, we review the current state of knowledge about the pathology, molecular biology, and nosology of VCm, expand on potential mechanisms responsible for poor prognosis, and expose some of the directions for future research in this area.
Collapse
|
Review |
11 |
546 |
2
|
Evrard S, Delanaye P, Kamel S, Cristol JP, Cavalier E. Vascular calcification: from pathophysiology to biomarkers. Clin Chim Acta 2015; 438:401-14. [PMID: 25236333 DOI: 10.1016/j.cca.2014.08.034] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 02/06/2023]
Abstract
The link between vascular calcification (VC) and increased mortality is now well established. Over time, as clinical importance of this phenomenon has begun to be fully considered, scientists have highlighted more and more physiopathological mechanisms and signaling pathways that underlie VC. Several conditions such as diabetes, dyslipidemia and renal diseases are undoubtedly identified as predisposing factors. But even if the process is better understood, many questions still remain unanswered. This review briefly develops the various theories that attempt to explain mineralization genesis. Nonetheless, the main purpose of the article is to provide a profile of the various existing biomarkers of VC. Indeed, in the past years, a lot of inhibitors and promoters, which form a dense and interconnected network, were identified. Given importance to assess and control mineralization process, a focusing on accumulated knowledge of each marker seemed to be necessary. Therefore, we tried to define their respective role in the physiopathology and how they can contribute to calcification risk assessment. Among these, Klotho/fibroblast growth factor-23, fetuin-A, Matrix Gla protein, Bone morphogenetic protein-2, osteoprotegerin, osteopontin, osteonectin, osteocalcin, pyrophosphate and sclerostin are specifically discussed.
Collapse
|
Review |
10 |
174 |
3
|
Sheen CR, Kuss P, Narisawa S, Yadav MC, Nigro J, Wang W, Chhea TN, Sergienko EA, Kapoor K, Jackson MR, Hoylaerts MF, Pinkerton AB, O'Neill WC, Millán JL. Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res 2015; 30:824-36. [PMID: 25428889 PMCID: PMC4406354 DOI: 10.1002/jbmr.2420] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/14/2014] [Accepted: 11/27/2014] [Indexed: 01/03/2023]
Abstract
Medial vascular calcification (MVC) is a pathological phenomenon that causes vascular stiffening and can lead to heart failure; it is common to a variety of conditions, including aging, chronic kidney disease, diabetes, obesity, and a variety of rare genetic diseases. These conditions share the common feature of tissue-nonspecific alkaline phosphatase (TNAP) upregulation in the vasculature. To evaluate the role of TNAP in MVC, we developed a mouse model that overexpresses human TNAP in vascular smooth muscle cells in an X-linked manner. Hemizygous overexpressor male mice (Tagln-Cre(+/-) ; Hprt(ALPL) (/Y) or TNAP-OE) show extensive vascular calcification, high blood pressure, and cardiac hypertrophy, and have a median age of death of 44 days, whereas the cardiovascular phenotype is much less pronounced and life expectancy is longer in heterozygous (Tagln-Cre(+/-) ; Hprt(ALPL) (/-) ) female TNAP-OE mice. Gene expression analysis showed upregulation of osteoblast and chondrocyte markers and decreased expression of vascular smooth muscle markers in the aortas of TNAP-OE mice. Through medicinal chemistry efforts, we developed inhibitors of TNAP with drug-like pharmacokinetic characteristics. TNAP-OE mice were treated with the prototypical TNAP inhibitor SBI-425 or vehicle to evaluate the feasibility of TNAP inhibition in vivo. Treatment with this inhibitor significantly reduced aortic calcification and cardiac hypertrophy, and extended lifespan over vehicle-treated controls, in the absence of secondary effects on the skeleton. This study shows that TNAP in the vasculature contributes to the pathology of MVC and that it is a druggable target.
Collapse
MESH Headings
- Alkaline Phosphatase/antagonists & inhibitors
- Alkaline Phosphatase/metabolism
- Animals
- Animals, Newborn
- Aorta/enzymology
- Aorta/pathology
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacokinetics
- Enzyme Inhibitors/pharmacology
- Male
- Mice, Transgenic
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiopathology
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Treatment Outcome
- Ultrasonography
- Vascular Calcification/blood
- Vascular Calcification/diagnostic imaging
- Vascular Calcification/enzymology
- Vascular Calcification/physiopathology
Collapse
|
Research Support, N.I.H., Extramural |
10 |
152 |
4
|
Abstract
Klotho is a single-pass transmembrane protein highly expressed in the kidney. Membrane Klotho protein acts as a co-receptor for fibroblast growth factor-23. Its extracellular domain is shed from the cell surface and functions as an endocrine substance that exerts multiple renal and extrarenal functions. An exhaustive review is beyond the scope and length of this article; thus, only effects with pertinence to mineral metabolism and renoprotection are highlighted here. Klotho participates in mineral homeostasis via interplay with other calciophosphoregulatory hormones (parathyroid hormone, fibroblast growth factor-23, and 1,25-[OH]2 vitamin D3) in kidney, bone, intestine, and parathyroid gland. Klotho also may be involved in acute and chronic kidney disease development and progression. Acute kidney injury is a temporary and reversible state of Klotho deficiency and chronic kidney disease is a sustained state of systemic Klotho deficiency. Klotho deficiency renders the kidney more susceptible to acute insults, delays kidney regeneration, and promotes renal fibrosis. In addition to direct renal effects, Klotho deficiency also triggers and aggravates deranged mineral metabolism, secondary hyperparathyroidism, vascular calcification, and cardiac hypertrophy and fibrosis. Although studies examining the therapeutic effect of Klotho replacement were performed in animal models, it is quite conceivable that supplementation of exogenous Klotho and/or up-regulation of endogenous Klotho production may be a viable therapeutic strategy for patients with acute or chronic kidney diseases.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
124 |
5
|
Bessueille L, Magne D. Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol Life Sci 2015; 72:2475-89. [PMID: 25746430 PMCID: PMC11113748 DOI: 10.1007/s00018-015-1876-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 12/16/2022]
Abstract
It is today acknowledged that aging is associated with a low-grade chronic inflammatory status, and that inflammation exacerbates age-related diseases such as osteoporosis, Alzheimer's disease, atherosclerosis and type 2 diabetes mellitus (T2DM). Vascular calcification is a complication that also occurs during aging, in particular in association with atherosclerosis and T2DM. Recent studies provided compelling evidence that vascular calcification is associated with inflammatory status and is enhanced by inflammatory cytokines. In the present review, we propose on one hand to highlight the most important and recent findings on the cellular and molecular mechanisms of vascular inflammation in atherosclerosis and T2DM. On the other hand, we will present the effects of inflammatory mediators on the trans-differentiation of vascular smooth muscle cell and on the deposition of crystals. Since vascular calcification significantly impacts morbidity and mortality in affected individuals, a better understanding of its induction and development will pave the way to develop new therapeutic strategies.
