1
|
Abstract
Although adaptive immunity is unique to vertebrates, the innate immune response seems to have ancient origins. Common features of innate immunity in vertebrates, invertebrate animals and plants include defined receptors for microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades and the production of antimicrobial peptides. It is commonly reported that these similarities in innate immunity represent a process of divergent evolution from an ancient unicellular eukaryote that pre-dated the divergence of the plant and animal kingdoms. However, at present, data suggest that the seemingly analogous regulatory modules used in plant and animal innate immunity are a consequence of convergent evolution and reflect inherent constraints on how an innate immune system can be constructed.
Collapse
|
Review |
20 |
618 |
2
|
Nei M, Gu X, Sitnikova T. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A 1997; 94:7799-806. [PMID: 9223266 PMCID: PMC33709 DOI: 10.1073/pnas.94.15.7799] [Citation(s) in RCA: 576] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Concerted evolution is often invoked to explain the diversity and evolution of the multigene families of major histocompatibility complex (MHC) genes and immunoglobulin (Ig) genes. However, this hypothesis has been controversial because the member genes of these families from the same species are not necessarily more closely related to one another than to the genes from different species. To resolve this controversy, we conducted phylogenetic analyses of several multigene families of the MHC and Ig systems. The results show that the evolutionary pattern of these families is quite different from that of concerted evolution but is in agreement with the birth-and-death model of evolution in which new genes are created by repeated gene duplication and some duplicate genes are maintained in the genome for a long time but others are deleted or become nonfunctional by deleterious mutations. We found little evidence that interlocus gene conversion plays an important role in the evolution of MHC and Ig multigene families.
Collapse
|
research-article |
28 |
576 |
3
|
|
Review |
15 |
558 |
4
|
Agrawal A, Eastman QM, Schatz DG. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 1998; 394:744-51. [PMID: 9723614 DOI: 10.1038/29457] [Citation(s) in RCA: 536] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immunoglobulin and T-cell-receptor genes are assembled from component gene segments in developing lymphocytes by a site-specific recombination reaction, V(D)J recombination. The proteins encoded by the recombination-activating genes, RAG1 and RAG2, are essential in this reaction, mediating sequence-specific DNA recognition of well-defined recombination signals and DNA cleavage next to these signals. Here we show that RAG1 and RAG2 together form a transposase capable of excising a piece of DNA containing recombination signals from a donor site and inserting it into a target DNA molecule. The products formed contain a short duplication of target DNA immediately flanking the transposed fragment, a structure like that created by retroviral integration and all known transposition reactions. The results support the theory that RAG1 and RAG2 were once components of a transposable element, and that the split nature of immunoglobulin and T-cell-receptor genes derives from germline insertion of this element into an ancestral receptor gene soon after the evolutionary divergence of jawed and jawless vertebrates.
Collapse
|
|
27 |
536 |
5
|
Abstract
A clonally diverse anticipatory repertoire in which each lymphocyte bears a unique antigen receptor is the central feature of the adaptive immune system that evolved in our vertebrate ancestors. The survival advantage gained through adding this type of adaptive immune system to a pre-existing innate immune system led to the evolution of alternative ways for lymphocytes to generate diverse antigen receptors for use in recognizing and repelling pathogen invaders. All jawed vertebrates assemble their antigen-receptor genes through recombinatorial rearrangement of different immunoglobulin or T cell receptor gene segments. The surviving jawless vertebrates, lampreys and hagfish, instead solved the receptor diversification problem by the recombinatorial assembly of leucine-rich-repeat genetic modules to encode variable lymphocyte receptors. The convergent evolution of these remarkably different adaptive immune systems involved innovative genetic modification of innate-immune-system components.
