1
|
Hoch WA, Singsaas EL, McCown BH. Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. PLANT PHYSIOLOGY 2003; 133:1296-305. [PMID: 14526111 PMCID: PMC281624 DOI: 10.1104/pp.103.027631] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 07/01/2003] [Accepted: 07/19/2003] [Indexed: 05/18/2023]
Abstract
The resorption protection hypothesis, which states that anthocyanins protect foliar nutrient resorption during senescence by shielding photosynthetic tissues from excess light, was tested using wild-type (WT) and anthocyanin-deficient mutants of three deciduous woody species, Cornus sericea, Vaccinium elliottii (Chapmn.), and Viburnum sargentii (Koehne). WT Betula papyrifera (Marsh) was included to compare the senescence performance of a species that does not produce anthocyanins in autumn. Plants were subjected to three environmental regimes during senescence: an outdoor treatment; a 5-d high-stress (high light and low temperature) treatment followed by transfer to a low-stress environment and a low-stress treatment that served as control. In the outdoor treatment, the appearance of anthocyanins in senescing leaves of WT plants was concomitant with the development of photo-inhibition in mutant plants of all three anthocyanin-producing species. In the high-stress environment, WT plants maintained higher photochemical efficiencies than mutants and were able to recover when transferred to the low-stress environment, whereas mutant leaves dropped while still green and displayed signs of irreversible photooxidative damage. Nitrogen resorption efficiencies and proficiencies of all mutants in both stressful treatments were significantly lower than the WT counterparts. B. papyrifera displayed photochemical efficiencies and nitrogen resorption performance comparable with the highest of the anthocyanin-producing species in all three senescing environments, indicating a photoprotective strategy divergent from the other species studied. These results strongly support the resorption protection hypothesis of anthocyanins in senescing leaves.
Collapse
|
|
22 |
82 |
2
|
Beikircher B, Mayr S. Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana. TREE PHYSIOLOGY 2009; 29:765-75. [PMID: 19364707 DOI: 10.1093/treephys/tpp018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An adequate general drought tolerance and the ability to acclimate to changing hydraulic conditions are important features for long-lived woody plants. In this study, we compared hydraulic safety (water potential at 50% loss of conductivity, Psi(50)), hydraulic efficiency (specific conductivity, k(s)), xylem anatomy (mean tracheid diameter, d(mean), mean hydraulic diameter, d(h), conduit wall thickness, t, conduit wall reinforcement, (t/b)(h)(2)) and stomatal conductance, g(s), of forest plants as well as irrigated and drought-treated garden plants of Ligustrum vulgare L. and Viburnum lantana L. Forest plants of L. vulgare and V. lantana were significantly less resistant to drought-induced cavitation (Psi(50) at -2.82 +/- 0.13 MPa and -2.79 +/- 0.17 MPa) than drought-treated garden plants (- 4.58 +/- 0.26 MPa and -3.57 +/- 0.15 MPa). When previously irrigated garden plants were subjected to drought, a significant decrease in d(mean) and d(h) and an increase in t and (t/b)(h)(2) were observed in L. vulgare. In contrast, in V. lantana conduit diameters increased significantly but no change in t and (t/b)(h)(2) was found. Stomatal closure occurred at similar water potentials (Psi(sc)) in forest plants and drought-treated garden plants, leading to higher safety margins (Psi(sc) - Psi(50)) of the latter (L. vulgare 1.63 MPa and V. lantana 0.43 MPa). These plants also showed higher g(s) at moderate Psi, more abrupt stomatal closure and lower cuticular conductivity. Data indicate that the development of drought-tolerant xylem as well as stomatal regulation play an important role in drought acclimation, whereby structural and physiological responses to drought are species-specific and depend on the plant's hydraulic strategy.
