1
|
Stancil IT, Michalski JE, Davis-Hall D, Chu HW, Park JA, Magin CM, Yang IV, Smith BJ, Dobrinskikh E, Schwartz DA. Pulmonary fibrosis distal airway epithelia are dynamically and structurally dysfunctional. Nat Commun 2021; 12:4566. [PMID: 34315881 PMCID: PMC8316442 DOI: 10.1038/s41467-021-24853-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/06/2021] [Indexed: 01/06/2023] Open
Abstract
The airway epithelium serves as the interface between the host and external environment. In many chronic lung diseases, the airway is the site of substantial remodeling after injury. While, idiopathic pulmonary fibrosis (IPF) has traditionally been considered a disease of the alveolus and lung matrix, the dominant environmental (cigarette smoking) and genetic (gain of function MUC5B promoter variant) risk factor primarily affect the distal airway epithelium. Moreover, airway-specific pathogenic features of IPF include bronchiolization of the distal airspace with abnormal airway cell-types and honeycomb cystic terminal airway-like structures with concurrent loss of terminal bronchioles in regions of minimal fibrosis. However, the pathogenic role of the airway epithelium in IPF is unknown. Combining biophysical, genetic, and signaling analyses of primary airway epithelial cells, we demonstrate that healthy and IPF airway epithelia are biophysically distinct, identifying pathologic activation of the ERBB-YAP axis as a specific and modifiable driver of prolongation of the unjammed-to-jammed transition in IPF epithelia. Furthermore, we demonstrate that this biophysical state and signaling axis correlates with epithelial-driven activation of the underlying mesenchyme. Our data illustrate the active mechanisms regulating airway epithelial-driven fibrosis and identify targets to modulate disease progression.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
63 |
2
|
Hurcombe JA, Hartley P, Lay AC, Ni L, Bedford JJ, Leader JP, Singh S, Murphy A, Scudamore CL, Marquez E, Barrington AF, Pinto V, Marchetti M, Wong LF, Uney J, Saleem MA, Mathieson PW, Patel S, Walker RJ, Woodgett JR, Quaggin SE, Welsh GI, Coward RJM. Podocyte GSK3 is an evolutionarily conserved critical regulator of kidney function. Nat Commun 2019; 10:403. [PMID: 30679422 PMCID: PMC6345761 DOI: 10.1038/s41467-018-08235-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/21/2018] [Indexed: 01/18/2023] Open
Abstract
Albuminuria affects millions of people, and is an independent risk factor for kidney failure, cardiovascular morbidity and death. The key cell that prevents albuminuria is the terminally differentiated glomerular podocyte. Here we report the evolutionary importance of the enzyme Glycogen Synthase Kinase 3 (GSK3) for maintaining podocyte function in mice and the equivalent nephrocyte cell in Drosophila. Developmental deletion of both GSK3 isoforms (α and β) in murine podocytes causes late neonatal death associated with massive albuminuria and renal failure. Similarly, silencing GSK3 in nephrocytes is developmentally lethal for this cell. Mature genetic or pharmacological podocyte/nephrocyte GSK3 inhibition is also detrimental; producing albuminuric kidney disease in mice and nephrocyte depletion in Drosophila. Mechanistically, GSK3 loss causes differentiated podocytes to re-enter the cell cycle and undergo mitotic catastrophe, modulated via the Hippo pathway but independent of Wnt-β-catenin. This work clearly identifies GSK3 as a critical regulator of podocyte and hence kidney function.
Collapse
|
research-article |
6 |
51 |
3
|
Zheng Z, Li C, Shao G, Li J, Xu K, Zhao Z, Zhang Z, Liu J, Wu H. Hippo-YAP/MCP-1 mediated tubular maladaptive repair promote inflammation in renal failed recovery after ischemic AKI. Cell Death Dis 2021; 12:754. [PMID: 34330891 PMCID: PMC8324794 DOI: 10.1038/s41419-021-04041-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) is associated with significant morbidity and its chronic inflammation contributes to subsequent chronic kidney disease (CKD) development. Yes-associated protein (YAP), the major transcriptional coactivator of the Hippo pathway, has been shown associated with chronic inflammation, but its role and mechanism in AKI-CKD transition remain unclear. Here we aimed to investigate the role of YAP in AKI-induced chronic inflammation. Renal ischemia/reperfusion (I/R) was used to induce a mouse model of AKI-CKD transition. We used verteporfin (VP), a pharmacological inhibitor of YAP, to treat post-IRI mice for a period, and evaluated the influence of YAP inhibition on long-term outcomes of AKI. In our results, severe IRI led to maladaptive tubular repair, macrophages infiltration, and progressive fibrosis. Following AKI, the Hippo pathway was found significantly altered with YAP persistent activation. Besides, tubular YAP activation was associated with the maladaptive repair, also correlated with interstitial macrophage infiltration. Monocyte chemoattractant protein 1 (MCP-1) was found notably upregulated with YAP activation. Of note, pharmacological inhibition of YAP in vivo attenuated renal inflammation, including macrophage infiltration and MCP-1 overexpression. Consistently, in vitro oxygen-glucose deprivation and reoxygenation (OGD/R) induced YAP activation and MCP-1 overproduction whereas these could be inhibited by VP. In addition, we modulated YAP activity by RNA interference, which further confirmed YAP activation enhances MCP-1 expression. Together, we concluded tubular YAP activation with maladaptive repair exacerbates renal inflammation probably via promoting MCP-1 production, which contributes to AKI-CKD transition.