Collapse
|
Review |
10 |
123 |
6
|
Bottini M, Mebarek S, Anderson KL, Strzelecka-Kiliszek A, Bozycki L, Simão AMS, Bolean M, Ciancaglini P, Pikula JB, Pikula S, Magne D, Volkmann N, Hanein D, Millán JL, Buchet R. Matrix vesicles from chondrocytes and osteoblasts: Their biogenesis, properties, functions and biomimetic models. Biochim Biophys Acta Gen Subj 2018; 1862:532-546. [PMID: 29108957 PMCID: PMC5801150 DOI: 10.1016/j.bbagen.2017.11.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Matrix vesicles (MVs) are released from hypertrophic chondrocytes and from mature osteoblasts, the cells responsible for endochondral and membranous ossification. Under pathological conditions, they can also be released from cells of non-skeletal tissues such as vascular smooth muscle cells. MVs are extracellular vesicles of approximately 100-300nm diameter harboring the biochemical machinery needed to induce mineralization. SCOPE OF THE REVIEW The review comprehensively delineates our current knowledge of MV biology and highlights open questions aiming to stimulate further research. The review is constructed as a series of questions addressing issues of MVs ranging from their biogenesis and functions, to biomimetic models. It critically evaluates experimental data including their isolation and characterization methods, like lipidomics, proteomics, transmission electron microscopy, atomic force microscopy and proteoliposome models mimicking MVs. MAJOR CONCLUSIONS MVs have a relatively well-defined function as initiators of mineralization. They bind to collagen and their composition reflects the composition of lipid rafts. We call attention to the as yet unclear mechanisms leading to the biogenesis of MVs, and how minerals form and when they are formed. We discuss the prospects of employing upcoming experimental models to deepen our understanding of MV-mediated mineralization and mineralization disorders such as the use of reconstituted lipid vesicles, proteoliposomes and, native sample preparations and high-resolution technologies. GENERAL SIGNIFICANCE MVs have been extensively investigated owing to their roles in skeletal and ectopic mineralization. MVs serve as a model system for lipid raft structures, and for the mechanisms of genesis and release of extracellular vesicles.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
117 |
7
|
Kunadian V, Ford GA, Bawamia B, Qiu W, Manson JE. Vitamin D deficiency and coronary artery disease: a review of the evidence. Am Heart J 2014; 167:283-91. [PMID: 24576510 DOI: 10.1016/j.ahj.2013.11.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/01/2013] [Indexed: 01/17/2023]
Abstract
Coronary artery disease remains the leading cause of death in developed countries despite significant progress in primary prevention and treatment strategies. Older patients are at particularly high risk of poor outcomes following acute coronary syndrome and impaired nutrition, including low vitamin D levels, may play a role. The extraskeletal effects of vitamin D, in particular, its role in maintaining a healthy cardiovascular system are receiving increased attention. Longitudinal studies have demonstrated increased cardiovascular mortality and morbidity associated with vitamin D deficiency. Low vitamin D levels have been linked to inflammation, higher coronary artery calcium scores, impaired endothelial function and increased vascular stiffness. However, so far, few randomized controlled trials have investigated the potential benefits of vitamin D supplementation in preventing cardiovascular events, and most available trials have tested low doses of supplementation in relatively low-risk populations. Whether vitamin D supplementation will be beneficial among patients with coronary artery disease, including high risk older patients presenting with acute coronary syndrome, is unknown and warrants further investigation.
Collapse
|
Review |
11 |
112 |
8
|
Hampson G, Edwards S, Conroy S, Blake GM, Fogelman I, Frost ML. The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone 2013; 56:42-7. [PMID: 23702386 DOI: 10.1016/j.bone.2013.05.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/01/2013] [Accepted: 05/14/2013] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown an association between bone loss/osteoporosis and vascular calcification (VC). Recent studies have implicated the Wnt signalling pathway in the pathogenesis of VC. We investigated the association between circulating concentrations of Wnt inhibitors; DKK1 and sclerostin with bone mineral density (BMD), abdominal aortic calcification (AAC) and arterial stiffness in post-menopausal women. One hundred and forty six post-menopausal women aged (mean [SD]) 61.5[6.5] years were studied. Sclerostin and DKK1 were measured in serum. BMD was measured at the lumbar spine (LS), femoral neck (FN), total hip (TH). AAC was detected by Vertebral Fracture Assessment (VFA) imaging and quantified using an 8- and 24- point scoring methods. Arterial stiffness was determined by aortic pulse wave velocity (PWV). A significant positive correlation was observed between sclerostin and BMD at the FN (r = 0.166, p = 0.043) and TH (r = 0.165, p = 0.044). The association remained significant at the FN (p = 0.045) and TH (p = 0.026) following adjustment for confounders. No significant correlation was observed between DKK1 and BMD. In contrast, there was a significant negative correlation between log DKK1 and AAC (24-point score: r = -0.25, p = 0.008 and 8-point score: r = -0.21, p = 0.024). Subjects with AAC score of 1 or less had significantly higher DKK1 (p = 0.01). The association between DKK1 and AAC remained significant following correction for age, blood pressure, cholesterol (24-point score: p = 0.017, 8-point score: p = 0.044). In adjusted linear regression analysis, sclerostin was positively associated with AAC (24-point score: p = 0.048, 8-point score: p = 0.031). Subjects with a PWV>9 m/s had significantly higher sclerostin than those with PWV <9 m/s: 23.8[12.3], vs 29.7 [14] pmol/l, p = 0.03). No association was observed between DKK1 and PWV. The opposite association between AAC and the 2 Wnt signaling inhibitors is of interest and merits further investigations. Future longitudinal studies are needed to establish the precise role of sclerostin and DKK1 in the pathogenesis of VC.
