1
|
Karis A, Pata I, van Doorninck JH, Grosveld F, de Zeeuw CI, de Caprona D, Fritzsch B. Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. J Comp Neurol 2001; 429:615-30. [PMID: 11135239 DOI: 10.1002/1096-9861(20010122)429:4<615::aid-cne8>3.0.co;2-f] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patterning the vertebrate ear requires the coordinated expression of genes that are involved in morphogenesis, neurogenesis, and hair cell formation. The zinc finger gene GATA-3 is expressed both in the inner ear and in afferent and efferent auditory neurons. Specifically, GATA-3 is expressed in a population of neurons in rhombomere 4 that extend their axons across the floor plate of rhombomere 4 (r4) at embryonic day 10 (E10) and reach the sensory epithelia of the ear by E13.5. The distribution of their cell bodies corresponds to that of the cell bodies of the cochlear and vestibular efferent neurons as revealed by labeling with tracers. Both GATA-3 heterozygous and GATA-3 null mutant mice show unusual axonal projections, such as misrouted crossing fibers and fibers in the facial nerve, that are absent in wild-type littermates. This suggests that GATA-3 is involved in the pathfinding of efferent neuron axons that navigate to the ear. In the ear, GATA-3 is expressed inside the otocyst and the surrounding periotic mesenchyme. The latter expression is in areas of branching of the developing ear leading to the formation of semicircular canals. Ears of GATA-3 null mutants remain cystic, with a single extension of the endolymphatic duct and no formation of semicircular canals or saccular and utricular recesses. Thus, both the distribution of GATA-3 and the effects of null mutations on the ear suggest involvement of GATA-3 in morphogenesis of the ear. This study shows for the first time that a zinc finger factor is involved in axonal navigation of the inner ear efferent neurons and, simultaneously, in the morphogenesis of the inner ear.
Collapse
|
|
24 |
209 |
2
|
Pirvola U, Arumäe U, Moshnyakov M, Palgi J, Saarma M, Ylikoski J. Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear Res 1994; 75:131-44. [PMID: 8071140 DOI: 10.1016/0378-5955(94)90064-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We show that trkB and trkC mRNAs, encoding the high-affinity receptor tyrosine kinases for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), respectively, as well as low-affinity nerve growth factor receptor (p75LNGFR) mRNA are expressed in the cochleovestibular ganglion (CVG) before and during innervation of the target fields. Correspondingly, from preinnervation stages onward, BDNF and NT-3, but neither nerve growth factor (NGF) nor neurotrophin-4 (NT-4) mRNAs are expressed in the sensory epithelium of the otic vesicle, the peripheral target field of CVG neurons. No neurotrophin transcripts were detected by in situ hybridization in the medullary central targets. In explant cultures, neuritogenesis from both the cochlear and vestibular part of the CVG was promoted by BDNF, while NT-3 evoked neurites mainly from the cochlear neurons. Also NT-4 stimulated neurite outgrowth from the CVG in vitro. In dissociated neuron-enriched cultures, NT-3 and BDNF promoted survival of overlapping subsets of CVG neurons and, correspondingly, results from in situ hybridization showed that both trkC and trkB mRNAs were expressed in most neurons of this ganglion. The negligible effect of NGF seen in the bioassays agrees well with the expression of only a few trkA transcripts, encoding the high-affinity receptor for NGF, in the CVG. Based on the spatiotemporal expression patterns and biological effects in vitro, peripherally-synthesized BDNF and NT-3 regulate the survival of CVG neurons as well as the establishment of neuron-target cell contacts in the early-developing inner ear. In addition, the expression of trkB mRNA, more specifically its truncated form, and trkC as well as p75LNGFR mRNAs in distinct non-neuronal structures indicates novel roles for these molecules during development.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor
- Cell Division
- Cell Survival
- Cells, Cultured
- Cochlear Nerve/embryology
- Cochlear Nerve/metabolism
- Culture Techniques
- Ear, Inner/embryology
- Ear, Inner/innervation
- Ear, Inner/metabolism
- Ganglia/embryology
- Ganglia/metabolism
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/physiology
- Mice
- Nerve Growth Factors/biosynthesis
- Nerve Growth Factors/genetics
- Nerve Growth Factors/pharmacology
- Nerve Growth Factors/physiology
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/pharmacology
- Nerve Tissue Proteins/physiology
- Neurons/cytology
- Neurotrophin 3
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Nerve Growth Factor/biosynthesis
- Receptors, Nerve Growth Factor/physiology
- Vestibular Nerve/embryology
- Vestibular Nerve/metabolism
Collapse
|
|
31 |
174 |
3
|
Raymond J, Nieoullon A, Demêmes D, Sans A. Evidence for glutamate as a neurotransmitter in the cat vestibular nerve: radioautographic and biochemical studies. Exp Brain Res 1984; 56:523-31. [PMID: 6149949 DOI: 10.1007/bf00237993] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Evidence that glutamate acts as a neurotransmitter in vestibular nerve fibers was sought (1) by electron microscope radioautographic identification of the uptake sites of [3H]-glutamic acid after incubation of slices of cat vestibular nuclei, and (2) by measuring changes in sodium-dependent high affinity glutamate uptake in nerve endings containing homogenates from normal and deafferented vestibular nuclei 8 to 11 days after unilateral vestibular nerve lesion. Electron microscopic radioautography revealed that glutamate had been taken up by numerous nerve endings projecting over the whole vestibular nuclear complex. The biochemical approach indicated that after section of the vestibular nerve, a significant decrease in high affinity glutamate uptake occurred in the vestibular nuclei, which lost their exclusively ipsilateral projection. This decrease varied from one area of the deafferented vestibular nuclei to another, reaching -58% in the lateral area of the central part corresponding to the ventral lateral vestibular nucleus and the rostral part of the descending vestibular nucleus. It is concluded that glutamate (or aspartate) is used by the vestibular nerve fibers as a neurotransmitter in the vestibular nuclei.