Collapse
|
research-article |
4 |
49 |
4
|
Konstantinou EK, Notomi S, Kosmidou C, Brodowska K, Al-Moujahed A, Nicolaou F, Tsoka P, Gragoudas E, Miller JW, Young LH, Vavvas DG. Verteporfin-induced formation of protein cross-linked oligomers and high molecular weight complexes is mediated by light and leads to cell toxicity. Sci Rep 2017; 7:46581. [PMID: 28429726 PMCID: PMC5399488 DOI: 10.1038/srep46581] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
Verteporfin (VP) was first used in Photodynamic therapy, where a non-thermal laser light (689 nm) in the presence of oxygen activates the drug to produce highly reactive oxygen radicals, resulting in local cell and tissue damage. However, it has also been shown that Verteporfin can have non-photoactivated effects such as interference with the YAP-TEAD complex of the HIPPO pathway, resulting in growth inhibition of several neoplasias. More recently, it was proposed that, another non-light mediated effect of VP is the formation of cross-linked oligomers and high molecular weight protein complexes (HMWC) that are hypothesized to interfere with autophagy and cell growth. Here, in a series of experiments, using human uveal melanoma cells (MEL 270), human embryonic kidney cells (HEK) and breast cancer cells (MCF7) we showed that Verteporfin-induced HMWC require the presence of light. Furthermore, we showed that the mechanism of this cross-linking, which involves both singlet oxygen and radical generation, can occur very efficiently even after lysis of the cells, if the lysate is not protected from ambient light. This work offers a better understanding regarding VP's mechanisms of action and suggests caution when one studies the non-light mediated actions of this drug.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
43 |
5
|
Kim A, Zhou J, Samaddar S, Song SH, Elzey BD, Thompson DH, Ziaie B. An Implantable Ultrasonically-Powered Micro-Light-Source (µLight) for Photodynamic Therapy. Sci Rep 2019; 9:1395. [PMID: 30718792 PMCID: PMC6362227 DOI: 10.1038/s41598-019-38554-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment modality that can selectively target unresectable tumors through optical activation of cytotoxic agents, thus reducing many side effects associated with systemic administration of chemotherapeutic drugs. However, limited light penetration into most biological tissues have so far prevented its widespread adoption beyond dermatology and a few other oncological applications in which a fiber optic can be threaded to the desired locations via an endoscopic approach (e.g., bladder). In this paper, we introduce an ultrasonically powered implantable microlight source, μLight, which enables in-situ localized light delivery to deep-seated solid tumors. Ultrasonic powering allows for small receiver form factor (mm-scale) and power transfer deep into the tissue (several centimeters). The implants consist of piezoelectric transducers measuring 2 × 2 × 2 mm3 and 2 × 4 × 2 mm3 with surface-mounted miniature red and blue LEDs. When energized with 185 mW/cm2 of transmitted acoustic power at 720 kHz, μLight can generate 0.048 to 6.5 mW/cm2 of optical power (depending on size of the piezoelectric element and light wavelength spectrum). This allows powering multiple receivers to a distance of 10 cm at therapeutic light output levels (a delivery of 20-40 J/cm2 light radiation dose in 1-2 hours). In vitro tests show that HeLa cells irradiated with μLights undergo a 70% decrease in average cell viability as compared to the control group. In vivo tests in mice implanted with 4T1-induced tumors (breast cancer) show light delivery capability at therapeutic dose levels. Overall, results indicate implanting multiple µLights and operating them for 1-2 hours can achieve cytotoxicity levels comparable to the clinically reported cases using external light sources.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
39 |
6
|
Xie L, Song X, Lin H, Chen Z, Li Q, Guo T, Xu T, Su T, Xu M, Chang X, Wang LK, Liang B, Huang D. Aberrant activation of CYR61 enhancers in colorectal cancer development. J Exp Clin Cancer Res 2019; 38:213. [PMID: 31118064 PMCID: PMC6532222 DOI: 10.1186/s13046-019-1217-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND High expression of secreted matricellular protein cysteine-rich 61 (CYR61) correlates with poor prognosis in colorectal cancer (CRC). Aberrant enhancer activation has been shown to correlate with expression of key genes involved in cancer progression. However, such mechanisms in CYR61 transcription regulation remain unexplored. METHODS Expression of CYR61 was determined by immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR) and western blotting (WB) in CRC patients paraffin specimens and colon cell lines. ChIP-seq data of enhancer-characteristic histone modifications, in CRC tissues from the Gene Expression Omnibus (GEO) database, were reanalyzed to search for putative enhancers of CYR61. Dual-luciferase reporter assay was used to detected enhancer activity. Physical interactions between putative enhancers and CYR61 promoter were detected by chromosome conformation capture (3C) assay. Histone modification and transcription factors (TFs) enrichment were detected by ChIP-qPCR. Additionally, biological function of enhancers was investigated by transwell migration assays. RESULTS CRC tissues and cell lines expressed higher level of CYR61 than normal colon mucosa. Three putative enhancers located downstream of CYR61 were found in CRC tissues by ChIP-seq data reanalysis. Consistent with the ChIP-seq analysis results in the GEO database, the normal colon mucosal epithelial cell line NCM460 possessed no active CYR61 enhancers, whereas colon cancer cells exhibited different patterns of active CYR61 enhancers. HCT116 cells had an active Enhancer3, whereas RKO cells had both Enhancer1 and Enhancer3 active. Pioneer factor FOXA1 promoted CYR61 expression by recruiting CBP histone acetyltransferase binding and increasing promoter-enhancer looping frequencies and enhancer activity. CBP knockdown attenuated H3K27ac enrichment, promoter-enhancer looping frequencies, and enhancer activity. Small molecule compound 12-O-tetradecanoyl phorbol-13-acetate (TPA) treatment, which stimulated CYR61 expression, and verteporfin (VP) treatment, which inhibited CYR61 expression, confirmed that the enhancers regulated CYR61 expression. Knockdown and ectopic expression of CYR61 rescued cell migration changes induced by over-expressing and knockdown of FOXA1, respectively. CONCLUSIONS CYR61 enhancer activation, mediated by FOXA1 and CBP, occurs during CRC progression to up-regulate CYR61 expression and promote cell migration in CRC, suggesting inhibition of recruitment of FOXA1 and/or CBP to CYR61 enhancers may have therapeutic implications.