Collapse
|
|
12 |
106 |
9
|
Xu F, Zhong J, Lin X, Shan S, Guo B, Zheng M, Wang Y, Li F, Cui R, Wu F, Zhou E, Liao X, Liu Y, Yuan L. Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. J Pineal Res 2020; 68:e12631. [PMID: 31943334 PMCID: PMC7154654 DOI: 10.1111/jpi.12631] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 12/08/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
In the elderly with atherosclerosis, hypertension and diabetes, vascular calcification and ageing are ubiquitous. Melatonin (MT) has been demonstrated to impact the cardiovascular system. In this study, we have shown that MT alleviates vascular calcification and ageing, and the underlying mechanism involved. We found that both osteogenic differentiation and senescence of vascular smooth muscle cells (VSMCs) were attenuated by MT in a MT membrane receptor-dependent manner. Moreover, exosomes isolated from VSMCs or calcifying vascular smooth muscle cells (CVSMCs) treated with MT could be uptaken by VSMCs and attenuated the osteogenic differentiation and senescence of VSMCs or CVSMCs, respectively. Moreover, we used conditional medium from MT-treated VSMCs and Transwell assay to confirm exosomes secreted by MT-treated VSMCs attenuated the osteogenic differentiation and senescence of VSMCs through paracrine mechanism. We also found exosomal miR-204/miR-211 mediated the paracrine effect of exosomes secreted by VSMCs. A potential target of these two miRs was revealed to be BMP2. Furthermore, treatment of MT alleviated vascular calcification and ageing in 5/6-nephrectomy plus high-phosphate diet-treated (5/6 NTP) mice, while these effects were partially reversed by GW4869. Exosomes derived from MT-treated VSMCs were internalised into mouse artery detected by in vivo fluorescence image, and these exosomes reduced vascular calcification and ageing of 5/6 NTP mice, but both effects were largely abolished by inhibition of exosomal miR-204 or miR-211. In summary, our present study revealed that exosomes from MT-treated VSMCs could attenuate vascular calcification and ageing in a paracrine manner through an exosomal miR-204/miR-211.
Collapse
|
research-article |
5 |
103 |
10
|
Vergallo R, Papafaklis MI, Yonetsu T, Bourantas CV, Andreou I, Wang Z, Fujimoto JG, McNulty I, Lee H, Biasucci LM, Crea F, Feldman CL, Michalis LK, Stone PH, Jang IK. Endothelial shear stress and coronary plaque characteristics in humans: combined frequency-domain optical coherence tomography and computational fluid dynamics study. Circ Cardiovasc Imaging 2014; 7:905-911. [PMID: 25190591 DOI: 10.1161/circimaging.114.001932] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 09/03/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Despite the exposure of the entire vasculature to the atherogenic effects of systemic risk factors, atherosclerotic plaques preferentially develop at sites with disturbed flow. This study aimed at exploring in vivo the relationship between local endothelial shear stress (ESS) and coronary plaque characteristics in humans using computational fluid dynamics and frequency-domain optical coherence tomography. METHODS AND RESULTS Three-dimensional coronary artery reconstruction was performed in 21 patients (24 arteries) presenting with acute coronary syndrome using frequency-domain optical coherence tomography and coronary angiography. Each coronary artery was divided into sequential 3-mm segments and analyzed for the assessment of local ESS and plaque characteristics. A total of 146 nonculprit segments were evaluated. Compared with segments with higher ESS [≥1 Pascal (Pa)], those with low ESS (<1 Pa) showed higher prevalence of lipid-rich plaques (37.5% versus 20.0%; P=0.019) and thin-cap fibroatheroma (12.5% versus 2.0%; P=0.037). Overall, lipid plaques in segments with low ESS had thinner fibrous cap (115 μm [63-166] versus 170 μm [107-219]; P=0.004) and higher macrophage density (normalized standard deviation: 8.4% [4.8-12.6] versus 6.2% [4.2-8.8]; P=0.017). Segments with low ESS showed more superficial calcifications (minimum calcification depth: 93 μm [50-140] versus 152 μm [105-258]; P=0.049) and tended to have higher prevalence of spotty calcifications (26.0% versus 12.0%; P=0.076). CONCLUSIONS Coronary regions exposed to low ESS are associated with larger lipid burden, thinner fibrous cap, and higher prevalence of thin-cap fibroatheroma in humans. Frequency-domain optical coherence tomography-based assessment of ESS and wall characteristics may be useful in identifying vulnerable coronary regions. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT01110538.