Collapse
|
|
41 |
124 |
4
|
Cole LK, Le Roux I, Nunes F, Laufer E, Lewis J, Wu DK. Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe. J Comp Neurol 2000; 424:509-20. [PMID: 10906716 DOI: 10.1002/1096-9861(20000828)424:3<509::aid-cne8>3.0.co;2-q] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chicken inner ear is a remarkably complex structure consisting of eight morphologically distinct sensory organs. Unraveling how these sensory organs are specified during development is key to understanding how such a complex structure is generated. Previously, we have shown that each sensory organ in the chicken inner ear arises independently in the rudimentary otocyst based on Bone morphogenetic protein 4 (Bmp4) expression. Here, we compare the expression of Bmp4 with two other putative sensory organ markers, Lunatic Fringe (L-fng) and chicken Serrate1 (Ser1), both of which are components of the Notch signaling pathway. L-fng and Ser1 expression domains were asymmetrically distributed in the otic cup. At this early stage, expression of L-fng is similar to Delta1 (Dl1), in an anteroventral domain apparently corresponding to the neurogenic region, while Ser1 is expressed at both the anterior and posterior poles. By the otocyst stage, the expression of both L-fng and Ser1 largely coincided in the medial region. All presumptive sensory organs, as identified by Bmp4 expression, arose within the broad L-fng- and Ser1-positive domain, indicating the existence of a sensory-competent region in the rudimentary otocyst. In addition, there is a qualitative difference in the levels of expression between L-fng and Ser1 such that L-fng expression was stronger in the ventral anterior, whereas Ser1 was stronger in the dorsal posterior region of this broad domain. This early difference in expression may presage the differences among sensory organs as they arise from this sensory competent zone.
Collapse
|
|
25 |
112 |
5
|
Desai SS, Ali H, Lysakowski A. Comparative Morphology of Rodent Vestibular Periphery. II. Cristae Ampullares. J Neurophysiol 2005; 93:267-80. [PMID: 15240768 DOI: 10.1152/jn.00747.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We made flattened neuroepithelial preparations of horizontal and vertical (anterior and posterior) cristae from mouse, rat, gerbil, guinea pig, chinchilla, and tree squirrel. Calretinin immunohistochemistry was used to label the calyx class of afferents. Because these afferents are restricted to the central zone of the crista, their distribution allowed us to delineate this zone. In addition to calyx afferents, calretinin also labels ∼5% of type I hair cells and 20% of type II hair cells throughout the mouse and rat crista epithelium. Measurements of the dimensions of the cristae and counts of hair cells and calyx afferents were determined on all species. Numbers of calyx afferents, hair cells, area, length, and width of the sensory epithelium increase from mouse to tree squirrel. As in the companion paper, we obtained additional data on vestibular end organ dimensions from the literature to construct a power law function describing the relationship between crista surface area and body weight. The vertical cristae of the mouse, rat, and gerbil have an eminentia cruciatum, a region located transversely along the midpoint of the sensory organ and consisting of nonsensory cells. Apart from this eminentia cruciatum, there are no statistical differences between horizontal and vertical cristae with regard to area, width, length, the number and type of hair cells, and number of calretinin-labeled calyx afferents.
Collapse
|
|
20 |
82 |
6
|
Sainz J, Huynh DP, Figueroa K, Ragge NK, Baser ME, Pulst SM. Mutations of the neurofibromatosis type 2 gene and lack of the gene product in vestibular schwannomas. Hum Mol Genet 1994; 3:885-91. [PMID: 7951231 DOI: 10.1093/hmg/3.6.885] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Schwannomas are common tumors of the nervous system and are frequently found in patients with neurofibromatosis (NF) 2. Although loss of heterozygosity in NF2 tumors suggests that the NF2 gene functions as a tumor suppressor gene, the NF2 gene shows amino acid sequence homology to structural proteins in one of which dominantly acting mutations have been described. We performed a mutational analysis in 30 vestibular schwannomas and examined the effect of mutations on the NF2 protein. We detected 18 mutations in 30 vestibular schwannomas of which seven contained loss or mutation of both NF2 alleles. Most mutations were predicted to result in a truncated protein. Mutational hot spots were not identified. Immunocytochemical studies using antibodies to the NF2 protein showed complete absence of staining in tumor Schwann cells, whereas staining was observed in normal vestibular nerve. These data indicate that loss of NF2 protein function is a necessary step in schwannoma pathogenesis and that the NF2 gene functions as a recessive tumor suppressor gene.