Collapse
|
research-article |
6 |
34 |
7
|
Kandasamy S, Adhikary G, Rorke EA, Friedberg JS, Mickle MB, Alexander HR, Eckert RL. The YAP1 Signaling Inhibitors, Verteporfin and CA3, Suppress the Mesothelioma Cancer Stem Cell Phenotype. Mol Cancer Res 2020; 18:343-351. [PMID: 31732616 PMCID: PMC7064165 DOI: 10.1158/1541-7786.mcr-19-0914] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/15/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Mesothelioma is an aggressive cancer that has a poor prognosis. Tumors develop in the mesothelial lining of the pleural and peritoneal cavities in response to asbestos exposure. Surgical debulking followed by chemotherapy is initially effective, but this treatment ultimately selects for resistant cells that form aggressive and therapy-resistant recurrent tumors. Mesothelioma cancer stem cells (MCS) are a highly aggressive subpopulation present in these tumors that are responsible for tumor maintenance and drug resistance. In this article, we examine the impact of targeting YAP1/TAZ/TEAD signaling in MCS cells. YAP1, TAZ, and TEADs are transcriptional mediators of the Hippo signaling cascade that activate gene expression to drive tumor formation. We show that two YAP1 signaling inhibitors, verteporfin and CA3, attenuate the MCS cell phenotype. Verteporfin or CA3 treatment reduces YAP1/TEAD level/activity to suppress MCS cell spheroid formation, Matrigel invasion, migration, and tumor formation. These agents also increase MCS cell apoptosis. Moreover, constitutively active YAP1 expression antagonizes inhibitor action, suggesting that loss of YAP1/TAZ/TEAD signaling is required for response to verteporfin and CA3. These agents are active against mesothelioma cells derived from peritoneal (epithelioid) and patient-derived pleural (sarcomatoid) mesothelioma, suggesting that targeting YAP1/TEAD signaling may be a useful treatment strategy. IMPLICATIONS: These studies suggest that inhibition of YAP1 signaling may be a viable approach to treating mesothelioma.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
33 |
8
|
Shah SR, Kim J, Schiapparelli P, Vazquez-Ramos CA, Martinez-Gutierrez JC, Ruiz-Valls A, Inman K, Shamul JG, Green JJ, Quinones-Hinojosa A. Verteporfin-Loaded Polymeric Microparticles for Intratumoral Treatment of Brain Cancer. Mol Pharm 2019; 16:1433-1443. [PMID: 30803231 PMCID: PMC7337228 DOI: 10.1021/acs.molpharmaceut.8b00959] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glioblastoma (GBMs) is the most common and aggressive type of primary brain tumor in adults with dismal prognosis despite radical surgical resection coupled with chemo- and radiotherapy. Recent studies have proposed the use of small-molecule inhibitors, including verteporfin (VP), to target oncogenic networks in cancers. Here we report efficient encapsulation of water-insoluble VP in poly(lactic- co-glycolic acid) microparticles (PLGA MP) of ∼1.5 μm in diameter that allows tunable, sustained release. Treatment with naked VP and released VP from PLGA MP decreased cell viability of patient-derived primary GBM cells in vitro by ∼70%. Moreover, naked VP treatment significantly increased radiosensitivity of GBM cells, thereby enhancing overall tumor cell killing ability by nearly 85%. Our in vivo study demonstrated that two intratumoral administrations of sustained slow-releasing VP-loaded PLGA MPs separated by two weeks significantly attenuated tumor growth by ∼67% in tumor volume in a subcutaneous patient-derived GBM xenograft model over 26 d. Additionally, our in vitro data indicate broader utility of VP for treatment for other solid cancers, including chordoma, malignant meningioma, and various noncentral nervous system-derived carcinomas. Collectively, our work suggests that the use of VP-loaded PLGA MP may be an effective local therapeutic strategy for a variety of solid cancers, including unresectable and orphan tumors, which may decrease tumor burden and ultimately improve patient prognosis.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
30 |
9
|
Eales KL, Wilkinson EA, Cruickshank G, Tucker JHR, Tennant DA. Verteporfin selectively kills hypoxic glioma cells through iron-binding and increased production of reactive oxygen species. Sci Rep 2018; 8:14358. [PMID: 30254296 PMCID: PMC6156578 DOI: 10.1038/s41598-018-32727-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gliomas are highly malignant brain tumours characterised by extensive areas of poor perfusion which subsequently leads to hypoxia and reduced survival. Therapies that address the hypoxic microenvironment are likely to significantly improve patient outcomes. Verteporfin, a benzoporphyrin-like drug, has been suggested to target the Yes-associated protein (YAP). Increased YAP expression and transcriptional activity has been proposed in other tumour types to promote malignant cell survival and thus YAP-inhibitor, verteporfin, may be predicted to impact glioma cell growth and viability. Due to the extensive hypoxic nature of gliomas, we investigated the effect of hypoxia on YAP expression and found that YAP transcription is increased under these conditions. Treatment of both primary and immortalised glioblastoma cell lines with verteporfin resulted in a significant decrease in viability but strikingly only under hypoxic conditions (1% O2). We discovered that cell death occurs through a YAP-independent mechanism, predominately involving binding of free iron and likely through redox cycling, contributes to production of reactive oxygen species. This results in disruption of normal cellular processes and death in cells already under oxidative stress - such as those in hypoxia. We suggest that through repurposing verteporfin, it represents a novel means of treating highly therapy-resistant, hypoxic cells in glioma.
Collapse
|
research-article |
7 |
25 |
10
|
Islam MS, Afrin S, Singh B, Jayes FL, Brennan JT, Borahay MA, Leppert PC, Segars JH. Extracellular matrix and Hippo signaling as therapeutic targets of antifibrotic compounds for uterine fibroids. Clin Transl Med 2021; 11:e475. [PMID: 34323413 PMCID: PMC8255059 DOI: 10.1002/ctm2.475] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Uterine fibroids are highly prevalent, collagen-rich, mechanically stiff, fibrotic tumors for which new therapeutic options are needed. Increased extracellular matrix (ECM) stiffness activates mechanical signaling and Hippo/YAP promoting fibroid growth, but no prior studies have tested either as a therapeutic target. We tested the hypothesis that injection of a purified form of collagenase Clostridium histolyticum (CCH) that selectively digests type I and type III collagens would alter ECM stiffness, Hippo signaling, and selectively reduce fibroid cell growth. We also used two FDA-approved drugs, verteporfin and nintedanib, to elucidate the role of Hippo/YAP signaling in uterine fibroid and myometrial cells. METHODS The clinical trial was registered (NCT02889848). Stiffness of samples was measured by rheometry. Protein expression in surgical samples was analyzed via immunofluorescence. Protein and gene expression in uterine fibroid or myometrial cell lines were measured by real time PCR and western blot, and immunofluorescence. RESULTS Injection of CCH at high doses (0.1-0.2 mg/cm3 ) into fibroids resulted in a 46% reduction in stiffness in injected fibroids compared to controls after 60 days. Levels of the cell proliferation marker proliferative cell nuclear antigen (PCNA) were decreased in fibroids 60 days after injection at high doses of CCH. Key Hippo signaling factors, specifically the transcriptionally inactive phosphorylated YAP (p-YAP), was increased at high CCH doses, supporting the role of YAP in fibroid growth. Furthermore, inhibition of YAP via verteporfin (YAP inhibitor) decreased cell proliferation, gene and protein expression of key factors promoting fibrosis and mechanotransduction in fibroid cells. Additionally, the anti-fibrotic drug, nintedanib, inhibited YAP and showed anti-fibrotic effects. CONCLUSIONS This is the first report that in vivo injection of collagenase into uterine fibroids led to a reduction in Hippo/YAP signaling and crucial genes and pathways involved in fibroid growth. These results indicate that targeting ECM stiffness and Hippo signaling might be an effective strategy for uterine fibroids.