Collapse
|
|
11 |
88 |
11
|
Bonewald LF, Wacker MJ. FGF23 production by osteocytes. Pediatr Nephrol 2013; 28:563-8. [PMID: 22983423 PMCID: PMC3582753 DOI: 10.1007/s00467-012-2309-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 23 (FGF23), a known regulator of phosphate homeostasis, is produced by cells residing in bone, namely, osteocytes, to target a distant organ, the kidney. Elevated FGF23 levels have recently been found systemically and in osteocytes in patients and animal models of chronic kidney disease. Associations between serum FGF23 level and vascular dysfunction, vascular calcification, and increased risk of cardiovascular disease have also been observed. In this review we discuss FGF23 expression in osteocytes and the potential means to regulate expression and function of this protein at the osteocyte level.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
78 |
12
|
Szulc P. Abdominal aortic calcification: A reappraisal of epidemiological and pathophysiological data. Bone 2016; 84:25-37. [PMID: 26688274 DOI: 10.1016/j.bone.2015.12.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022]
Abstract
In men and women, there is a significant association between the risk of cardiovascular event (myocardial infarction, stroke) and risk of major fragility fracture (hip, vertebra). Abdominal aortic calcification (AAC) can be assessed using semiquantitative scores on spine radiographs and spine scans obtained by DXA. Severe AAC is associated with higher risk of major cardiovascular event. Not only does severe AAC reflect poor cardiovascular health status, but also directly disturbs blood flow in the vascular system. Severe (but not mild or moderate) AAC is associated with lower bone mineral density (BMD), faster bone loss and higher risk of major fragility fracture. The fracture risk remains increased after adjustment for BMD and other potential risk factors. The association between severe AAC and fracture risk was found in both sexes, mainly in the follow-ups of less than 10years. Many factors contribute to initiation and progression of AAC: lifestyle, co-morbidities, inorganic ions, dyslipidemia, hormones, cytokines (e.g. inflammatory cytokines, RANKL), matrix vesicles, microRNAs, structural proteins (e.g. elastin), vitamin K-dependent proteins, and medications (e.g. vitamin K antagonists). Osteogenic transdifferentiation of vascular smooth muscle cells (VSMC) and circulating osteoprogenitors penetrating into vascular wall plays a major role in the AAC initiation and progression. Vitamin K-dependent proteins protect vascular tunica media against formation of calcified deposits (matrix GLA protein, GLA-rich protein) and against VSMC apoptosis (Gas6). Further studies are needed to investigate clinical utility of AAC for the assessment of fracture and cardiovascular risk at the individual level and develop new medications permitting to prevent AAC progression.
Collapse
|
Review |
9 |
76 |
13
|
Salem S, Bruck H, Bahlmann FH, Peter M, Passlick-Deetjen J, Kretschmer A, Steppan S, Volsek M, Kribben A, Nierhaus M, Jankowski V, Zidek W, Jankowski J. Relationship between magnesium and clinical biomarkers on inhibition of vascular calcification. Am J Nephrol 2012; 35:31-9. [PMID: 22179063 DOI: 10.1159/000334742] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 10/29/2011] [Indexed: 01/24/2023]
Abstract
BACKGROUND Arteriosclerosis and cardiovascular disease are strongly associated with vascular calcification. Hyperphosphatemia is an essential risk factor for increased vascular calcification. End-stage renal disease (ESRD) patients could serve as an in vivo model for accelerated calcification. This study focuses on the most likely protective effects of magnesium ion (Mg(2+)) on phosphate-induced vascular calcification ex vivo/in vitro. Furthermore, plasma Mg(2+) concentrations of ESRD and healthy controls were investigated for association with surrogate parameters of vascular calcification in vivo. METHODS Aortic segments of male Wistar-Kyoto rats were incubated and the phosphate concentration of the medium was elevated. The aortic segments were incubated in the absence and presence of MgCl(2); tissue calcification was quantified by different methods. Serum Mg(2+) concentrations of patients with chronic kidney disease (CKD stage 5; ESRD) and patients without CKD (controls) were associated with carotid intima media thickness (IMT) and aortic pulse wave velocity (PWV) as surrogate parameter for arteriosclerosis and arterial stiffening. RESULTS Incubation of aortic segments in the presence of β-glycerophosphate and NaH(2)PO(4) caused an increased tissue Ca(2+) deposition compared to control conditions. This increased amount of Ca(2+) in the aortic rings was significantly decreased in the presence of Mg(2+). In CKD patients, but not in controls, magnesium serum concentration was associated with the IMT of the carotid arteries. In addition, CKD patients with higher magnesium serum concentration had a significantly lower PWV. DISCUSSION AND CONCLUSION Elevated phosphate concentrations in the culture media induce ex vivo/in vitro medial calcification in intact rat aortic rings in the presence of alkaline phosphatase. Mg(2+) ions reduced ex vivo/in vitro vascular calcification despite increased phosphate concentration. This hypothesis is additionally based on the fact that CKD patients with high Mg(2) serum levels had significantly lower IMT and PWV values, which may result in a lower risk for cardiovascular events and mortality in these patients. Therefore, Mg(2+) supplementation may be an option for treatment and prevention of vascular calcification resulting in a reduction of cardiovascular events in CKD patients.