Collapse
|
|
16 |
31 |
3
|
Wyka TP, Karolewski P, Żytkowiak R, Chmielarz P, Oleksyn J. Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species. TREE PHYSIOLOGY 2016; 36:536-47. [PMID: 26507271 PMCID: PMC4886283 DOI: 10.1093/treephys/tpv108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/14/2015] [Indexed: 05/28/2023]
Abstract
In evergreen plants, old leaves may contribute photosynthate to initiation of shoot growth in the spring. They might also function as storage sites for carbohydrates and nitrogen (N). We hence hypothesized that whole-plant allocation of carbohydrates and N to storage in stems and roots may be lower in evergreen than in deciduous species. We selected three species pairs consisting of an evergreen and a related deciduous species: Mahonia aquifolium (Pursh) Nutt. and Berberis vulgaris L. (Berberidaceae), Prunus laurocerasus L. and Prunus serotina Ehrh. (Rosaceae), and Viburnum rhytidophyllum Hemsl. and Viburnum lantana L. (Adoxaceae). Seedlings were grown outdoors in pots and harvested on two dates during the growing season for the determination of biomass, carbohydrate and N allocation ratios. Plant size-adjusted pools of nonstructural carbohydrates in stems and roots were lower in the evergreen species of Berberidaceae and Adoxaceae, and the slope of the carbohydrate pool vs plant biomass relationship was lower in the evergreen species of Rosaceae compared with the respective deciduous species, consistent with the leading hypothesis. Pools of N in stems and roots, however, did not vary with leaf habit. In all species, foliage contained more than half of the plant's nonstructural carbohydrate pool and, in late summer, also more than half of the plant's N pool, suggesting that in juvenile individuals of evergreen species, leaves may be a major storage site. Additionally, we hypothesized that concentration of defensive phenolic compounds in leaves should be higher in evergreen than in deciduous species, because the lower carbohydrate pool in stems and roots of the former restricts their capacity for regrowth following herbivory and also because of the need to protect their longer-living foliage. Our results did not support this hypothesis, suggesting that evergreen plants may rely predominantly on structural defenses. In summary, our study indicates that leaf habit has consequences for storage economics at the whole-plant level, with evergreen shrub species storing less carbohydrates (but not N) per unit plant biomass than deciduous species.
Collapse
|
research-article |
9 |
9 |
4
|
Gómez-Bellot MJ, Nortes PA, Ortuño MF, Romero C, Fernández-García N, Sánchez-Blanco MJ. Influence of arbuscular mycorrhizal fungi and treated wastewater on water relations and leaf structure alterations of Viburnum tinus L. plants during both saline and recovery periods. JOURNAL OF PLANT PHYSIOLOGY 2015; 188:96-105. [PMID: 26476190 DOI: 10.1016/j.jplph.2015.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Nowadays, irrigation with low quality water is becoming an alternative to satisfy the needs of crops. However, some plant species have to deal with high salinity of reclaimed water, by adapting their physiological behaviour during both saline and recovery periods and developing morphological changes in their leaves. The application of arbuscular mycorrhizal fungi (AMF) could also be a suitable option to mitigate the negative effects of this kind of water, although the effectiveness of plant-AMF association is influenced by many factors. In this work, during forty weeks, the combined effect of Glomus iranicum var. tenuihypharum and two types of water: control, C, EC<0.9 dS m(-1) and reclaimed water, RW (with EC: 4 dS m(-1) during a first saline period and EC: 6 dS m(-1) during a second saline period) was evaluated for laurustinus plants (Viburnum tinus L.) transplanted in soil. This was followed by a recovery period of eight weeks, when all the plants were irrigated in the control irrigation conditions. Seasonal and daily changes in stem water potential (Ψstem), stomatal conductance (gs), photosynthesis (Pn) and leaf internal CO2 concentration (Ci) of laurustinus plants were evaluated. Leaf structure alterations, nutrient imbalance, height and leaf hydraulic conductivity (Kleaf) were also determined. Due to the high difficulty of absorbing water from the soil, RW plants showed a high volumetric water content (θv) in soil. The stem water potential and the stomatal conductance (gs) values were reduced in RW plants throughout the second saline period. These decreases were also found during the day. Leaf Ca(2+)/Na(+) and K(+)/Na(+) ratios diminished in RW plants respect to the C plants due to the Na(+) accumulation, although height and chlorophyll content values did not show statistical differences. Leaves from RW plants showed a significantly thicker mesophyll than Control leaves as a consequence of high EC. The area of palisade parenchyma (PP) increased while the area of spongy parenchyma (SP) decreased in RW leaves with respect to the C leaves. These structural changes could be considered as a strategy to maximize photosynthesis potential in saline conditions. Mycorrhizal inoculation improved the water status of both C and RW plants by increasing their Ψstem and gs values. As regards leaf structure, AMF showed an opposite effect to salinity for PP and SP. At the end of the recovery period, hardly any statistical differences of physiological parameters were found between treatments, although a tendency to improve them was observed in inoculated plants. In any case, the leaf structural changes and the great reduction in Kleaf observed at Ψleaf below -1.5 MPa would constitute an important mechanism for laurustinus plants to reduce the water loses produced by salinity.