Collapse
|
Clinical Trial, Phase I |
4 |
24 |
11
|
Kumar B, Chandler HL, Plageman T, Reilly MA. Lens Stretching Modulates Lens Epithelial Cell Proliferation via YAP Regulation. Invest Ophthalmol Vis Sci 2019; 60:3920-3929. [PMID: 31546253 PMCID: PMC7043215 DOI: 10.1167/iovs.19-26893] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
Purpose The continuous growth of the lens throughout life may contribute to the onset of age-related conditions in the lens (i.e., presbyopia and cataract). Volumetric growth is the result of continuous proliferation of lens epithelial cells (LECs). The driving factors controlling LEC proliferation are not well understood. This study tested the hypothesis that mechanical stretching modulates LEC proliferation. Methods Biomechanical regulation of LEC proliferation was investigated by culturing whole porcine lenses and connective tissues ex vivo under varying physiologically relevant stretching conditions using a bespoke lens stretching device. Additionally, some lenses were treated with a YAP function inhibitor to determine the Hippo signaling pathway's role in regulating lens growth. Resulting changes in LEC labeling index were analyzed using EdU incorporation and flow cytometry for each lens. Results LEC proliferation was found to be modulated by mechanical strain. Increasing both the magnitude of static stretching and the stretching frequency in cyclic stretching resulted in a proportional increase in the labeling indices of the LECs. Additionally, treatment with the YAP function inhibitor effectively eliminated this relationship. Conclusions These data demonstrate that LEC proliferation is regulated in part, by the mechanotransduction of stresses induced in the lens capsule and that YAP plays an important role in mechanosensing. These results have important implications for understanding lens growth and morphogenesis. The model may also be used to identify and evaluate targets for modulating lens growth.
Collapse
|
research-article |
6 |
24 |
12
|
Plewes MR, Hou X, Zhang P, Liang A, Hua G, Wood JR, Cupp AS, Lv X, Wang C, Davis JS. Yes-associated protein 1 is required for proliferation and function of bovine granulosa cells in vitro†. Biol Reprod 2019; 101:1001-1017. [PMID: 31350850 PMCID: PMC6877782 DOI: 10.1093/biolre/ioz139] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Yes-associated protein 1 (YAP1) is a major component of the Hippo signaling pathway. Although the exact extracellular signals that control the Hippo pathway are currently unknown, increasing evidence supports a critical role for the Hippo pathway in embryonic development, regulation of organ size, and carcinogenesis. Granulosa cells (GCs) within the ovarian follicle proliferate and produce steroids and growth factors, which facilitate the growth of follicle and maturation of the oocyte. We hypothesize that YAP1 plays a role in proliferation and estrogen secretion of GCs. In the current study, we examined the expression of the Hippo signaling pathway in bovine ovaries and determined whether it was important for GC proliferation and estrogen production. Mammalian STE20-like protein kinase 1 (MST1) and large tumor suppressor kinase 2 (LATS2) were identified as prominent upstream components of the Hippo pathway expressed in granulosa and theca cells of the follicle and large and small cells of the corpus luteum. Immunohistochemistry revealed that YAP1 was localized to the nucleus of growing follicles. In vitro, nuclear localization of the downstream Hippo signaling effector proteins YAP1 and transcriptional co-activator with PDZ-binding motif (TAZ) was inversely correlated with GC density, with greater nuclear localization under conditions of low cell density. Treatment with verteporfin and siRNA targeting YAP1 or TAZ revealed a critical role for these transcriptional co-activators in GC proliferation. Furthermore, knockdown of YAP1 in GCs inhibited follicle-stimulating hormone (FSH)-induced estradiol biosynthesis. The data indicate that Hippo pathway transcription co-activators YAP1/TAZ play an important role in GC proliferation and estradiol synthesis, two processes necessary for maintaining normal follicle development.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
23 |
13
|
El-Sahli S, Hua K, Sulaiman A, Chambers J, Li L, Farah E, McGarry S, Liu D, Zheng P, Lee SH, Cui J, Ekker M, Côté M, Alain T, Li X, D'Costa VM, Wang L, Gadde S. A triple-drug nanotherapy to target breast cancer cells, cancer stem cells, and tumor vasculature. Cell Death Dis 2021; 12:8. [PMID: 33414428 PMCID: PMC7791049 DOI: 10.1038/s41419-020-03308-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, accounting for the majority of breast cancer-related death. Due to the lack of specific therapeutic targets, chemotherapeutic agents (e.g., paclitaxel) remain the mainstay of systemic treatment, but enrich a subpopulation of cells with tumor-initiating capacity and stem-like characteristics called cancer stem cells (CSCs); thus development of a new and effective strategy for TNBC treatment is an unmet medical need. Cancer nanomedicine has transformed the landscape of cancer drug development, allowing for a high therapeutic index. In this study, we developed a new therapy by co-encapsulating clinically approved drugs, such as paclitaxel, verteporfin, and combretastatin (CA4) in polymer-lipid hybrid nanoparticles (NPs) made of FDA-approved biomaterials. Verteporfin is a drug used in the treatment of macular degeneration and has recently been found to inhibit the Hippo/YAP (Yes-associated protein) pathway, which is known to promote the progression of breast cancer and the development of CSCs. CA4 is a vascular disrupting agent and has been tested in phase II/III of clinical trials. We found that our new three drug-NP not only effectively inhibited TNBC cell viability and cell migration, but also significantly diminished paclitaxel-induced and/or CA4-induced CSC enrichment in TNBC cells, partially through inhibiting the upregulated Hippo/YAP signaling. Combination of verteporfin and CA4 was also more effective in suppressing angiogenesis in an in vivo zebrafish model than single drug alone. The efficacy and application potential of our triple drug-NPs were further assessed by using clinically relevant patient-derived xenograft (PDX) models. Triple drug-NP effectively inhibited the viability of PDX organotypic slide cultures ex vivo and stopped the growth of PDX tumors in vivo. This study developed an approach capable of simultaneously inhibiting bulk cancer cells, CSCs, and angiogenesis.