Collapse
|
|
13 |
72 |
14
|
Brodeur MR, Bouvet C, Bouchard S, Moreau S, Leblond J, deBlois D, Moreau P. Reduction of advanced-glycation end products levels and inhibition of RAGE signaling decreases rat vascular calcification induced by diabetes. PLoS One 2014; 9:e85922. [PMID: 24465790 PMCID: PMC3897559 DOI: 10.1371/journal.pone.0085922] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
Advanced-glycation end products (AGEs) were recently implicated in vascular calcification, through a process mediated by RAGE (receptor for AGEs). Although a correlation between AGEs levels and vascular calcification was established, there is no evidence that reducing in vivo AGEs deposition or inhibiting AGEs-RAGE signaling pathways can decrease medial calcification. We evaluated the impact of inhibiting AGEs formation by pyridoxamine or elimination of AGEs by alagebrium on diabetic medial calcification. We also evaluated if the inhibition of AGEs-RAGE signaling pathways can prevent calcification. Rats were fed a high fat diet during 2 months before receiving a low dose of streptozotocin. Then, calcification was induced with warfarin. Pyridoxamine was administered at the beginning of warfarin treatment while alagebrium was administered 3 weeks after the beginning of warfarin treatment. Results demonstrate that AGEs inhibitors prevent the time-dependent accumulation of AGEs in femoral arteries of diabetic rats. This effect was accompanied by a reduced diabetes-accelerated calcification. Ex vivo experiments showed that N-methylpyridinium, an agonist of RAGE, induced calcification of diabetic femoral arteries, a process inhibited by antioxidants and different inhibitors of signaling pathways associated to RAGE activation. The physiological importance of oxidative stress was demonstrated by the reduction of femoral artery calcification in diabetic rats treated with apocynin, an inhibitor of reactive oxygen species production. We demonstrated that AGE inhibitors prevent or limit medial calcification. We also showed that diabetes-accelerated calcification is prevented by antioxidants. Thus, inhibiting the association of AGE-RAGE or the downstream signaling reduced medial calcification in diabetes.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Aorta/metabolism
- Aorta/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Femoral Artery/drug effects
- Femoral Artery/pathology
- Femoral Artery/physiopathology
- Glycation End Products, Advanced/metabolism
- Hemodynamics/drug effects
- Male
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidation-Reduction/drug effects
- Pyridinium Compounds
- Rats
- Rats, Wistar
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/metabolism
- Signal Transduction/drug effects
- Vascular Calcification/etiology
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/physiopathology
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
68 |
15
|
Schoppet M, Hofbauer LC, Brinskelle-Schmal N, Varennes A, Goudable J, Richard M, Hawa G, Chapurlat R, Szulc P. Serum level of the phosphaturic factor FGF23 is associated with abdominal aortic calcification in men: the STRAMBO study. J Clin Endocrinol Metab 2012; 97:E575-83. [PMID: 22319041 DOI: 10.1210/jc.2011-2836] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Calcification inhibitor deficiencies, mineral imbalance, and phenotypic transformation of vascular cells to osteogenic cells initiate and sustain vascular calcification. Fibroblast growth factor-23 (FGF23) is a key molecule regulating mineral homeostasis. OBJECTIVE Our objective was to assess the association of serum FGF23 levels with mineral metabolism parameters and abdominal aortic calcification (AAC) in men. DESIGN This was a cross-sectional analysis in the STRAMBO cohort. SETTING Men holding a private health insurance cover with Mutuelle de Travailleurs de la Région Lyonnaise were included in the study. PARTICIPANTS Participants included male volunteers aged 20-87 (n = 1130). INTERVENTIONS Nonfasting blood collection was done. AAC was semiquantitatively assessed from vertebral fracture assessment scans obtained using dual-energy x-ray absorptiometry. MAIN OUTCOME MEASURES We evaluated the association between FGF23 concentration and AAC severity in men. RESULTS In 350 men aged 60 yr or younger, FGF23 levels decreased with age (r = -0.21; P < 0.001) but were not associated with any other parameter. In 780 men aged over 60 yr, serum FGF23 correlated with age (r = 0.37; P < 0.001) and, after adjustment for confounders, with glomerular filtration rate (r = -0.31; P < 0.001) and PTH levels (r = 0.25; P < 0.001). After adjustment for confounders, self-reported ischemic heart disease, diabetes mellitus as well as higher concentrations of C-reactive protein and osteoprotegerin were all associated with higher FGF23 levels. After adjustment for confounders, subjects in the highest FGF23 quartile had higher prevalence of severe AAC compared with the three lower quartiles combined (odds ratio = 1.88; 95% confidence interval = 1.22-2.85; P < 0.005). CONCLUSIONS In healthy older men, circulating FGF23 is associated with parameters of mineral metabolism, including bone metabolism-regulating cytokines, and with severe AAC independent of traditional risk factors.
Collapse
|
|
13 |
68 |
16
|
Wang J, Zhou JJ, Robertson GR, Lee VW. Vitamin D in Vascular Calcification: A Double-Edged Sword? Nutrients 2018; 10:nu10050652. [PMID: 29786640 PMCID: PMC5986531 DOI: 10.3390/nu10050652] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/13/2023] Open
Abstract
Vascular calcification (VC) as a manifestation of perturbed mineral balance, is associated with aging, diabetes and kidney dysfunction, as well as poorer patient outcomes. Due to the current limited understanding of the pathophysiology of vascular calcification, the development of effective preventative and therapeutic strategies remains a significant clinical challenge. Recent evidence suggests that traditional risk factors for cardiovascular disease, such as left ventricular hypertrophy and dyslipidaemia, fail to account for clinical observations of vascular calcification. Therefore, more complex underlying processes involving physiochemical changes to mineral balance, vascular remodelling and perturbed hormonal responses such as parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) are likely to contribute to VC. In particular, VC resulting from modifications to calcium, phosphate and vitamin D homeostasis has been recently elucidated. Notably, deregulation of vitamin D metabolism, dietary calcium intake and renal mineral handling are associated with imbalances in systemic calcium and phosphate levels and endothelial cell dysfunction, which can modulate both bone and soft tissue calcification. This review addresses the current understanding of VC pathophysiology, with a focus on the pathogenic role of vitamin D that has provided new insights into the mechanisms of VC.
Collapse
|
Review |
7 |
67 |
17
|
Abstract
Accelerated ageing is observed in patients with chronic kidney disease (CKD)/end-stage renal disease. Premature vascular aging and arterial stiffening are the most characteristic features of this "progeria" that is already observed in those with the early stages of CKD. Aortic stiffening is associated with high characteristic impedance, left ventricular hypertrophy, decreased coronary perfusion, and is a strong prognostic marker of mortality and cardiovascular morbidity. With aging, the arterial stiffening is more pronounced in the aorta and central arteries than in peripheral conduit arteries. This leads to progressive decrease and inversion of the arterial stiffness gradient and systemic reflection coefficient, leading to less protection of the microcirculation in the event of high-pressure transmission towards it Arterial stiffening is multifactorial with systemic microinflammation being one of the most important associated factors primarily associated with vascular calcifications.