Collapse
|
Review |
19 |
532 |
6
|
Ribeiro JMC, Francischetti IMB. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. ANNUAL REVIEW OF ENTOMOLOGY 2002; 48:73-88. [PMID: 12194906 DOI: 10.1146/annurev.ento.48.060402.102812] [Citation(s) in RCA: 522] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This review addresses the problems insects and ticks face to feed on blood and the solutions these invertebrates engender to overcome these obstacles, including a sophisticated salivary cocktail of potent pharmacologic compounds. Recent advances in transcriptome and proteome research allow an unprecedented insight into the complexity of these compounds, indicating that their molecular diversity as well as the diversity of their targets is still larger than previously thought.
Collapse
|
Review |
23 |
522 |
7
|
Abstract
During the past year, novel beta-defensins of mice and men have been identified, together with a novel defensin subfamily (the circular or 'theta' minidefensins) in primates. Insight into the evolution of defensins has been obtained from structural studies, and several mechanisms related to microbial resistance to defensins have been delineated. There is now convincing evidence that defensins augment adaptive immune responses.
Collapse
|
Review |
23 |
478 |
8
|
|
Review |
39 |
475 |
9
|
Nicolas P, Mor A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol 1995; 49:277-304. [PMID: 8561461 DOI: 10.1146/annurev.mi.49.100195.001425] [Citation(s) in RCA: 462] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The innate immunity of vertebrates to microbial invasion is arbitrated by a network of host-defense mechanisms involving both the long-lasting highly specific responses of the cell-mediated immune system and a nonspecific chemical defense system based on a series of broad-spectrum antimicrobial peptides that are analogous to those found in insects. Vertebrate antibiotic peptides secreted by nonlymphoid cells of the mucosal surfaces of the respiratory and gastrointestinal tracts as well as by the granular glands of the skin reportedly cause the lysis of numerous pathogenic microorganisms, including viruses, gram-positive and gram-negative bacteria, protozoa, yeasts, and fungi, as well as of cancer cells. Antimicrobial peptides isolated from vertebrates have three characteristic properties: They are relatively small (20-46 amino acid residues), basic (lysine- or arginine-rich), and amphipathic. Although these peptides differ widely in length and amino acid sequences, they may be grouped in four broad families based on characteristic structural features. Although the precise mechanism of action of these peptides remains to be defined, their microbicidal effect very likely results from their capacity to form channels or pores within the microbial membrane in order to permeate the cell and impair its ability to carry out anabolic processes. This secondary, chemical immune system provides vertebrates with a repertoire of small peptides that are promptly synthesized upon induction, easily stored in large amounts, and readily available for antimicrobial warfare.
Collapse
|
Review |
30 |
462 |
10
|
Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP. The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 2006; 300:349-65. [PMID: 17027739 DOI: 10.1016/j.ydbio.2006.08.065] [Citation(s) in RCA: 431] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/21/2006] [Accepted: 08/28/2006] [Indexed: 01/01/2023]
Abstract
Echinoderms occupy a critical and largely unexplored phylogenetic vantage point from which to infer both the early evolution of bilaterian immunity and the underpinnings of the vertebrate adaptive immune system. Here we present an initial survey of the purple sea urchin genome for genes associated with immunity. An elaborate repertoire of potential immune receptors, regulators and effectors is present, including unprecedented expansions of innate pathogen recognition genes. These include a diverse array of 222 Toll-like receptor (TLR) genes and a coordinate expansion of directly associated signaling adaptors. Notably, a subset of sea urchin TLR genes encodes receptors with structural characteristics previously identified only in protostomes. A similarly expanded set of 203 NOD/NALP-like cytoplasmic recognition proteins is present. These genes have previously been identified only in vertebrates where they are represented in much lower numbers. Genes that mediate the alternative and lectin complement pathways are described, while gene homologues of the terminal