Collapse
|
research-article |
4 |
22 |
14
|
Zhao W, Zhang LN, Wang XL, Zhang J, Yu HX. Long noncoding RNA NSCLCAT1 increases non-small cell lung cancer cell invasion and migration through the Hippo signaling pathway by interacting with CDH1. FASEB J 2019; 33:1151-1166. [PMID: 30148675 DOI: 10.1096/fj.201800408r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
Metastatic growth is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC). Metastasis is believed to be initiated by an increase in cell motility mediated by the loss of cell-cell adhesion because of the suppression of E-cadherin [encoded by cadherin 1 ( CDH1)]. However, very little is known about the molecular mechanism of CDH1 regulation. Therefore, we hypothesized that non-small cell lung cancer-associated transcript-1 (NSCLCAT1) suppresses functional CDH1 and mediates the Hippo signaling pathway, resulting in increased cell migration and invasion, and reduced apoptosis. Initially, microarray profiling and target prediction programs were employed to identify whether NSCLCAT1 targets CDH1. Next, quantitative PCR was used to determine the expression pattern of NSCLCAT1 in 114 specimens. The biologic functions of NSCLCAT1 in NSCLC were assessed through the up-regulation and down-regulation of the levels of endogenous NSCLCAT1 with the use of NSCLCAT1 vector or small interfering RNA against NSCLCAT1 in NSCLC cells. Furthermore, the Hippo signaling pathway in NSCLC cells was blocked by applying the verteporfin treatment to have a better understanding on the pivotal role of the Hippo signaling pathway in NSCLC. Microarray expression profiles of long noncoding RNAs, GSE19804 and GSE27262), revealed that NSCLCAT1 was up-regulated in NSCLC. Among patients with NSCLC, we determined that the NSCLCAT1 was robustly induced, whereas CDH1 was suppressed. The luciferase activity determination identified CDH1 as a NSCLCAT1 target. NSCLCAT1 was found to increase cell viability, migration, and invasion and to reduce apoptosis in NSCLC cells. The results from the quantitative PCR and Western blot analysis revealed that NSCLCAT1 modulated the Hippo signaling pathway. Furthermore, the inhibition of the Hippo signaling pathway by verteporfin treatment led to the loss of the effect of NSCLCAT1 on NSCLC cells. In summary, our findings suggested that NSCLCAT1 potentially has a role in NSCLC and NSCLCAT1-mediated regulation of the Hippo signaling pathway through the transcriptional repression of CDH1; therefore, the functional suppression or inhibition of NSCLCAT1 could be used as a novel therapeutic pathway in the control of aggressive and metastatic NSCLC.-Zhao, W., Zhang, L.-N., Wang, X.-L., Zhang, J., Yu, H.-X. Long noncoding RNA NSCLCAT1 increases non-small cell lung cancer cell invasion and migration through the Hippo signaling pathway by interacting with CDH1.
Collapse
|
Retracted Publication |
6 |
22 |
15
|
Wang L, Kim D, Wise JTF, Shi X, Zhang Z, DiPaola RS. p62 as a therapeutic target for inhibition of autophagy in prostate cancer. Prostate 2018; 78:390-400. [PMID: 29368435 DOI: 10.1002/pros.23483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND To test the hypothesis that p62 is an optimal target for autophagy inhibition and Verteporfin, a clinically available drug approved by FDA to treat macular degeneration that inhibits autophagy by targeting p62 protein, can be developed clinically to improve therapy for advanced prostate cancer. METHODS Forced expression of p62 in PC-3 cells and normal prostate epithelial cells, RWPE-1 and PZ-HPV7, were carried out by transfection of these cells with pcDNA3.1/p62 or p62 shRNA plasmid. Autophagosomes and autophagic flux were measured by transfection of tandem fluorescence protein mCherry-GFP-LC3 construct. Apoptosis was measured by Annexin V/PI staining. Tumorigenesis was measured by a xenograft tumor growth model. RESULTS Verteporfin inhibited cell growth and colony formation in PC-3 cells. Verteporfin generated crosslinked p62 oligomers, resulting in inhibition of autophagy and constitutive activation of Nrf2 as well as its target genes, Bcl-2 and TNF-α. In normal prostate epithelial cells, forced expression of p62 caused constitutive Nrf2 activation, development of apoptosis resistance, and Verteporfin treatment exhibited inhibitory effects. Verteporfin treatment also inhibited starvation-induced autophagic flux of these cells. Verteporfin inhibited tumorigenesis of both normal prostate epithelial cells with p62 expression and prostate cancer cells and decreased p62, constitutive Nrf2, and Bcl-xL in xenograft tumor tissues, indicating that p62 can be developed as a drug target against prostate cancer. CONCLUSIONS p62 has a high potential to be developed as a therapeutic target. Verteporfin represents a prototypical agent with therapeutic potential against prostate cancer through inhibition of autophagy by a novel mechanism of p62 inhibition.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
20 |
16
|
Trautmann M, Cheng YY, Jensen P, Azoitei N, Brunner I, Hüllein J, Slabicki M, Isfort I, Cyra M, Berthold R, Wardelmann E, Huss S, Altvater B, Rossig C, Hafner S, Simmet T, Ståhlberg A, Åman P, Zenz T, Lange U, Kindler T, Scholl C, Hartmann W, Fröhling S. Requirement for YAP1 signaling in myxoid liposarcoma. EMBO Mol Med 2019; 11:e9889. [PMID: 30898787 PMCID: PMC6505681 DOI: 10.15252/emmm.201809889] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
Myxoid liposarcomas (MLS), malignant tumors of adipocyte origin, are driven by the FUS-DDIT3 fusion gene encoding an aberrant transcription factor. The mechanisms whereby FUS-DDIT3 mediates sarcomagenesis are incompletely understood, and strategies to selectively target MLS cells remain elusive. Here we show, using an unbiased functional genomic approach, that FUS-DDIT3-expressing mesenchymal stem cells and MLS cell lines are dependent on YAP1, a transcriptional co-activator and central effector of the Hippo pathway involved in tissue growth and tumorigenesis, and that increased YAP1 activity is a hallmark of human MLS Mechanistically, FUS-DDIT3 promotes YAP1 expression, nuclear localization, and transcriptional activity and physically associates with YAP1 in the nucleus of MLS cells. Pharmacologic inhibition of YAP1 activity impairs the growth of MLS cells in vitro and in vivo These findings identify overactive YAP1 signaling as unifying feature of MLS development that could represent a novel target for therapeutic intervention.