Collapse
|
Comparative Study |
31 |
81 |
7
|
Welling DB, Lasak JM, Akhmametyeva E, Ghaheri B, Chang LS. cDNA microarray analysis of vestibular schwannomas. Otol Neurotol 2002; 23:736-48. [PMID: 12218628 DOI: 10.1097/00129492-200209000-00022] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vestibular schwannomas are known to harbor mutations in the neurofibromatosis type 2 tumor suppressor gene, but the mechanism of the neurofibromatosis type 2 tumor suppressor gene action is not well understood. Identification of genes differentially expressed in normal and diseased tissues through the use of a large-scale, cDNA microarray approach may lead to increased understanding of pathways that lead to tumor formation. OBJECTIVE The objectives of this study were to evaluate the gene expression profiles in vestibular schwannomas in comparison with normal vestibular nerve tissues and to identify pathways that may be altered in schwannomas. METHODS Total RNA was extracted from one normal vestibular nerve and seven vestibular schwannomas. The normal vestibular nerve was from one of the seven patients with small vestibular schwannomas. Radiolabeled cDNA was synthesized and hybridized to cDNA microarray filters that contained 25,920 known genes or expressed sequence tags. Expression profiles were imaged and analyzed. Selected genes that showed three-fold or greater difference in the intensity between the normal nerve and the schwannomas were further examined by real-time polymerase chain reaction and by immunohistochemical staining. RESULTS Forty-two genes (0.2%) were upregulated 3-fold or more in at least 5 of the 7 tumors when the filter images were compared with a normal adjacent vestibular nerve. Among them, osteonectin, an angiogenesis mediator, and RhoB GTPase, which is important in cell signaling, were significantly upregulated in 5 of 7 tumors. Among genes that were downregulated, an apoptosis-related LUCA-15 gene was highly underexpressed in 6 of 7 schwannomas when compared with the normal nerve. Also, ezrin, a relative of the NF2 protein, was significantly downregulated in 5 of 7 tumors. Real-time PCR and immunohistochemistry data support the cDNA microarray findings. CONCLUSION Our cDNA microarray analysis of schwannomas suggested several interesting and potentially important tumorigenesis pathways associated with vestibular schwannoma formation. Further in vivo study is necessary to define the roles of these identified genes and their potential relationships with the neurofibromatosis type 2 tumor suppressor gene.
Collapse
|
|
23 |
79 |
8
|
Hiel H, Elgoyhen AB, Drescher DG, Morley BJ. Expression of nicotinic acetylcholine receptor mRNA in the adult rat peripheral vestibular system. Brain Res 1996; 738:347-52. [PMID: 8955534 DOI: 10.1016/s0006-8993(96)01046-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mRNA expression of the neuronal nicotinic acetylcholine receptor subunits was determined in adult rat vestibular end-organs and in Scarpa's ganglion (SCG) by in situ hybridization with [35S] riboprobes. Neurons in the SCG expressed the alpha 4-7 and beta 2-3 mRNAs, but not alpha 3 or beta 4 mRNAs. Not all SCG neurons expressed every mRNA found in SCG. The alpha 6 and beta 2-3 riboprobes labeled all neurons, but alpha 4, alpha 5, and alpha 7 mRNAs were selectively expressed in one or more subpopulations of SCG neurons. Vestibular sensory hair cells, in contrast, expressed only alpha 9 mRNA.
Collapse
|
|
29 |
72 |
9
|
Morris RJ, Beech JN, Heizmann CW. Two distinct phases and mechanisms of axonal growth shown by primary vestibular fibres in the brain, demonstrated by parvalbumin immunohistochemistry. Neuroscience 1988; 27:571-96. [PMID: 3217005 DOI: 10.1016/0306-4522(88)90290-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Antibodies to parvalbumin label intensely a small number of non-overlapping fibre systems in embryonic rat brain. All are in hindbrain--the oculomotor and trochlear motor fibres, the acoustic and vestibular fibres of the VIIIth nerve, and an unidentified group of fibres which ascend under the dorsal surface in caudal medulla. Of these, the vestibular fibres are the first to acquire parvalbumin immunoreactivity, and we have used this property to follow the growth of their axons in the brain. This occurs in two phases. In the first, occurring at embryonic days 12-14, the axons grow in small groups or fascicles under the pial surface to their most distant terminal zones rostrally in the cerebellum and caudally in the descending vestibular nuclei. This growth is directed towards the two sites where germinal neuroepithelium is expanding over the medullary velum in forming the cerebellum and lateral recess of the IVth ventricle. In a second stage, commencing at E15, individual collaterals branch from these fascicles to arborize amongst their presumptive synaptic targets (cells of the vestibular nuclei and vestibulocerebellum) located in the sub-ventricular and ventricular layers. In this phase the axons follow a radial route, at right angles to their original subpial course, possibly by growing along radial glial processes. The target cells then migrate to their final position with the vestibular axons maintaining contact with them. The vestibular fibres are the first axons to enter the cerebellum, but from E15 onwards their fascicles are joined by increasing numbers of non-vestibular fibres following the same course. These other axons, and the movement of cells to form the deep cerebellar nuclei, separate the fascicles of vestibular fibres so that their course into the cerebellum becomes very diffuse. Thus this single set of axons grow, not only in two distinct phases, but also follow distinctly different substrates for growth in each. Furthermore, they then appear to act as pioneer fibres guiding the entry or egress of later-developing axons to or from the cerebellum.