pathway are not present. We have also identified several homologues of genes that function in jawed vertebrate adaptive immunity. The most striking of these is a gene cluster with similarity to the jawed vertebrate Recombination Activating Genes 1 and 2 (RAG1/2). Sea urchins are long-lived, complex organisms and these findings reveal an innate immune system of unprecedented complexity. Whether the presumably intense selective processes that molded these gene families also gave rise to novel immune mechanisms akin to adaptive systems remains to be seen. The genome sequence provides immediate opportunities to apply the advantages of the sea urchin model toward problems in developmental and evolutionary immunobiology.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
431 |
11
|
Harris RS, Dudley JP. APOBECs and virus restriction. Virology 2015; 479-480:131-45. [PMID: 25818029 PMCID: PMC4424171 DOI: 10.1016/j.virol.2015.03.012] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/10/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
The APOBEC family of single-stranded DNA cytosine deaminases comprises a formidable arm of the vertebrate innate immune system. Pre-vertebrates express a single APOBEC, whereas some mammals produce as many as 11 enzymes. The APOBEC3 subfamily displays both copy number variation and polymorphisms, consistent with ongoing pathogenic pressures. These enzymes restrict the replication of many DNA-based parasites, such as exogenous viruses and endogenous transposable elements. APOBEC1 and activation-induced cytosine deaminase (AID) have specialized functions in RNA editing and antibody gene diversification, respectively, whereas APOBEC2 and APOBEC4 appear to have different functions. Nevertheless, the APOBEC family protects against both periodic viral zoonoses as well as exogenous and endogenous parasite replication. This review highlights viral pathogens that are restricted by APOBEC enzymes, but manage to escape through unique mechanisms. The sensitivity of viruses that lack counterdefense measures highlights the need to develop APOBEC-enabling small molecules as a new class of anti-viral drugs.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
422 |
12
|
Robertsen B. The interferon system of teleost fish. FISH & SHELLFISH IMMUNOLOGY 2006; 20:172-91. [PMID: 15939626 DOI: 10.1016/j.fsi.2005.01.010] [Citation(s) in RCA: 401] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 01/18/2005] [Indexed: 05/02/2023]
Abstract
Interferons (IFNs) are secreted proteins, which induce vertebrate cells into an antiviral state. In mammals, three families of IFNs (type I IFN, type II IFN and IFN-lambda) can be distinguished on the basis of gene structure, protein structure and functional properties. Type I IFNs, which include IFN-alpha and IFN-beta, are encoded by intron lacking genes and have a major role in the first line of defense against viruses. The human IFN-lambdas have similar biological properties as type I IFNs, but are encoded by intron containing genes. Type II IFN is identical to IFN-gamma, which is produced by T helper 1 cells in response to mitogens and antigens and has a key role in adaptive cell mediated immunity. IFNs, which show structural and functional properties similar to mammalian type I IFNs, have recently been cloned from Atlantic salmon, channel catfish, pufferfish, and zebrafish. Teleost fish appear to have at least two type I IFN genes. Phylogenetic sequence analysis shows that the fish type I IFNs form a group separated from the avian type I IFNs and the mammalian IFN-alpha, -beta and -lambda groups. Interestingly, the fish IFNs possess the same exon/intron structure as the IFN-lambdas, but show most sequence similarity to IFN-alpha. Recently, IFN-gamma genes have also been cloned from several fish species and shown to have the same exon/intron structure as mammalian IFN-gamma genes. The antiviral effect of mammalian type I IFN is exerted through binding to the IFN-alpha/beta-receptor, which triggers signal transduction through the JAK-STAT signal transduction pathway resulting in expression of Mx and other antiviral proteins. Putative IFN receptor genes have been identified in pufferfish. Several interferon regulatory factors and members of the JAK-STAT pathway have also been identified in various fish species. Moreover, Mx and several other interferon stimulated genes have been cloned and studied in fish. Furthermore, antiviral activity of Mx protein from Atlantic salmon and Japanese flounder has recently been demonstrated.