Collapse
|
research-article |
6 |
19 |
17
|
Lu J, Roy B, Anderson M, Leggett CL, Levy MJ, Pogue B, Hasan T, Wang KK. Verteporfin- and sodium porfimer-mediated photodynamic therapy enhances pancreatic cancer cell death without activating stromal cells in the microenvironment. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31741351 PMCID: PMC7003148 DOI: 10.1117/1.jbo.24.11.118001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/18/2019] [Indexed: 05/05/2023]
Abstract
The goal of our study was to determine the susceptibility of different pancreatic cell lines to clinically applicable photodynamic therapy (PDT). The efficacy of PDT of two different commercially available photosensitizers, verteporfin and sodium porfimer, was compared using a panel of four different pancreatic cancer cell lines, PANC-1, BxPC-3, CAPAN-2, and MIA PaCa-2, and an immortalized non-neoplastic pancreatic ductal epithelium cell line, HPNE. The minimum effective concentrations and dose-dependent curves of verteporfin and sodium porfimer on PANC-1 were determined. Since pancreatic cancer is known to have significant stromal components, the effect of PDT on stromal cells was also assessed. To mimic tumor-stroma interaction, a co-culture of primary human fibroblasts or human pancreatic stellate cell (HPSCs) line with PANC-1 was used to test verteporfin-PDT-mediated cell death of PANC-1. Two cytokines (TNF-α and IL-1β) were used for stimulation of primary fibroblasts (derived from human esophageal biopsies) or HPSCs. The increased expression of smooth muscle actin (α-SMA) confirmed the activation of fibroblasts or HPSC upon treatment with TNF-α and IL-1β. Cell death assays showed that both sodium porfimer- and verteporfin-mediated PDT-induced cell death in a dose-dependent manner. However, verteporfin-PDT treatment had a greater efficiency with 60 × lower concentration than sodium porfimer-PDT in the PANC-1 incubated with stimulated fibroblasts or HPSC. Moreover, activation of stromal cells did not affect the treatment of the pancreatic cancer cell lines, suggesting that the effects of PDT are independent of the inflammatory microenvironment found in this two-dimensional culture model of cancers.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
15 |
18
|
Li Y, Zhu X, Yang M, Wang Y, Li J, Fang J, Guo W, Ma S, Guan F. YAP/TEAD4-induced KIF4A contributes to the progression and worse prognosis of esophageal squamous cell carcinoma. Mol Carcinog 2021; 60:440-454. [PMID: 34003522 DOI: 10.1002/mc.23303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Aberrant expression of kinesin family member 4A (KIF4A), which is associated with tumor progression, has been reported in several types of cancer. However, its expression and the underlying molecular mechanisms regulating the transcription of KIF4A in esophageal squamous cell carcinoma (ESCC) remain largely unclear. Here, we found that high KIF4A expression was positively correlated with tumor stage and poor prognosis in ESCC patients. KIF4A silencing significantly inhibited the growth and migration of ESCC cells, arrested cell cycle, and induced apoptosis. Interestingly, KIF4A expression was positively related to the expression of YAP in human ESCC tissues. YAP knockdown or disrupting YAP/TEAD4 interaction by verteporfin repressed KIF4A expression. Also, KIF4A knockdown significantly inhibited the cell growth induced by YAP overexpression. Mechanistically, YAP activated KIF4A transcriptional expression by TEAD4-mediated direct binding to KIF4A promoter. Finally, KIF4A knockdown and verteporfin treatment synergistically inhibited tumor growth in xenograft models. Together, these results indicated that KIF4A, a novel target gene of YAP/TEAD4, may be a progression and prognostic biomarker of ESCC. Targeting drugs for KIF4A combined with YAP inhibitor may be a novel therapeutic strategy for ESCC.
Collapse
|
|
4 |
11 |
19
|
Li H, Singh A, Perkumas KM, Stamer WD, Ganapathy PS, Herberg S. YAP/TAZ Mediate TGFβ2-Induced Schlemm's Canal Cell Dysfunction. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 36350617 PMCID: PMC9652721 DOI: 10.1167/iovs.63.12.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Elevated transforming growth factor beta2 (TGFβ2) levels in the aqueous humor have been linked to glaucomatous outflow tissue dysfunction. Potential mediators of dysfunction are the transcriptional coactivators, Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ). However, the molecular underpinnings of YAP/TAZ modulation in Schlemm's canal (SC) cells under glaucomatous conditions are not well understood. Here, we investigate how TGFβ2 regulates YAP/TAZ activity in human SC (HSC) cells using biomimetic extracellular matrix hydrogels, and examine whether pharmacological YAP/TAZ inhibition would attenuate TGFβ2-induced HSC cell dysfunction. Methods Primary HSC cells were seeded atop photo-cross-linked extracellular matrix hydrogels, made of collagen type I, elastin-like polypeptide and hyaluronic acid, or encapsulated within the hydrogels. HSC cells were induced with TGFβ2 in the absence or presence of concurrent actin destabilization or pharmacological YAP/TAZ inhibition. Changes in actin cytoskeletal organization, YAP/TAZ activity, extracellular matrix production, phospho-myosin light chain levels, and hydrogel contraction were assessed. Results TGFβ2 significantly increased YAP/TAZ nuclear localization in HSC cells, which was prevented by either filamentous-actin relaxation or depolymerization. Pharmacological YAP/TAZ inhibition using verteporfin without light stimulation decreased fibronectin expression and actomyosin cytoskeletal rearrangement in HSC cells induced by TGFβ2. Similarly, verteporfin significantly attenuated TGFβ2-induced HSC cell-encapsulated hydrogel contraction. Conclusions Our data provide evidence for a pathologic role of aberrant YAP/TAZ signaling in HSC cells under simulated glaucomatous conditions and suggest that pharmacological YAP/TAZ inhibition has promising potential to improve outflow tissue dysfunction.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
11 |
20
|