Collapse
|
|
37 |
72 |
10
|
Sans A, Etchecopar B, Brehier A, Thomasset M. Immunocytochemical detection of vitamin D-dependent calcium-binding protein (CaBP-28K) in vestibular sensory hair cells and vestibular ganglion neurones of the cat. Brain Res 1986; 364:190-4. [PMID: 3512032 DOI: 10.1016/0006-8993(86)91003-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vestibular sensory hair cells, afferent fibres and vestibular ganglion neurones of the cat are intensely labelled by a specific antibody to rat kidney vitamin D-dependent calcium-binding protein (CaBP-28K). Type I hair cells are more weakly CaBP immunoreactive than type II hair cells. Ganglion neurones also present a differential staining. The presence of calcium-binding protein in sensory hair cells could be of interest for the understanding of transductional mechanisms.
Collapse
|
|
39 |
66 |
11
|
Praetorius M, Brunner C, Lehnert B, Klingmann C, Schmidt H, Staecker H, Schick B. Transsynaptic delivery of nanoparticles to the central auditory nervous system. Acta Otolaryngol 2007; 127:486-90. [PMID: 17453474 DOI: 10.1080/00016480600895102] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONCLUSION Silica nanoparticles may serve as a nonviral delivery system to the sensory hair cells, spiral ganglion cells within the cochlea, and the vestibular organ, as well as the cochlear nucleus. OBJECTIVES At present there are no targeted therapeutics for inner ear disease. A variety of viral vector systems have been tested in the inner ear with variable efficacy but they are still not regarded as safe systems for inner ear delivery. Nanoparticles are a nonviral method of delivering a variety of macromolecules that potentially can be used for delivery within the auditory system. In this study, we evaluated the distribution and safety of nanoparticles in the inner ear. MATERIALS AND METHODS Cy3-labeled silica nanoparticles were placed on the round window membrane of adult mice. Hearing thresholds were determined after nanoparticle delivery by auditory brainstem responses (ABRs). Distribution of particles was determined by histological evaluation of the cochlea, vestibular organs, and brain stem. RESULTS Fluorescent microscopy demonstrated Cy3-labeled nanoparticles signals in the sensory hair cells and the spiral ganglion neurons of both the treated and contralateral inner ears. Additionally, the distal part of the central auditory pathway (dorsal cochlear nucleus, superior olivary complex) was found to be labeled with the Cy3-linked silica nanoparticles, indicating a retrograde axonal transport. No hearing loss or inflammation was noted in the treated cochlea.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
65 |
12
|
Leonard RB, Kevetter GA. Molecular probes of the vestibular nerve. I. Peripheral termination patterns of calretinin, calbindin and peripherin containing fibers. Brain Res 2002; 928:8-17. [PMID: 11844467 DOI: 10.1016/s0006-8993(01)03268-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vestibular afferents have different physiological properties that can be at least partially correlated with the morphology that the peripheral ending makes with type I and type II hair cells. If the location of the ending in the sensory epithelium is included, the correlations are further improved. It is also known that vestibular afferents can be immunohistochemically stained for a variety of different substances. We have concentrated on three of these markers, calretinin, calbindin and peripherin, because the sources of afferents to the vestibular nuclear complex that contain these substances are restricted, in two cases to the primary afferents. We demonstrate that calretinin is found only in the calyx-only afferents that are located at the apex of the cristae ampullaris and along the striola of the maculae. The area containing stained calyces is equal to or slightly smaller than the central zone of the cristae as defined by the Goldberg group [J. Neurophysiol. 60 (1988) 167]. Calbindin is also found in calyces at the apex of the cristae and along the striola of the otoliths. Examination of adjacent sections of all endorgans indicates that calbindin staining overlaps with calretinin, but is always several hair cells wider on each side. Peripherin also stains fibers in the neuroepithelium. The greatest density of staining is in the peripheral zone of the cristae, i.e. at the base and toward the planum semilunatum. We suggest that these substances are useful markers for specific sets of vestibular afferents.