Collapse
|
Review |
19 |
401 |
13
|
Abstract
In the struggle between virus and host, control over the cell's death machinery is crucial for survival. Viruses are obligatory intracellular parasites and, as such, must modulate apoptotic pathways to control the lifespan of their host in order to complete their replication cycle. Many of the counter-assaults mounted by the immune system incorporate activation of the apoptotic pathway-particularly by members of the tumor necrosis factor cytokine family-as a mechanism to restrict viral replication. Thus, apoptosis serves as a powerful selective pressure for the virus to evade. However, for the host, success is harsh and potentially costly, as apoptosis often contributes to pathogenesis. Here we examine some of the molecular mechanisms by which viruses manipulate the apoptotic machinery to their advantage and how we (as vertebrates) have evolved and learned to cope with viral evasion.
Collapse
|
Review |
23 |
342 |
14
|
Abstract
Approximately 500 mya two types of recombinatorial adaptive immune systems appeared in vertebrates. Jawed vertebrates generate a diverse repertoire of B and T cell antigen receptors through the rearrangement of immunoglobulin V, D, and J gene fragments, whereas jawless fish assemble their variable lymphocyte receptors through recombinatorial usage of leucine-rich repeat (LRR) modular units. Invariant germ line-encoded, LRR-containing proteins are pivotal mediators of microbial recognition throughout the plant and animal kingdoms. Whereas the genomes of plants and deuterostome and chordate invertebrates harbor large arsenals of recognition receptors primarily encoding LRR-containing proteins, relatively few innate pattern recognition receptors suffice for survival of pathogen-infected nematodes, insects, and vertebrates. The appearance of a lymphocyte-based recombinatorial system of anticipatory immunity in the vertebrates may have been driven by a need to facilitate developmental and morphological plasticity in addition to the advantage conferred by the ability to recognize a larger portion of the antigenic world.
Collapse
|
Review |
19 |
321 |
15
|
Kurtenbach K, De Michelis S, Etti S, Schäfer SM, Sewell HS, Brade V, Kraiczy P. Host association of Borrelia burgdorferi sensu lato--the key role of host complement. Trends Microbiol 2002; 10:74-9. [PMID: 11827808 DOI: 10.1016/s0966-842x(01)02298-3] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Borrelia burgdorferi sensu lato (s.l.), the tick-borne agent of Lyme borreliosis, is a bacterial species complex comprising 11 genospecies. Here, we discuss whether the delineation of genospecies is ecologically relevant. We provide evidence that B. burgdorferi s.l. is structured ecologically into distinct clusters that are host specific. An immunological model for niche adaptation is proposed that suggests the operation of complement-mediated selection in the midgut of the feeding tick. We conclude that vertebrate hosts rather than tick species are the key to Lyme borreliosis spirochaete diversity.
Collapse
|
Review |
23 |
313 |
16
|
Martin LB. Stress and immunity in wild vertebrates: timing is everything. Gen Comp Endocrinol 2009; 163:70-6. [PMID: 19318107 DOI: 10.1016/j.ygcen.2009.03.008] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 03/05/2009] [Accepted: 03/17/2009] [Indexed: 01/27/2023]
Abstract
Stress has profound effects on vertebrate immunity, but most studies have considered stress-immune interactions in terms of wild animals enduring demanding, but predictable activities (e.g., immune alterations during breeding). A growing biomedical literature, however, indicates that stress may not be obligatorily immunosuppressive; in response to transient, unpredictable stressors, immune activity can be enhanced, especially in body areas requiring immune protection. Also, immune sensitivity to stressors is not fixed throughout life; oftentimes, glucocorticoid (GC) insensitivity can be induced. Further GC sensitivity can be programmed early in life; greater exposure to stressors prior to maturity heightens GC effects on immunity in adulthood. In the present paper, I review the cellular and molecular mechanisms that link stress responses to immune adjustments over short time scales in domesticated species then I attempt to place stress-immune interactions in a naturalistic, organismal context. When, how and why stressors affect immunity in wild animals remains practically unstudied.