Shamul JG, Shah SR, Kim J, Schiapparelli P, Vazquez-Ramos CA, Lee BJ, Patel KK, Shin A, Quinones-Hinojosa A, Green JJ. Verteporfin-Loaded Anisotropic Poly(Beta-Amino Ester)-Based Micelles Demonstrate Brain Cancer-Selective Cytotoxicity and Enhanced Pharmacokinetics. Int J Nanomedicine 2019; 14:10047-10060. [PMID: 31920302 PMCID: PMC6935022 DOI: 10.2147/ijn.s231167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nanomedicine can improve traditional therapies by enhancing the controlled release of drugs at targeted tissues in the body. However, there still exists disease- and therapy-specific barriers that limit the efficacy of such treatments. A major challenge in developing effective therapies for one of the most aggressive brain tumors, glioblastoma (GBM), is affecting brain cancer cells while avoiding damage to the surrounding healthy brain parenchyma. Here, we developed poly(ethylene glycol) (PEG)-poly(beta-amino ester) (PBAE) (PEG-PBAE)-based micelles encapsulating verteporfin (VP) to increase tumor-specific targeting. METHODS Biodegradable, pH-sensitive micelles of different shapes were synthesized via nanoprecipitation using two different triblock PEG-PBAE-PEG copolymers varying in their relative hydrophobicity. The anti-tumor efficacy of verteporfin loaded in these anisotropic and spherical micelles was evaluated in vitro using patient-derived primary GBM cells. RESULTS For anisotropic micelles, uptake efficiency was ~100% in GBM cells (GBM1A and JHGBM612) while only 46% in normal human astrocytes (NHA) at 15.6 nM VP (p ≤ 0.0001). Cell killing of GBM1A and JHGBM612 vs NHA was 52% and 77% vs 29%, respectively, at 24 hrs post-treatment of 125 nM VP-encapsulated in anisotropic micelles (p ≤ 0.0001), demonstrating the tumor cell-specific selectivity of VP. Moreover, anisotropic micelles showed an approximately fivefold longer half-life in blood circulation than the analogous spherical micelles in a GBM xenograft model in mice. In this model, micelle accumulation to tumors was significantly greater for anisotropic micelle-treated mice compared to spherical micelle-treated mice at both 8 hrs (~1.8-fold greater, p ≤ 0.001) and 24 hrs (~2.1-fold greater, p ≤ 0.0001). CONCLUSION Overall, this work highlights the promise of a biodegradable anisotropic micelle system to overcome multiple drug delivery challenges and enhance efficacy and safety for the treatment of brain cancer.
Collapse
|
research-article |
6 |
11 |
21
|
Li Y, Yang S, Yang S. Verteporfin Inhibits the Progression of Spontaneous Osteosarcoma Caused by Trp53 and Rb1 Deficiency in Ctsk-Expressing Cells via Impeding Hippo Pathway. Cells 2022; 11:1361. [PMID: 35456040 PMCID: PMC9031376 DOI: 10.3390/cells11081361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma is the most common primary malignancy of bone in children and adolescents. Others and our previous studies have shown that Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) as core components of the Hippo pathway are crucial regulators of osteosarcoma formation and progression. Recent studies demonstrated that verteporfin (VP) is an inhibitor of YAP/TAZ signaling in xenograft osteosarcoma. However, whether VP can inhibit primary osteosarcoma in mice is unknown. Mutations of Trp53 and Rb1 occur in approximately 50~70% of human osteosarcoma. In this study, we successfully generated the Ctsk-Cre;Trp53f/f/Rb1f/f mice in which Trp53/Rb1 was ablated in Ctsk-expressing cells and found that Ctsk-Cre;Trp53f/f/Rb1f/f mice spontaneously developed osteosarcoma with increased expansive osteoid lesions in the cortical bone with aging. Loss of Trp53/Rb1 in Ctsk-expressing cells significantly promoted the expression and nuclear translocation of YAP/TAZ. Micro-CT results showed that inhibition of YAP/TAZ by VP delays osteosarcoma progression and protected against bone erosion in Ctsk-Cre;Trp53f/f/Rb1f/f mice. Importantly, the Kaplan-Meier survival curves displayed a significantly longer survival rate after VP treatment in Ctsk-Cre;Trp53f/f/Rb1f/f mice compared to non-injected groups. In vitro studies further showed that VP inhibited the proliferation, migration and invasion in Trp53/Rb1-mutant Ctsk-expressing cells. Moreover, the results from promoter luciferase activity analysis showed that the transcriptional activity of YAP/TAZ was significantly increased in osteosarcoma tissue from Ctsk-Cre;Trp53f/f/Rb1f/f mice, which was attenuated by VP treatment. Overall, these findings suggest that targeting Hippo pathway by VP may be a potential therapeutic strategy for osteosarcoma.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
10 |
22
|
Nimmakayala RK, Ogunleye AO, Parte S, Krishna Kumar N, Raut P, Varadharaj V, Perumal NK, Nallasamy P, Rauth S, Cox JL, Lele SM, Batra SK, Ponnusamy MP. PAF1 cooperates with YAP1 in metaplastic ducts to promote pancreatic cancer. Cell Death Dis 2022; 13:839. [PMID: 36180487 PMCID: PMC9525575 DOI: 10.1038/s41419-022-05258-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
Acinar-to-ductal metaplasia (ADM) is a precursor lesion of pancreatic ductal adenocarcinoma (PDAC); however, the regulators of the ADM-mediated PDAC development and its targeting are poorly understood. RNA polymerase II-associated factor 1 (PAF1) maintains cancer stem cells leading to the aggressiveness of PDAC. In this study, we investigated whether PAF1 is required for the YAP1-mediated PDAC development and whether CA3 and verteporfin, small molecule inhibitors of YAP1/TEAD transcriptional activity, diminish pancreatic cancer (PC) cell growth by targeting the PAF1/YAP1 axis. Here, we demonstrated that PAF1 co-expresses and interacts with YAP1 specifically in metaplastic ducts of mouse cerulein- or KrasG12D-induced ADM and human PDAC but not in the normal pancreas. PAF1 knockdown (KD) reduced SOX9 in PC cells, and the PC cells showed elevated PAF1/YAP1 complex recruitment to the promoter of SOX9. The PAF1 KD reduced the 8xTEAD and SOX9 promoter-luciferase reporter activities in the mouse KC (KrasG12D; Pdx-1 Cre) cells and human PC cells, indicating that the PAF1 is required for the YAP1-mediated development of ADM and PC. Moreover, treatment with CA3 or verteporfin reduced the expressions of PAF1, YAP1, TEAD4, and SOX9 and decreased colony formation and stemness in KC and PC cells. CA3 treatment also reduced the viability and proliferation of PC cells and diminished the duct-like structures in KC acinar explants. CA3 or verteporfin treatment decreased the recruitment of the PAF1/YAP1 complex to the SOX9 promoter in PC cells and reduced the 8xTEAD and SOX9 promoter-luciferase reporter activities in KC and PC cells. Overall, PAF1 cooperates with YAP1 during ADM and PC development, and verteporfin and CA3 inhibit ADM and PC cell growth by targeting the PAF1/YAP1/SOX9 axis in vitro and ex vivo models. This study identified a regulatory axis of PDAC initiation and its targeting, paving the way for developing targeted therapeutic strategies for pancreatic cancer patients.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
