1
|
Boyd EF, Brüssow H. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 2002; 10:521-9. [PMID: 12419617 DOI: 10.1016/s0966-842x(02)02459-9] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There are common themes among bacteriophage-encoded virulence factors, which include the well-characterized bacterial toxins and proteins that alter antigenicity as well as several new classes of bacteriophage-encoded proteins such as superantigens, effectors translocated by a type III secretion system, and proteins required for intracellular survival and host cell attachment. These virulence factors are encoded by a diversity of bacteriophages, members of the viral families Siphoviridae, Podoviridae, Myoviridae and Inoviridae, with some bacteriophages having characteristics of more than one virus family. The location of virulence genes within the bacteriophage genomes is non-random and consistent with an origin via imprecise prophage excision or as either transferable cassettes or integral components of the bacteriophage genome.
Collapse
|
Review |
23 |
250 |
2
|
Abstract
Acanthamoeba are free-living, harmless organisms, however, given the opportunity and the appropriate conditions, they can cause painful, sight-threatening as well as fatal infections and, thus, are considered opportunistic pathogens. Acanthamoeba infections have become increasingly important in the past few years due to increasing populations of contact lens users and AIDS patients. The mechanisms associated with the pathogenesis of Acanthamoeba tend to be highly complex, depending on parasite, host and the environmental factors. Elucidation of the biochemical, cellular and molecular basis of the pathogenesis of diseases caused by Acanthamoeba may lead to the development of therapeutic interventions.
Collapse
|
Review |
22 |
125 |
3
|
Sahl JW, Gillece JD, Schupp JM, Waddell VG, Driebe EM, Engelthaler DM, Keim P. Evolution of a pathogen: a comparative genomics analysis identifies a genetic pathway to pathogenesis in Acinetobacter. PLoS One 2013; 8:e54287. [PMID: 23365658 PMCID: PMC3554770 DOI: 10.1371/journal.pone.0054287] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/10/2012] [Indexed: 01/20/2023] Open
Abstract
Acinetobacter baumannii is an emergent and global nosocomial pathogen. In addition to A. baumannii, other Acinetobacter species, especially those in the Acinetobacter calcoaceticus-baumannii (Acb) complex, have also been associated with serious human infection. Although mechanisms of attachment, persistence on abiotic surfaces, and pathogenesis in A. baumannii have been identified, the genetic mechanisms that explain the emergence of A. baumannii as the most widespread and virulent Acinetobacter species are not fully understood. Recent whole genome sequencing has provided insight into the phylogenetic structure of the genus Acinetobacter. However, a global comparison of genomic features between Acinetobacter spp. has not been described in the literature. In this study, 136 Acinetobacter genomes, including 67 sequenced in this study, were compared to identify the acquisition and loss of genes in the expansion of the Acinetobacter genus. A whole genome phylogeny confirmed that A. baumannii is a monophyletic clade and that the larger Acb complex is also a well-supported monophyletic group. The whole genome phylogeny provided the framework for a global genomic comparison based on a blast score ratio (BSR) analysis. The BSR analysis demonstrated that specific genes have been both lost and acquired in the evolution of A. baumannii. In addition, several genes associated with A. baumannii pathogenesis were found to be more conserved in the Acb complex, and especially in A. baumannii, than in other Acinetobacter genomes; until recently, a global analysis of the distribution and conservation of virulence factors across the genus was not possible. The results demonstrate that the acquisition of specific virulence factors has likely contributed to the widespread persistence and virulence of A. baumannii. The identification of novel features associated with transcriptional regulation and acquired by clades in the Acb complex presents targets for better understanding the evolution of pathogenesis and virulence in the expansion of the genus.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
94 |
4
|
Calcagno AM, Bignell E, Warn P, Jones MD, Denning DW, Mühlschlegel FA, Rogers TR, Haynes K. Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation. Mol Microbiol 2004; 50:1309-18. [PMID: 14622417 DOI: 10.1046/j.1365-2958.2003.03755.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The highly conserved fungal Ste12 transcription factor family of proteins play critical roles in the regulation of many cellular processes including mating, cell wall biosynthesis, filamentation and invasive growth. They are also important mediators of fungal virulence. The Candida glabrata STE12 homologue was cloned. The encoded protein has a single DNA binding homeodomain but lacks both a C2H2 zinc finger DNA binding domain and an apparent Dig1/Dig2 regulatory motif. Candida glabrata STE12 can functionally complement the nitrogen starvation induced filamentation and mating defects of Saccharomyces cerevisiae ste12 mutants. We also show that C. glabrata STE12 is required for nitrogen starvation-induced filamentation as ste12 mutants rarely produce pseudohyphae on nitrogen depleted media. Finally we describe a novel murine model of C. glabrata systemic disease and use this to demonstrate that C. glabrata ste12 mutants, although still able to cause disease, are attenuated for virulence compared with STE12 reconstituted strains. Candida glabrata STE12 is therefore the first virulence factor encoding gene to be described in this increasingly important fungal pathogen.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
59 |
5
|
Müller J, Schulze F, Müller W, Hänel I. PCR detection of virulence-associated genes in Campylobacter jejuni strains with differential ability to invade Caco-2 cells and to colonize the chick gut. Vet Microbiol 2005; 113:123-9. [PMID: 16300911 DOI: 10.1016/j.vetmic.2005.10.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 10/07/2005] [Accepted: 10/12/2005] [Indexed: 11/16/2022]
Abstract
In this study, the presence of 20 putative virulence genes was examined in 11 Campylobacter jejuni isolates with different colonization and invasion abilities as determined in a chick colonization model and on Caco-2 cells, respectively. The majority of the genes were detected in all strains. Among them, there were genes of the flagellar secretion apparatus like flhA, flhB, flgB, flgE2, the flagellin genes flaA and flaB, invasion-associated genes like ciaB and iamA, the cytotoxin genes cdtA-C, the adhesion related gene cadF, and some genes involved in the colonization process (docA, docB). The plasmid gene virB11 could not be detected in any strain. Specific differences between the isolates were observed only in genes cgtB and wlaN involved in lipo-oligosaccharide (LOS) biosynthesis. The gene cgtB was only detectable in three of five strains with strong colonization and invasion abilities. Probably, wlaN can overcome the lack of cgtB in the two cgtB- isolates.