Collapse
|
|
23 |
64 |
13
|
Abstract
Protein kinase C (PCK) is a family of isoforms that are implicated in subcellular signal transduction. The authors investigated the distribution of several PKC isoforms (PKC-alpha, PKC-beta, PKC-gamma, PKC-delta, and PKC-epsilon) within major cerebellar cell types as well as cerebellar projection target neurons, including Purkinje neurons, cerebellar nuclear neurons, and secondary vestibular neurons. PKC-alpha, PKC-beta, PKC-gamma, PKC-delta, and PKC-epsilon are found within the cerebellum. Of these isoforms, PKC-gamma and PKC-delta are highly expressed in Purkinje cells. PKC-gamma is expressed in all Purkinje cells, whereas the expression of PKC-delta is restricted to sagittal bands of Purkinje cells in the posterior cerebellar cortex. In the lower folia of the uvula and nodulus, Purkinje cell expression of PKC-delta is uniformly high, and the sagittal banding for PKC-delta expression is absent. Within the cerebellar nuclei, PKC-delta-immunolabeled axons terminate within the medial aspect of the caudal half of the ipsilateral interpositus nucleus. PKC delta-immunolabeled axons also terminated within the caudal medial and descending vestibular nuclei (MVN and DVN, respectively), the parasolitary nucleus (Psol), and the nucleus prepositus hypoglossi (NPH). PKC-gamma-immunolabeled axons terminated in all of the cerebellar nuclei as well as in the lateral and superior vestibular nuclei and the MVN, DVN, Psol, and NPH. The projection patterns of PKC-immunolabeled Purkinje cells were confirmed by lesion-depletion studies in which unilateral uvula-nodular lesions caused depletion of PKC-immunolabeled terminals ipsilateral to the lesion in the vestibular complex. These data identify circuitry that is unique to cerebellar-vestibular interactions.
Collapse
|
|
25 |
64 |
14
|
Abstract
P2X receptors have been reported to be involved in neurotransmission in both central and peripheral nerves. In the present study, polyclonal antibodies against P2X1, P2X2, P2X3, P2X4, P2X5, and P2X6 were used to study the distribution of P2X receptors in rat cochlea and vestibulocochlear nerve pathways. It was found that in the vestibular ganglion all six types of antibodies stained the neurons to different intensities. The strongest signal was obtained with the P2X2 antibodies, followed by P2X3 antibodies. The other four antibodies produced weak signals, of approximately the same intensity. In the spiral ganglion, the six types of antibodies also stained almost all neurons. However, the rank order of intensity was different from that in the vestibular ganglion: the strongest signal was still obtained with P2X2 antibodies, followed by P2X4, P2X1, and P2X3 antibodies. The immunolabelling was much weaker with P2X5, and P2X6 antibodies compared with the other four types of antibodies. In the cochlea, besides the spiral ganglion neurons, other tissues such as stria vascularis, the organ of Corti and the tectorial membrane were labelled intensively with P2X2 antibodies only. High density P2X2 immunoreactivity was also observed in the vestibulocochlear nerve fibres. In the cochlear nucleus, neurons and nerve fibres were stained with the P2X2 antibodies, as were the neurons in the trapezoid body. These results suggested that P2 receptors, especially the P2X2 receptors, may play important roles in the signal transduction involved in the perception of sound and balance.
Collapse
|
|
26 |
62 |
15
|
Hansen MR, Roehm PC, Chatterjee P, Green SH. Constitutive neuregulin-1/ErbB signaling contributes to human vestibular schwannoma proliferation. Glia 2006; 53:593-600. [PMID: 16432850 DOI: 10.1002/glia.20316] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vestibular schwannomas (VSs) are benign tumors that arise from the Schwann cells (SCs) lining the vestibular nerve. VS cells survive and proliferate far from neurons and axonally derived growth factors. We have previously shown that VSs produce the glial growth factor, neuregulin-1 (NRG1), and its receptors, ErbB2 and ErbB3. In the present work, we explore the contribution of constitutive NRG1:ErbB signaling to human VS cell proliferation. We confirm that human VSs, which express markers of immature and denervated SCs, also express endogenous NRG1 and activated ErbB2. We find that a blocking anti-NRG1 antibody and trastuzumab (Herceptin, HCN), a humanized anti-ErbB2 inhibitory monoclonal antibody, effectively inhibit NRG1 induced SC proliferation. Treatment of primary VS cultures with anti-NRG1 or HCN reduces cell proliferation in the absence of exogenous NRG1. Furthermore, conditioned medium from VS cell cultures contains NRG1 and stimulates SC proliferation in SC cultures, an effect that is inhibited by anti-NRG1 and HCN. These data suggest an autocrine pathway of VS growth stimulation involving NRG and ErbB receptors. Inhibition of constitutive NRG:ErbB signaling reduces VS cell proliferation in vitro and may have therapeutic potential for patients with VSs.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies/pharmacology
- Autocrine Communication/drug effects
- Autocrine Communication/physiology
- Biomarkers/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Division/drug effects
- Cell Division/physiology
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Gene Expression Regulation, Neoplastic/physiology
- Glycoproteins/metabolism
- Humans
- Neuregulin-1/antagonists & inhibitors
- Neuregulin-1/genetics
- Neuregulin-1/metabolism
- Neuroma, Acoustic/genetics
- Neuroma, Acoustic/metabolism
- Neuroma, Acoustic/pathology
- Oncogene Proteins v-erbB/genetics
- Oncogene Proteins v-erbB/metabolism
- Rats
- Receptor, ErbB-2
- Schwann Cells/drug effects
- Schwann Cells/metabolism
- Signal Transduction/physiology
- Stem Cells/drug effects
- Stem Cells/metabolism
- Vestibular Nerve/metabolism
- Vestibular Nerve/pathology
- Vestibular Nerve/physiopathology
Collapse
|
Research Support, N.I.H., Extramural |
19 |
48 |
16
|
Dechesne CJ, Thomasset M, Brehier A, Sans A. Calbindin (CaBP 28 kDa) localization in the peripheral vestibular system of various vertebrates. Hear Res 1988; 33:273-8. [PMID: 3290175 DOI: 10.1016/0378-5955(88)90157-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous reports on calbindin, a 28 kDa vitamin D-induced calcium-binding protein, located in the mammalian peripheral vestibular system indicated that it is specifically distributed and postulated that it could play a role in the electrophysiological functioning of the sensory cells. This immunocytochemical investigation of the distribution of calbindin in the vestibular system of various vertebrates: fishes (goldfish and sea-perch), amphibia (frog), birds (chicken) and mammals (mouse, cat and baboon), was performed to verify these observations. In the vestibular ganglion, only a few neurons were faintly immunoreactive in the fishes and the frog, while the staining was more intense but still not present in all neurons of the chicken, the mouse and the cat. All the neurons were immunoreactive in the baboon. No immunoreactivity was observed in the sensory epithelia of the fishes. All hair cells were strongly immunoreactive in the frog. In the other species, most of the hair cells in the cristae were immunostained except those situated in the peripheral areas. In the maculae, the hair cells of the striola were either the only ones stained or were more intensely stained or were more intensely stained than the others. The localization of calbindin in specific cellular types and its increasing abundance from the fishes to the mammals suggest that calbindin is associated with the capacity of sensory and nerve cells to analyze precise mechanical or biochemical stimulations.