Collapse
|
|
10 |
6 |
5
|
Serrot PH, Sabater B, Martín M. Activity, polypeptide and gene identification of thylakoid Ndh complex in trees: potential physiological relevance of fluorescence assays. PHYSIOLOGIA PLANTARUM 2012; 146:110-20. [PMID: 22324908 PMCID: PMC3457125 DOI: 10.1111/j.1399-3054.2012.01598.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Three evergreen (Laurus nobilis, Viburnum tinus and Thuja plicata) and two autumnal abscission deciduous trees (Cydonia oblonga and Prunus domestica) have been investigated for the presence (zymogram and immunodetection) and functionality (post-illumination chlorophyll fluorescence) of the thylakoid Ndh complex. The presence of encoding ndh genes has also been investigated in T. plicata. Western assays allowed tentative identification of zymogram NADH dehydrogenase bands corresponding to the Ndh complex after native electrophoresis of solubilized fractions from L. nobilis, V. tinus, C. oblonga and P. domestica leaves, but not in those of T. plicata. However, Ndh subunits were detected after SDS-PAGE of thylakoid solubilized proteins of T. plicata. The leaves of the five plants showed the post-illumination chlorophyll fluorescence increase dependent on the presence of active Ndh complex. The fluorescence increase was higher in autumn in deciduous, but not in evergreen trees, which suggests that the thylakoid Ndh complex could be involved in autumnal leaf senescence. Two ndhB genes were sequenced from T. plicata that differ at the 350 bp 3' end sequence. Comparison with the mRNA revealed that ndhB genes have a 707-bp type II intron between exons 1 (723 bp) and 2 (729 bp) and that the UCA 259th codon is edited to UUA in mRNA. Phylogenetically, the ndhB genes of T. plicata group close to those of Metasequoia, Cryptomeria, Taxodium, Juniperus and Widdringtonia in the cupresaceae branch and are 5' end shortened by 18 codons with respect to that of angiosperms.
Collapse
|
Comparative Study |
13 |
5 |
6
|
Chen J, Tang Y, Zhou H, Shao J, Ji W, Wang Z, Liang D, Zhao C. Lignan constituents with α-amylase and α-glucosidase inhibitory activities from the fruits of Viburnum urceolatum. PHYTOCHEMISTRY 2023; 216:113895. [PMID: 37827226 DOI: 10.1016/j.phytochem.2023.113895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Eleven previously undescribed lignan constituents, including five 8-O-4' type neolignans, viburnurcosides A-E (1-5), three benzofuran type neolignans, viburnurcosides F-H (6-8), and three tetrahydrofuran type lignans, viburnurcosides I-K (9-11), were isolated from the fruits of Viburnum urceolatum. The structures of all isolates were elucidated by an extensive analysis of the NMR and HRESIMS data. The absolute configurations of these compounds were determined by quantum-chemical electronic circular dichroism calculation and comparison. The sugar units of viburnurcosides A-K were identified by acid hydrolysis and HPLC analysis of the chiral derivatives of monosaccharides. The in vitro enzyme inhibition assay exhibited that viburnurcoside J (10) had the most potent inhibitory activity against α-amylase and α-glucosidase with the IC50 values of 19.75 and 9.14 μM, respectively, which were stronger than those of the positive control acarbose (37.31 and 26.75 μM, respectively). The potential binding modes of viburnurcoside J (10) with α-amylase and α-glucosidase were also analyzed by molecular modeling.
Collapse
|
|
2 |
4 |
7
|
Chen J, Tang Y, Zhou H, Shao J, Ji W, Yang M, Zhao C. Iridoid constituents from the branches of Viburnum chinshanense and their inhibitory effects on α-amylase and α-glucosidase. PHYTOCHEMISTRY 2023; 216:113893. [PMID: 37820889 DOI: 10.1016/j.phytochem.2023.113893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Ten previously undescribed iridoid constituents, viburnshosins A-E (1-5) and viburnshosides A-E (6-10), together with one known analogue (11), were isolated from the branches of Viburnum chinshanense. Their structures were unambiguously elucidated by a comprehensive analysis of 1D and 2D NMR data, together with HRESIMS spectroscopic data. The absolute configurations of compounds 1-10 were assigned by means of the calculated ECD spectra. Interestingly, compounds 2 and 3 are the first iridoids with an unusual C-3-C-7 oxo bridge. Compounds 4, 5, and 10 displayed remarkable inhibitory effects against α-amylase (IC50: 38.42, 37.65, and 21.64 μM, respectively) and α-glucosidase (IC50: 12.97, 19.34, and 25.71 μM, respectively), comparable to those of the positive control acarbose (IC50: 39.75 and 23.66 μM, respectively). The interaction modes of compounds 4 and 10 with two enzymes were analyzed by molecular modeling.