Collapse
|
Review |
16 |
309 |
17
|
Abstract
IgY is the functional equivalent of IgG in birds, reptiles and amphibia, but many aspects of its biology are poorly understood. Recent studies have increased awareness of the genetics and functions of this molecule, and have revealed its position as the ancestor of the uniquely mammalian antibodies IgG and IgE. Here, Greg Warr, Kathy Magor and David Higgins review current knowledge of IgY structure, function and expression in the context of the evolutionary role of this primitive immunoglobulin.
Collapse
|
Comparative Study |
30 |
299 |
18
|
Abstract
Comparative analysis of the sea urchin genome has broad implications for the primitive state of deuterostome host defense and the genetic underpinnings of immunity in vertebrates. The sea urchin has an unprecedented complexity of innate immune recognition receptors relative to other animal species yet characterized. These receptor genes include a vast repertoire of 222 Toll-like receptors, a superfamily of more than 200 NACHT domain-leucine-rich repeat proteins (similar to nucleotide-binding and oligomerization domain (NOD) and NALP proteins of vertebrates), and a large family of scavenger receptor cysteine-rich proteins. More typical numbers of genes encode other immune recognition factors. Homologs of important immune and hematopoietic regulators, many of which have previously been identified only from chordates, as well as genes that are critical in adaptive immunity of jawed vertebrates, also are present. The findings serve to underscore the dynamic utilization of receptors and the complexity of immune recognition that may be basal for deuterostomes and predicts features of the ancestral bilaterian form.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
299 |
19
|
Abstract
The recognition of conserved microbial structures is a key aspect of metazoan immunity, and beta-glucans are emerging as a major target for the recognition of fungal pathogens. A number of receptors for these carbohydrates have been identified, which upon recognition, trigger a variety of immune responses. In contrast to many other systems, there is little apparent conservation in these mechanisms between vertebrates and invertebrates. In this review, we will highlight all the known receptors for beta-glucans and will discuss the various immune responses they can initiate, with reference to fungal infection, in both vertebrates and invertebrates.
Collapse
|
|
20 |
284 |
20
|
Abstract
The past year brought several discoveries that focused attention on antimicrobial peptides on epithelial surfaces. The malfunction of these substances was implicated as a cause of airway infections in cystic fibrosis. Other highlights included new insights into the relative selectivity of antimicrobial peptides for microbial membranes, their primary site of action.
Collapse
|
Review |
27 |
265 |
21
|
Abstract
Pattern recognition receptors of the innate immune system are able to distinguish certain prokaryotic DNAs from vertebrate DNAs by detecting unmethylated CpG dinucleotides in particular base contexts ('CpG motifs'). Recent studies have begun to define the molecular mechanisms of actions of CpG motifs and have demonstrated their stimulatory effects on leukocytes from humans and vertebrates other than mice. Oligodeoxynucleotides containing CpG motifs are highly effective Th1-like vaccine adjuvants through multiple routes of immunization and show promise as immunotherapeutic agents for cancer and allergic diseases.