Collapse
|
|
37 |
46 |
17
|
Abstract
Members of the Dlx gene family play essential roles in the development of the zebrafish and mouse inner ear, but little is known regarding Dlx genes and avian inner ear development. We have examined the inner ear expression patterns of Dlx1, Dlx2, Dlx3, Dlx5, and Dlx6 during the first 7 days of chicken embryonic development. Dlx1 and Dlx2 expression was seen only in nonneuronal cells of the cochleovestibular ganglion and nerves from stage 21 to stage 32. Dlx3 marks the otic placode beginning at stage 9 and becomes limited to epithelium adjacent to the hindbrain as invagination of the placode begins. Dlx3 expression then resolves to the dorsal otocyst and gradually becomes limited to the endolymphatic sac by stage 30. Dlx5 and Dlx6 expression in the developing inner ear is first seen at stages 12 and 13, respectively, in the rim of the otic pit, before spreading throughout the dorsal otocyst. As morphogenesis proceeds, Dlx5 and Dlx6 expression is seen throughout the forming semicircular canals and endolymphatic structures. During later stages, both genes are seen to mark the distal surface of the forming canals and display expression complementary to that of BMP4 in the vestibular sensory regions. Dlx5 expression is also seen in the lagena macula and the cochlear and vestibular nerves by stage 30. These findings suggest important roles for Dlx genes in the vestibular and neural development of the avian inner ear.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
46 |
18
|
Abstract
The type 1 vanilloid receptor (VR1) is a non-specific cation channel activated by capsaicin, lipoxygenase (LOX) products, heat and acid. This study demonstrates VR1 and 5-LOX expression by inner ear ganglion cells. A PCR product (210 bp) was amplified from both oligo(dT)- and random primer-generated cDNAs of rat spiral ganglion cells using VR1 gene-specific primers constructed from the 3' non-homologous region. This PCR product shared 100% sequence homology to a rat VR1 cDNA (GenBank accession no. AF029310) and a rat vanilloid receptor splice variant mRNA (GenBank accession no. AF158248). Frozen sections of PLP-fixed, decalcified Long-Evans rat temporal bones were stained immunohistochemically for VR1. Neurons and satellite cells in both the vestibular and spiral ganglia were VR1-immunopositive. Neurons and supporting cells in adjacent sections of these ganglia were immunopositive for 5-LOX. These findings raise the hypothesis that activation of VR1 by endogenous ligands may contribute to hypersensitivity of the eighth nerve to hair cell inputs in a variety of pathologic conditions, such as tinnitus, Meniere's disease and migraine. In particular, these data suggest that LOX activation during inflammatory processes or during cyclo-oxygenase inhibition (e.g. by aspirin) is a potential intrinsic source of VR1 activation in inner ear ganglia.