Collapse
|
Review |
7 |
62 |
18
|
Provenzano M, Andreucci M, Garofalo C, Faga T, Michael A, Ielapi N, Grande R, Sapienza P, de Franciscis S, Mastroroberto P, Serra R. The Association of Matrix Metalloproteinases with Chronic Kidney Disease and Peripheral Vascular Disease: A Light at the End of the Tunnel? Biomolecules 2020; 10:E154. [PMID: 31963569 PMCID: PMC7022805 DOI: 10.3390/biom10010154] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
: Chronic Kidney Disease (CKD) represents a risk factor for fatal and nonfatal cardiovascular (CV) events, including peripheral vascular disease (PVD). This occurs because CKD encompasses several factors that lead to poor prognoses, mainly due to a reduction of the estimated glomerular filtration rate (eGFR), the presence of proteinuria, and the uremic inflammatory milieu. The matrix metalloproteinases (MMPs) are a group of zinc-containing endopeptidases implicated in extracellular matrix (ECM) remodeling, a systemic process in tissue homeostasis. MMPs play an important role in cell differentiation, angiogenesis, inflammation, and vascular damage. Our aim was to review the published evidence regarding the association between MMPs, PVD, and CKD to find possible common pathophysiological mechanisms. MMPs favor ECM deposition through the glomeruli, and start the shedding of cellular junctions and epithelial-mesenchymal transition in the renal tubules. MMP-2 and -9 have also been associated with the presence of systemic vascular damage, since they exert a pro-inflammatory and proatherosclerotic actions. An imbalance of MMPs was found in the context of PVD, where MMPs are predictors of poor prognoses in patients who underwent lower extremity revascularization. MMP circulating levels are increased in both conditions, i.e., that of CKD and PVD. A possible pathogenic link between these conditions is represented by the enhanced production of transforming growth factor-β that worsens vascular calcifications and atherosclerosis and the development of proteinuria in patients with increased levels of MMPs. Proteinuria has been recognized as a marker of systemic vascular damage, and this may explain in part the increase in CV risk that is manifest in patients with CKD and PVD. In conclusion, MMPs can be considered a useful tool by which to stratify CV risk in patients with CKD and PVD. Further studies are needed to investigate the causal-relationships between MMPs, CKD, and PVD, and to optimize their prognostic and predictive (in response to treatments) roles.
Collapse
|
Review |
5 |
61 |
19
|
Krueger T, Schlieper G, Schurgers L, Cornelis T, Cozzolino M, Jacobi J, Jadoul M, Ketteler M, Rump LC, Stenvinkel P, Westenfeld R, Wiecek A, Reinartz S, Hilgers RD, Floege J. Vitamin K1 to slow vascular calcification in haemodialysis patients (VitaVasK trial): a rationale and study protocol. Nephrol Dial Transplant 2014; 29:1633-8. [PMID: 24285427 DOI: 10.1093/ndt/gft459] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients on haemodialysis (HD) exhibit increased cardiovascular mortality associated with accelerated vascular calcification (VC). VC is influenced by inhibitors such as matrix Gla protein (MGP), a protein activated in the presence of vitamin K. HD patients exhibit marked vitamin K deficiency, and supplementation with vitamin K reduces inactive MGP levels in these patients. The VitaVasK trial analyses whether vitamin K1 supplementation affects the progression of coronary and aortic calcification in HD patients. METHODS VitaVasK is a prospective, randomized, parallel group, multicentre trial (EudraCT No.: 2010-021264-14) that will include 348 HD patients in an open-label, two-arm design. After baseline multi-slice computed tomography (MSCT) of the heart and thoracic aorta, patients with a coronary calcification volume score of at least 100 will be randomized to continue on standard care or to receive additional supplementation with 5 mg vitamin K1 orally thrice weekly. Treatment duration will be 18 months, and MSCT scans will be repeated after 12 and 18 months. Primary end points are the progression of thoracic aortic and coronary artery calcification (calculated as absolute changes in the volume scores at the 18-month MSCT versus the baseline MSCT). Secondary end points comprise changes in Agatston score, mitral and aortic valve calcification as well as major adverse cardiovascular events (MACE) and all-cause mortality. VitaVask also aims to record MACE and all-cause mortality in the follow-up period at 3 and 5 years after treatment initiation. This trial may lead to the identification of an inexpensive and safe treatment or prophylaxis of VC in HD patients.
Collapse
|
Multicenter Study |
11 |
59 |
20
|
Terry JG, Shay CM, Schreiner PJ, Jacobs DR, Sanchez OA, Reis JP, Goff DC, Gidding SS, Steffen LM, Carr JJ. Intermuscular Adipose Tissue and Subclinical Coronary Artery Calcification in Midlife: The CARDIA Study (Coronary Artery Risk Development in Young Adults). Arterioscler Thromb Vasc Biol 2017; 37:2370-2378. [PMID: 29025708 PMCID: PMC5699947 DOI: 10.1161/atvbaha.117.309633] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Excess deposition of fat within and around vital organs and nonadipose tissues is hypothesized to contribute to cardiovascular disease (CVD) risk. We evaluated the association of abdominal intermuscular adipose tissue (IMAT) volume with coronary artery calcification in the CARDIA study (Coronary Artery Risk Development in Young Adults) participants. APPROACH AND RESULTS We measured IMAT in the abdominal muscles, visceral adipose tissue and pericardial adipose tissue, and coronary artery calcification using computed tomography in 3051 CARDIA participants (56% women) at the CARDIA year 25 examination (2010-2011). Mean IMAT volume and mean IMAT/total muscle volume (IMAT normalized for muscle size) were calculated in a 10-mm block of slices centered at L3-L4. Multivariable analyses included potential confounders and traditional cardiovascular disease risk factors. Compared with the lowest quartile, the upper quartile of abdominal IMAT volume was associated with higher coronary artery calcification prevalence (odds ratio [95% confidence interval], 1.6 [1.2-2.1]) after adjusting for cardiovascular disease risk factors. Results were similar for highest versus lowest quartile of IMAT normalized to total muscle volume (odds ratio [95% confidence interval], 1.5 [1.1-2.0]). Significant associations of higher IMAT and normalized IMAT with coronary artery calcification prevalence persisted when body mass index, visceral adipose tissue, or pericardial adipose tissue were added to the models. CONCLUSIONS In a large, community-based, cross-sectional study, we found that higher abdominal skeletal muscle adipose tissue volume was associated with subclinical atherosclerosis independent of traditional cardiovascular disease risk factors and other adipose depots.