Collapse
|
|
25 |
260 |
22
|
Lefranc MP, Giudicelli V, Kaas Q, Duprat E, Jabado-Michaloud J, Scaviner D, Ginestoux C, Clément O, Chaume D, Lefranc G. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 2005; 33:D593-7. [PMID: 15608269 PMCID: PMC540019 DOI: 10.1093/nar/gki065] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The international ImMunoGeneTics information system® (IMGT) (http://imgt.cines.fr), created in 1989, by the Laboratoire d'ImmunoGénétique Moléculaire LIGM (Université Montpellier II and CNRS) at Montpellier, France, is a high-quality integrated knowledge resource specializing in the immunoglobulins (IGs), T cell receptors (TRs), major histocompatibility complex (MHC) of human and other vertebrates, and related proteins of the immune systems (RPI) that belong to the immunoglobulin superfamily (IgSF) and to the MHC superfamily (MhcSF). IMGT includes several sequence databases (IMGT/LIGM-DB, IMGT/PRIMER-DB, IMGT/PROTEIN-DB and IMGT/MHC-DB), one genome database (IMGT/GENE-DB) and one three-dimensional (3D) structure database (IMGT/3Dstructure-DB), Web resources comprising 8000 HTML pages (IMGT Marie-Paule page), and interactive tools. IMGT data are expertly annotated according to the rules of the IMGT Scientific chart, based on the IMGT-ONTOLOGY concepts. IMGT tools are particularly useful for the analysis of the IG and TR repertoires in normal physiological and pathological situations. IMGT is used in medical research (autoimmune diseases, infectious diseases, AIDS, leukemias, lymphomas, myelomas), veterinary research, biotechnology related to antibody engineering (phage displays, combinatorial libraries, chimeric, humanized and human antibodies), diagnostics (clonalities, detection and follow up of residual diseases) and therapeutical approaches (graft, immunotherapy and vaccinology). IMGT is freely available at http://imgt.cines.fr.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
234 |
23
|
Wilson M, Bengtén E, Miller NW, Clem LW, Du Pasquier L, Warr GW. A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc Natl Acad Sci U S A 1997; 94:4593-7. [PMID: 9114035 PMCID: PMC20768 DOI: 10.1073/pnas.94.9.4593] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1996] [Accepted: 02/26/1997] [Indexed: 02/04/2023] Open
Abstract
IgD is considered to be a recently evolved Ig, being previously found only in primates and rodents. Here we describe, from a teleost fish (the channel catfish, Ictalurus punctatus), a novel complex chimeric Ig heavy chain, homologous, in part, to the heavy chain (delta) of IgD. In addition to alternative secretory or membrane-associated C termini, this chimeric molecule contains a rearranged variable domain, the first constant domain of mu, and seven constant domains encoded by a delta gene homolog. Identification of the catfish gene as delta is based on the following properties: sequence relatedness to mammalian delta; a location within the IgH locus that is immediately downstream of the mu gene; separate terminal exons for the secretory and membrane forms; coexpression with the complete mu chain in some but not all B cells. These results (i) suggest that IgD is an ancient immunoglobulin that was present in vertebrates ancestral to both the mammals and the ray-finned fishes, and (ii) raise the possibility that this Ig isotype may have served an as yet unidentified important function early in the evolution of the immune system.
Collapse
|
Comparative Study |
28 |
231 |
24
|
Abstract
Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been thought to occur by the acquisition of novel molecular capabilities, an increasing amount of information from new model systems suggest that co-option and redirection of pre-existing systems are the main source of innovation. We combine evidence from a wide range of organisms to obtain an integrated view of the origins and patterns of divergence in adaptive immunity.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
226 |
25
|
Abstract
Numerous studies of the mammalian immune system have begun to uncover profound interrelationships, as well as fundamental differences, between the adaptive and innate systems of immune recognition. Coincident with these investigations, the increasing experimental accessibility of non-mammalian jawed vertebrates, jawless vertebrates, protochordates and invertebrates has provided intriguing new information regarding the likely patterns of emergence of immune-related molecules during metazoan phylogeny, as well as the evolution of alternative mechanisms for receptor diversification. Such findings blur traditional distinctions between adaptive and innate immunity and emphasize that, throughout evolution, the immune system has used a remarkably extensive variety of solutions to meet fundamentally similar requirements for host protection.
Collapse
MESH Headings
- Animals
- Evolution, Molecular
- Gene Rearrangement, B-Lymphocyte/genetics
- Gene Rearrangement, B-Lymphocyte/immunology
- Gene Rearrangement, T-Lymphocyte/genetics
- Gene Rearrangement, T-Lymphocyte/immunology
- Genes, Immunoglobulin/genetics
- Genes, Immunoglobulin/immunology
- Genes, RAG-1/immunology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Invertebrates/genetics
- Invertebrates/immunology
- Phylogeny
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Vertebrates/genetics
- Vertebrates/immunology
Collapse
|
Research Support, N.I.H., Extramural |
20 |
223 |