Collapse
|
|
22 |
45 |
19
|
Kitahara T, Li HS, Balaban CD. Changes in transient receptor potential cation channel superfamily V (TRPV) mRNA expression in the mouse inner ear ganglia after kanamycin challenge. Hear Res 2005; 201:132-44. [PMID: 15721568 DOI: 10.1016/j.heares.2004.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
The transient receptor potential cation channel subfamily V (TRPV) is a non-specific cation ion channel receptor family that is gated by heat, protons, low extracellular osmolarity and arachidonic acid derivatives. Since some of these endogenous agonists of TRPV receptors are reactive oxygen intermediates produced by lipoxygenases, it has been hypothesized that some members of the TRPV family may respond to challenges by reactive oxygen species. This study used real-time PCR to quantitatively track changes in TRPV1-4 mRNA expression in the spiral, vestibular, and trigeminal ganglia and the kidney from kanamycin (KM)-treated mice. TRPV1, TRPV2, TRPV3 and TRPV4 mRNAs were expressed in spiral and vestibular ganglia, and TRPV2 and TRPV1 mRNAs were most predominant in control mice. After KM (700 mg/kg s.c. b.i.d., 14 days), TRPV1 mRNA and protein expression were significantly up-regulated both in the spiral and vestibular ganglia, but expression was unaffected in the trigeminal ganglion and kidney. Real-time PCR also demonstrated a significant down-regulation in TRPV4 mRNA expression in the inner ear ganglia and kidney after KM treatment. All these mRNA and protein expression changes were eliminated by simultaneous administration of dihydroxybenzoate (300 mg/kg s.c. b.i.d., 14 days), an anti-oxidant that blocks KM ototoxicity. It is proposed that up-regulated TRPV1 expression during KM exposure may promote ganglion cell survival by contributing to neuronal depolarization, with KM-induced tinnitus and dizziness as consequences.
Collapse
|
|
20 |
44 |
20
|
Raymond J, Dememes D, Nieoullon A. Neurotransmitters in vestibular pathways. PROGRESS IN BRAIN RESEARCH 1988; 76:29-43. [PMID: 2905818 DOI: 10.1016/s0079-6123(08)64489-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
Review |
37 |
44 |
21
|
Drescher MJ, Drescher DG, Hatfield JS. Potassium-evoked release of endogenous primary amine-containing compounds from the trout saccular macula and saccular nerve in vitro. Brain Res 1987; 417:39-50. [PMID: 2887257 DOI: 10.1016/0006-8993(87)90177-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An in vitro preparation of the trout saccular macula, containing a large number of hair cells, served as a potential source of neurotransmitter(s) released at the acousticolateralis hair cell-afferent nerve synapse. An in vitro preparation of the saccular nerve, maintained in parallel, served to indicate the potential neural contribution to overall release from the macula. Efflux of 27 primary amine-containing compounds from the macula and nerve fractions was monitored by cation-exchange HPLC with fluorescence detection, and release by 53.5 mM potassium was determined at 1.45 mM calcium, 0.35 mM magnesium or 0 mM calcium, 10.1 mM magnesium. Taurine was released from the saccular macula in the greatest amount, accounting for 72% of the total evoked release of primary amine-containing compounds. Its release was calcium dependent and its time course prolonged. The contribution by myelinated nerve and associated Schwann cells within the macula to overall release of taurine from the macula in the presence of calcium, as determined from the saccular nerve preparation, was only 2%. Other components specifically released from the macula included ethanolamine, phosphoserine, beta-alanine, and glycine. Glutamate and aspartate were released from both the macula and saccular nerve fractions by potassium in the presence of calcium and in a ratio of 6:1 (glutamate:aspartate) for the macula and 7.5:1 for the nerve. The release of aspartate, but not that of glutamate, was lowered in saline containing 0 mM calcium, 10.1 mM magnesium. The calculated contribution from neural elements to overall release from the macula was 10% for aspartate and 18% for glutamate. These studies demonstrate that both the macula and saccular nerve fractions release the 'excitatory neurotransmitter' candidates aspartate and glutamate. Calcium-dependent, potassium-evoked release of taurine appears to be specific to the hair cell-supporting cell population of the saccular macula, and taurine may, therefore, be involved directly or indirectly in hair cell neurotransmission in labyrinthine organs. This study represents the first detailed biochemical characterization of efflux and release for an in vitro hair cell system of relatively high purity with respect to hair cells.
Collapse
|
|
38 |
39 |
22
|
Bénavidès J, Savaki HE, Malgouris C, Laplace C, Daniel M, Begassat F, Desban M, Uzan A, Dubroeucq MC, Renault C. Autoradiographic localization of peripheral benzodiazepine binding sites in the cat brain with [3H]PK 11195. Brain Res Bull 1984; 13:69-77. [PMID: 6478272 DOI: 10.1016/0361-9230(84)90009-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
"Peripheral type" benzodiazepine binding sites were labelled in cat brain membranes by using [3H]PK 11195. This ligand binds to the "peripheral type" binding sites in a reversible, specific and saturable manner. Cat brain binding sites density (congruent to 6 pmol/mg prot.) was higher than in the rat. Pharmacological specificity was demonstrated by the potency order of displacing agents: PK 11195 greater than RO5-4864 greater than dipyridamole greater than diazepam greater than clonazepam. A similar characterization was performed in slide mounted brain sections where [3H]PK 11195 also labelled the "peripheral type" benzodiazepine binding sites. The high percentage of specific binding (80%) at 1 nM of [3H]PK 11195 made possible the autoradiographic studies on binding sites distribution. These sites were heterogeneously distributed in the grey matter and absent in white matter. Visual, auditory and other specific sensory relay stations were highly labelled. The blood pressure regulating nuclei, the vestibulo-cerebellar and the extrapyramidal motor system also presented a very high binding density. As previously described in the rat brain, choroid plexus was also strongly labelled by [3H]PK 11195 in the cat.