9 |
23
|
Prieto JM, Rapún-Araiz B, Gil C, Penadés JR, Lasa I, Latasa C. Inhibiting the two-component system GraXRS with verteporfin to combat Staphylococcus aureus infections. Sci Rep 2020; 10:17939. [PMID: 33087792 PMCID: PMC7577973 DOI: 10.1038/s41598-020-74873-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Infections caused by Staphylococcus aureus pose a serious and sometimes fatal health issue. With the aim of exploring a novel therapeutic approach, we chose GraXRS, a Two-Component System (TCS) that determines bacterial resilience against host innate immune barriers, as an alternative target to disarm S. aureus. Following a drug repurposing methodology, and taking advantage of a singular staphylococcal strain that lacks the whole TCS machinery but the target one, we screened 1.280 off-patent FDA-approved drug for GraXRS inhibition. Reinforcing the connection between this signaling pathway and redox sensing, we found that antioxidant and redox-active molecules were capable of reducing the expression of the GraXRS regulon. Among all the compounds, verteporfin (VER) was really efficient in enhancing PMN-mediated bacterial killing, while topical administration of such drug in a murine model of surgical wound infection significantly reduced the bacterial load. Experiments relying on the chemical mimicry existing between VER and heme group suggest that redox active residue C227 of GraS participates in the inhibition exerted by this FDA-approved drug. Based on these results, we propose VER as a promising candidate for sensitizing S. aureus that could be helpful to combat persistent or antibiotic-resistant infections.
Collapse
|
research-article |
5 |
9 |
24
|
Aki T, Unuma K, Noritake K, Hirayama N, Funakoshi T, Uemura K. Formation of high molecular weight p62 by CORM-3. PLoS One 2019; 14:e0210474. [PMID: 30620762 PMCID: PMC6324786 DOI: 10.1371/journal.pone.0210474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/25/2018] [Indexed: 11/25/2022] Open
Abstract
CORM-3 is a water-soluble carbon monoxide (CO)-releasing molecule developed for possible therapeutic use of CO. CORM-3 belongs to a group of metal carbonyl compounds that contain transition metals and carbonyls as the central scaffold and coordinated ligands, respectively. CORM-3 has been reported to be reactive with many proteins in eukaryotes including mammals. Among them, several extracellular proteins, such as lysozyme, as well as plasma albumin and fibronectin, have been shown to interact directly with CORM-3. p62 is an intracellular adaptor protein required for targeting ubiquitinated (Ub) proteins to lysosomal degradation through autophagy. p62 has been shown to undergo self-oligomerization via covalent crosslinking in response to treatment with verteporfin, a benzoporphyrin derivative used for photodynamic therapy. Here we show that CORM-3 also interacts directly with p62. When applied to mouse embryonic fibroblasts (MEFs) at a high concentration (1 mM), CORM-3 causes the formation of reduction- and detergent-resistant high molecular weight (HMW)-p62. HMW-p62 accumulates more in atg5-/- MEFs than in wild type (WT) MEFs, showing the elimination of HMW-p62 through autophagy. HMW-p62 is also generated in H9c2 rat cardiomyoblastoma as well as A549 human alveolar epithelial cells, suggesting that HMW-p62 formation is not specific to MEFs, but, rather, is a general event in mammalian cells. HMW-p62 formation by CORM-3 can be reproduced using purified p62 in vitro, demonstrating the direct interaction between CORM-3 and p62. These results show that p62 is a CORM-3-interactive intracellular protein.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
8 |
25
|
Bruschi FV, Tardelli M, Einwallner E, Claudel T, Trauner M. PNPLA3 I148M Up-Regulates Hedgehog and Yap Signaling in Human Hepatic Stellate Cells. Int J Mol Sci 2020; 21:E8711. [PMID: 33218077 PMCID: PMC7698885 DOI: 10.3390/ijms21228711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Liver fibrosis represents the wound healing response to sustained hepatic injury with activation of hepatic stellate cells (HSCs). The I148M variant of the PNPLA3 gene represents a risk factor for development of severe liver fibrosis. Activated HSCs carrying the I148M variant display exacerbated pro-inflammatory and pro-fibrogenic features. We aimed to examine whether the I148M variant may impair Hedgehog and Yap signaling, as key pathways implicated in the control of energy expenditure and maintenance of myofibroblastic traits. First, we show that TGF-β rapidly up-regulated the PNPLA3 transcript and protein and Yap/Hedgehog target gene expression. In addition, HSCs overexpressing PNPLA3 I148M boosted anaerobic glycolysis, as supported by higher lactate release and decreased phosphorylation of the energy sensor AMPK. These cells displayed higher Yap and Hedgehog signaling, due to accumulation of total Yap protein, Yap promoter activity and increased downstream targets expression, compared to WT cells. HSCs exposed to TGF-β and leptin rapidly increased total Yap, together with a reduction in its inhibited form, phosphorylated Yap. In line, Yap-specific inhibitor Verteporfin strongly abolished Yap-mediated genes expression, at baseline as well as after TGF-β and leptin treatments in HSCs with I148M PNPLA3. Finally, Yap transcriptional activity was strongly reduced by a combination of Verteporfin and Rosiglitazone, a PPARγ synthetic agonist. In conclusion, HSCs carrying the PNPLA3 variant show activated Yap/Hedgehog pathways, resulting in altered anaerobic glycolysis and enhanced synthesis of Hedgehog markers and sustained Yap signaling. TGF-β and leptin exacerbate Yap/Hedgehog-related fibrogenic genes expression, while Yap inhibitors and PPARγ agonists abrogate these effects in PNPLA3 I148M carrying HSCs.
Collapse
|
research-article |
5 |
7 |