Collapse
|
|
2 |
1 |
8
|
Du XL, Wang SJ, Rong L. [Characteristics of foliar delta13C values of common shrub species in various microhabitats with different karst rocky desertification degrees]. YING YONG SHENG TAI XUE BAO = THE JOURNAL OF APPLIED ECOLOGY 2011; 22:3094-3100. [PMID: 22384573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
By measuring the foliar delta13C values of 5 common shrub species (Rhamnus davurica, Pyracantha fortuneana, Rubus biflorus, Zanthoxylum planispinum, and Viburnum utile) growing in various microhabitats in Wangjiazhai catchment, a typical karst desertification area in Guizhou Province, this paper studied the spatial heterogeneity of plant water use at niche scale and the response of the heterogeneity to different karst rocky desertification degrees. The foliar delta13C values of the shrub species in the microhabitats followed the order of stony surface > stony gully > stony crevice > soil surface, and those of the majority of the species were more negative in the microhabitat soil surface than in the others. The foliar delta13C values decreased in the sequence of V. utile > R. biflorus > Z. planispinum > P. fortuneana > R. davurica, and the mean foliar delta13C value of the shrubs and that of typical species in various microhabitats all increased with increasing karst rocky desertification degree, differed significantly among different microhabitats. It was suggested that with the increasing degree of karst rocky desertification, the structure and functions of karst habitats were impaired, microhabitats differentiated gradually, and drought degree increased.
Collapse
|
|
14 |
|
9
|
Yang H, Yang W, Yang MF, Yang CP, Yang LG, Xutang XK. [Diurnal rhythm of Viburnum awabuki and Betula luminifera volatiles and electroantennogram response of Batocera horsfieldi]. YING YONG SHENG TAI XUE BAO = THE JOURNAL OF APPLIED ECOLOGY 2011; 22:357-363. [PMID: 21608247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
By the method of Tenax-TA absorbent adsorption combined with GC-MS, this paper analyzed the changes of the diurnal rhythm of the volatiles in the healthy branches and Batocera horsfieldi-damaged branches of Viburnum awabuki and Betula luminifera, and electroantennogram technique was used to perform a comparative analysis on the electroantennogram (EAG) responses of unmated male and female B. horsfieldi to the volatiles. After the feeding by B. horsfieldi, there was a decrease in the contents of limonene, nonanal, hexadecane, butyl acrylate, and 3-methyl-butanoic acid in damaged branches of V. awabuki and in the neohexane and hexadecane contents in damaged branches of B. luminifera. Simultaneously, new materials such as permethyl 99A, octyl alcohol, iodo, decanal, hexanal, and bioallethrin etc. were newly synthesized in the damaged branches. The EAG response values of unmated male and female B. horsfieldi adults to the volatiles in the damaged branches of B. luminifera were the highest, being 1.23 mV and 1.38 mV, while to the healthy branches of V. awabuki were the lowest, being 0.95 mV and 1.01 mV, respectively. As for the time period, the EAG response values of the adults to the volatiles were the lowest from 12:00 to 14:00, which accorded with the feeding behaviors of the adults, i. e., taking food in the field in early morning or at dusk.
Collapse
|
|
14 |
|
10
|
Detti C, Gori A, Azzini L, Nicese FP, Alderotti F, Lo Piccolo E, Stella C, Ferrini F, Brunetti C. Drought tolerance and recovery capacity of two ornamental shrubs: Combining physiological and biochemical analyses with online leaf water status monitoring for the application in urban settings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109208. [PMID: 39427361 DOI: 10.1016/j.plaphy.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
When plants are transferred from nursery to urban environments, they often face drought stress due to inadequate maintenance, such as insufficient irrigation. Using drought tolerant species may help mitigate the adverse impact of drought stress in urban settings. Additionally, utilizing novel technologies for water status monitoring may help optimize irrigation schedules to prevent transplanting failures. This study investigated the physiological and biochemical responses of two ornamental shrubs, Photinia x fraseri and Viburnum tinus, subjected to water stress of increasing severity and rewatering. Water relations, gas exchanges, chlorophyll fluorescence and biochemical analyses were conducted alongside real-time monitoring of water status using leaf-water-meter sensors (LWM). The progression of water stress had a notable negative impact on leaf gas exchanges and water relations in both species. Notably, P. fraseri avoided photoinhibition by reducing chlorophyll content and actual efficiency of PSII. Adjustments in leaf phenolic compounds played a significant role in enhancing drought tolerance of both species due to their antioxidant and photoprotective properties. Upon rewatering, both species exhibited complete recovery in their physiological functions, underscoring their remarkable tolerance and resilience to drought stress. Additionally, LWM sensors efficiently tracked the dehydration levels, exhibiting a rising trend during the water stress progression and a subsequent decline after rewatering for both species. These findings confirm the reliability of LWM sensors in monitoring physiological status of plants in outdoor contexts, making them a suitable tool for use in urban settings.
Collapse
|
|
1 |
|