Collapse
|
Multicenter Study |
8 |
56 |
21
|
Freedman BI, Register TC. Effect of race and genetics on vitamin D metabolism, bone and vascular health. Nat Rev Nephrol 2012; 8:459-66. [PMID: 22688752 PMCID: PMC10032380 DOI: 10.1038/nrneph.2012.112] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathophysiology of chronic kidney disease-mineral and bone disorder accounts for an inverse relationship between bone mineralization and vascular calcification in progressive nephropathy. Inverse associations between bone mineral density (BMD) and calcified atherosclerotic plaque are also observed in individuals of European and African ancestry without nephropathy, suggesting a mechanistic link between these processes that is independent of kidney disease. Despite lower dietary calcium intake and serum 25-hydroxyvitamin D (25(OH)D) concentrations, African Americans have higher BMD and develop osteoporosis less frequently than do European Americans. Moreover, despite having more risk factors for cardiovascular disease, African Americans have a lower incidence and severity of calcified atherosclerotic plaque formation than do European Americans. Strikingly, evidence is now revealing that serum 25(OH)D and/or 1,25 dihydroxyvitamin D levels associate positively with atherosclerosis but negatively with BMD in African Americans; by contrast, vitamin D levels associate negatively with atherosclerosis and positively with BMD in individuals of European ancestry. Biologic phenomena, therefore, seem to contribute to population-specific differences in vitamin D metabolism, bone and vascular health. Genetic and mechanistic approaches used to explore these differences should further our understanding of bone-blood vessel relationships and explain how African ancestry protects from osteoporosis and calcified atherosclerotic plaque, provided that access of African Americans to health care is equivalent to individuals of European ethnic origin. Ultimately, in our opinion, a new mechanistic understanding of the relationships between bone mineralization and vascular calcification will produce novel approaches for disease prevention in aging populations.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
51 |
22
|
Cardoso L, Kelly-Arnold A, Maldonado N, Laudier D, Weinbaum S. Effect of tissue properties, shape and orientation of microcalcifications on vulnerable cap stability using different hyperelastic constitutive models. J Biomech 2014; 47:870-7. [PMID: 24503048 DOI: 10.1016/j.jbiomech.2014.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 01/26/2023]
Abstract
Approximately half of all cardiovascular deaths associated with acute coronary syndrome occur when the thin fibrous cap tissue overlying the necrotic core in a coronary vessel is torn, ripped or fissured under the action of high blood pressure. From a biomechanics point of view, the rupture of an atheroma is due to increased mechanical stresses in the lesion, in which the ultimate stress (i.e. peak circumferential stress (PCS) at failure) of the tissue is exceeded. Several factors including the cap thickness, morphology, residual stresses and tissue composition of the atheroma have been shown to affect the PCS. Also important, we recently demonstrated that microcalcifications (μCalcs>5 µm are a common feature in human atheroma caps, which behave as local stress concentrators, increasing the local tissue stress by at least a factor of two surpassing the ultimate stress threshold for cap tissue rupture. In the present study, we used both idealized µCalcs with spherical shape and actual µCalcs from human coronary atherosclerotic caps, to determine their effect on increasing the circumferential stress in the fibroatheroma cap using different hyperelastic constitutive models. We have found that the stress concentration factor (SCF) produced by μCalcs in the fibroatheroma cap is affected by the material tissue properties, μCalcs spacing, aspect ratio and their alignment relative to the tensile axis of the cap.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
51 |
23
|
Abstract
Fetuin was first isolated from bovine serum in 1944. It is now most commonly known as either fetuin-A or alpha-2-HS-glycoprotein (AHSG), the protein product of Ahsg gene. A prominent feature of this protein is the functional diversity exerted in human physiology and pathophysiology. Fetuin-A plays a role in bone metabolism, metabolic disorders such as insulin resistance and diabetes mellitus (DM), and central nervous system (CNS) disorders such as ischemic stroke (IS) and neurodegenerative diseases. In addition, emerging evidence suggests involvement of fetuin-A in the cardiovascular system. However, there are many discordant findings on the associations between fetuin-A and vascular diseases. In other words, it is unknown whether fetuin-A is an exacerbating or a protective factor in the cardiovascular system. One reason for the seemingly inconsistent behavior is the dual functionality of fetuin-A in vascular diseases where it can act as an atherogenic factor or as a vascular calcification inhibitor. In addition, the existence of confounding factors such as DM and renal dysfunction can veil the primary association between fetuin-A and clinical parameters. Considering these issues, we discuss the role of fetuin-A for atherosclerosis and vascular calcification in this review.