Collapse
|
|
41 |
39 |
23
|
Reichenberger I, Dieringer N. Size-related colocalization of glycine and glutamate immunoreactivity in frog and rat vestibular afferents. J Comp Neurol 1994; 349:603-14. [PMID: 7860791 DOI: 10.1002/cne.903490408] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Presence and distribution of glutamate, glycine, GABA and beta-alanine in VIIIth nerves of frogs and rats were investigated with postembedding immunocytochemical methods on serial semithin sections. In Scarpa's ganglion of the frog, all cell bodies were glutamate immunoreactive. About 17% of the cells per section were also glycine immunoreactive, but none were GABA or beta-alanine immunoreactive. The mean diameter of glycine-positive cell bodies (26.7 +/- 6.9 microns; N = 130) was significantly (P < 0.0001) larger than that of glycine-negative cell bodies (15.7 +/- 5.4 microns; N = 272). The intensity of glutamate immunostaining decreased with cell diameter, whereas the intensity of glycine immunostaining increased with cell diameter. As a result, the staining intensities for glutamate and glycine in a given cell were negatively correlated. Glycine immunoreactivity was also present in a size-related manner in distal and proximal afferent fibers. The majority of thin fibers (< 4 microns) was glycine negative, whereas most of the thick fibers (> 10 microns) were glycine positive. Glycine-positive fibers were observed in the sensory epithelial of all end organs in the inner ear. The saccular macula and its nerve, however, contained only few glycine immunoreactive structures. In Scarpa's ganglion of the rat, all cells were immunoreactive for glutamate, about 12% for colocalized glycine, and none for GABA or beta-alanine. Glycine-positive cell bodies were significantly (P < 0.0001) larger (32.2 +/- 5.2 microns; N = 82) than glycine-negative cell bodies (25.1 +/- 5.3 microns; N = 274). Cell bodies in the spiral ganglion were only glutamate immunoreactive, whereas staining for glutamate, glycine, and GABA was dense in the ventral cochlear nucleus. These results demonstrate that thicker vestibular afferent fibers represent a particular subpopulation that differs from the majority of thinner afferents due to their glycine immunoreactivity.
Collapse
|
Comparative Study |
31 |
38 |
24
|
Represa J, Avila MA, Romero G, Mato JM, Giraldez F, Varela-Nieto I. Brain-derived neurotrophic factor and neurotrophin-3 induce cell proliferation in the cochleovestibular ganglion through a glycosyl-phosphatidylinositol signaling system. Dev Biol 1993; 159:257-65. [PMID: 8365564 DOI: 10.1006/dbio.1993.1238] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have investigated the role of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in the regulation of cell proliferation in the early developing cochleovestibular ganglion (CVG). Ganglia were isolated from 72-hr chick embryos and cultured for 24 hr. Both BDNF and NT-3 had a powerful mitogenic effect, at doses of 1-5 ng/ml, consistent with an involvement of the high-affinity receptor. Evidence for the participation of the glycosyl-phosphatidylinositol (GPI)/inositol phosphoglycan (IPG) signaling system in the mediation of proliferative effects of BDNF and NT-3 is presented. Both of these neurotrophins elicited a fast and transient hydrolysis of labeled GPI, approximately 60% in 30 sec. The dose-response profile of GPI hydrolysis overlaps the neurotrophin-induced cell proliferation response profile. Anti-IPG antibodies were able to block the growth-promoting effects of BDNF and NT-3. Anti-IPG antibodies immunoprecipitated a CVG-endogenous IPG, induced upon BDNF treatment, which exhibited proliferative stimulating properties. Both BDNF and NT-3 are proposed as potential candidates for regulation of growth during CVG development, with this mitogenic effect being mediated by the GPI/IPG signaling system.
Collapse
|
|
32 |
34 |
25
|
Kuijpers W, Tonnaer EL, Peters TA, Ramaekers FC. Expression of intermediate filament proteins in the mature inner ear of the rat and guinea pig. Hear Res 1991; 52:133-46. [PMID: 1712009 DOI: 10.1016/0378-5955(91)90193-d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The expression of intermediate filament proteins was studied in the mature inner ear of the rat and guinea pig, using a panel of polyclonal and monoclonal antibodies directed against cytokeratins, desmin, neurofilament proteins and glial fibrillary acidic protein (GFAP). The epithelial lining of the endolymphatic space displayed a complex expression pattern of cytokeratin filament proteins, suggesting greater cell diversity than was known sofar from morphological studies. The cytokeratin antibodies when applied to the inner ear tissues revealed the presence of only cytokeratin polypeptides which are typical of simple epithelia (i.e. nos. 7, 8, 18, and 19). Profound differences in cytokeratin expression patterns were, however, found in the various cell types of both the cochlear and vestibular partition. Remarkably, the sensory cells appeared to be devoid of both cytokeratins and neurofilament proteins. Staining with a 200 kDa neurofilament antibody displayed the presence of different populations of ganglion cells in the spiral ganglion and the vestibular ganglion. There was no reaction with antibodies directed against desmin and GFAP. The great resemblance of the intermediate filament protein expression patterns in the inner ear of the rat and guinea pig indicates a close similarity between the different epitopes.
Collapse
|
|
34 |
34 |