Collapse
|
Review |
13 |
51 |
24
|
Guo J, Fujiyoshi A, Willcox B, Choo J, Vishnu A, Hisamatsu T, Ahuja V, Takashima N, Barinas-Mitchell E, Kadota A, Evans RW, Miura K, Edmundowicz D, Masaki K, Shin C, Kuller LH, Ueshima H, Sekikawa A. Increased Aortic Calcification Is Associated With Arterial Stiffness Progression in Multiethnic Middle-Aged Men. Hypertension 2017; 69:102-108. [PMID: 27821619 PMCID: PMC5145727 DOI: 10.1161/hypertensionaha.116.08459] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 01/11/2023]
Abstract
Arterial stiffness is established as an independent predictor of cardiovascular morbidity and mortality. The objective was to prospectively evaluate association of aortic calcification burden with progression of arterial stiffness in population-based samples of healthy middle-aged men from ERA JUMP cohort (Electron-Beam Computed Tomography and Risk Factor Assessment in Japanese and US Men in the Post-World War II Birth Cohort). Men (n=635) aged 40 to 49 years (207 white American, 45 black American, 142 Japanese American, and 241 Japanese in Japan) were examined at baseline and 4 to 7 years later. Aortic calcification was evaluated from level of aortic arch to iliac bifurcation. Arterial stiffness progression was measured as annual change in brachial-ankle pulse wave velocity. Multivariable-adjusted general linear models were applied to investigate associations of longitudinal change in aortic calcification with arterial stiffness progression in participants overall, as well as in subgroups without or with prevalent aortic calcification at baseline. Annual change in aortic calcification was positively and significantly associated with arterial stiffness progression. In participants with annual changes in aortic calcium score of ≤0, 1 to 10, 11 to 100, and >100, the adjusted means (SD) for the annual change in brachial-ankle pulse wave velocity were 3.8 (2.2), 7.2 (2.2), 12.2 (1.8), and 15.6 (2.6) cm/s, respectively (P for trend <0.01) adjusted for baseline aortic calcification, arterial stiffness, and standard cardiovascular risk factors. Arterial stiffness was associated with the incidence of aortic calcification over the follow-up period among participants without aortic calcification (n=297) and with an increase in aortic calcification among participants with prevalent aortic calcification at baseline (n=388). Our findings suggest aortic calcification may be causally linked to arterial stiffness.
Collapse
|
Multicenter Study |
8 |
50 |
25
|
Williams MJ, Sugatani T, Agapova OA, Fang Y, Gaut JP, Faugere MC, Malluche HH, Hruska KA. The activin receptor is stimulated in the skeleton, vasculature, heart, and kidney during chronic kidney disease. Kidney Int 2018; 93:147-158. [PMID: 28843411 PMCID: PMC6628245 DOI: 10.1016/j.kint.2017.06.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 01/09/2023]
Abstract
We examined activin receptor type IIA (ActRIIA) activation in chronic kidney disease (CKD) by signal analysis and inhibition in mice with Alport syndrome using the ActRIIA ligand trap RAP-011 initiated in 75-day-old Alport mice. At 200 days of age, there was severe CKD and associated Mineral and Bone Disorder (CKD-MBD), consisting of osteodystrophy, vascular calcification, cardiac hypertrophy, hyperphosphatemia, hyperparathyroidism, elevated FGF23, and reduced klotho. The CKD-induced bone resorption and osteoblast dysfunction was reversed, and bone formation was increased by RAP-011. ActRIIA inhibition prevented the formation of calcium apatite deposits in the aortic adventitia and tunica media and significantly decreased the mean aortic calcium concentration from 0.59 in untreated to 0.36 mg/g in treated Alport mice. Aortic ActRIIA stimulation in untreated mice increased p-Smad2 levels and the transcription of sm22α and αSMA. ActRIIA inhibition reversed aortic expression of the osteoblast transition markers Runx2 and osterix. Heart weight was significantly increased by 26% in untreated mice but remained normal during RAP-011 treatment. In 150-day-old mice, GFR was significantly reduced by 55%, but only by 30% in the RAP-011-treated group. In 200-day-old mice, the mean BUN was 100 mg/dl in untreated mice compared to 60 mg/dl in the treated group. In the kidneys of 200-day-old mice, ActRIIA and p-Smad2 were induced and MCP-1, fibronectin, and interstitial fibrosis were stimulated; all were attenuated by RAP-011 treatment. Hence, the activation of ActRIIA signaling during early CKD contributes to the CKD-MBD components of osteodystrophy and cardiovascular disease and to renal fibrosis. Thus, the inhibition of ActRIIA signaling is efficacious in improving and delaying CKD-MBD in this model of Alport syndrome.
Collapse
MESH Headings
- Actins/metabolism
- Activin Receptors, Type II/antagonists & inhibitors
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Animals
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Bone Remodeling
- Bone Resorption/genetics
- Bone Resorption/metabolism
- Bone Resorption/physiopathology
- Bone Resorption/prevention & control
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Bone and Bones/physiopathology
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomegaly/physiopathology
- Cardiomegaly/prevention & control
- Chronic Kidney Disease-Mineral and Bone Disorder/genetics
- Chronic Kidney Disease-Mineral and Bone Disorder/metabolism
- Chronic Kidney Disease-Mineral and Bone Disorder/physiopathology
- Chronic Kidney Disease-Mineral and Bone Disorder/prevention & control
- Collagen Type IV/deficiency
- Collagen Type IV/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Disease Models, Animal
- Fibroblast Growth Factor-23
- Fibrosis
- Glomerular Filtration Rate
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle Proteins/metabolism
- Myocardium/metabolism
- Myocardium/pathology
- Nephritis, Hereditary/drug therapy
- Nephritis, Hereditary/genetics
- Nephritis, Hereditary/metabolism
- Nephritis, Hereditary/physiopathology
- Phosphorylation
- Recombinant Fusion Proteins/pharmacology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/prevention & control
- Signal Transduction
- Smad2 Protein/metabolism
- Sp7 Transcription Factor/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/physiopathology
- Vascular Calcification/prevention & control
- Vascular Remodeling
- Ventricular Remodeling
Collapse
|
Research Support, N.I.H., Extramural |
7 |
50 |