Collapse
|
Journal Article |
20 |
59 |
6
|
Spera JM, Ugalde JE, Mucci J, Comerci DJ, Ugalde RA. A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection. Proc Natl Acad Sci U S A 2006; 103:16514-9. [PMID: 17053080 PMCID: PMC1637613 DOI: 10.1073/pnas.0603362103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial pathogens with the ability to establish chronic infections have evolved strategies to actively modulate the host immune response. Brucellosis is a disease caused by a Gram-negative intracellular pathogen that if not treated during the initial phase of the infection becomes chronic as the bacteria persist for the lifespan of the host. How this pathogen and others achieve this action is a largely unanswered question. We report here the identification of a Brucella abortus gene (prpA) directly involved in the immune modulation of the host. PrpA belongs to the proline-racemase family and elicits a B lymphocyte polyclonal activation that depends on the integrity of its proline-racemase catalytic site. Stimulation of splenocytes with PrpA also results in IL-10 secretion. Construction of a B. abortus-prpA mutant allowed us to assess the contribution of PrpA to the infection process. Mice infected with B. abortus induced an early and transient nonresponsive status of splenocytes to both Escherichia coli LPS and ConA. This phenomenon was not observed when mice were infected with a B. abortus-prpA mutant. Moreover, the B. abortus-prpA mutant had a reduced capacity to establish a chronic infection in mice. We propose that an early and transient nonresponsive immune condition of the host mediated by this B cell polyclonal activator is required for establishing a successful chronic infection by Brucella.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
57 |
7
|
Alsam S, Sissons J, Jayasekera S, Khan NA. Extracellular proteases of (encephalitis isolate belonging to T1 genotype) contribute to increased permeability in an in vitro model of the human blood–brain barrier. J Infect 2005; 51:150-6. [PMID: 16038767 DOI: 10.1016/j.jinf.2004.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2004] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Granulomatous amoebic encephalitis (GAE) is a serious human infection with fatal consequences, however, the pathogenic mechanisms associated with this disease remain unclear. Several lines of evidence suggest that haematogenous spread is a prerequisite for Acanthamoeba encephalitis but it is not clear how circulating amoebae cross the blood-brain barrier to gain entry into the central nervous system. Objectives of this study were to determine the effects of Acanthamoeba on the permeability of an in vitro blood-brain barrier model and factors contributing to these changes. METHODS Using human brain microvascular endothelial cells, an in vitro blood-brain barrier model was constructed in 24-well Transwell plates. Acanthamoeba (GAE isolate belonging to T1 genotype) or its conditioned media were used to determine permeability changes. Zymography assays were performed to characterise Acanthamoeba proteases. In addition, the ability of Acanthamoeba to bind brain microvascular endothelial cells was determined using adhesion assays. RESULTS We observed that Acanthamoeba produced an increase of more than 45% in the blood-brain barrier permeability. Acanthamoeba-conditioned media exhibited similar effects indicating Acanthamoeba-mediated blood-brain barrier permeability is contact-independent. Prior treatment of conditioned media with phenylmethyl sulfonyl fluoride (PMSF, serine protease inhibitor), abolished permeability changes indicating the role of serine proteases. Of interest, methyl alpha-d-mannopyranoside inhibited Acanthamoeba binding to human brain microvascular endothelial cells but had no effect on Acanthamoeba-mediated blood-brain barrier permeability. Zymography assays revealed that Acanthamoeba produced two major proteases, one of which was inhibited by PMSF (serine protease inhibitor) and the second with 1,10-phenanthroline (metalloprotease inhibitor). CONCLUSIONS We have for the first time shown that Acanthamoeba produces human brain microvascular endothelial cells permeability, which can be blocked by PMSF. A metalloprotease of approx. molecular weight of 150 kDa is produced by A. castellanii (GAE isolate belonging to T1 genotype) and its role in the disease is suggested.
Collapse
|
|
20 |
50 |
8
|
Campbell AG, Campbell JH, Schwientek P, Woyke T, Sczyrba A, Allman S, Beall CJ, Griffen A, Leys E, Podar M. Multiple single-cell genomes provide insight into functions of uncultured Deltaproteobacteria in the human oral cavity. PLoS One 2013; 8:e59361. [PMID: 23555659 PMCID: PMC3608642 DOI: 10.1371/journal.pone.0059361] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/13/2013] [Indexed: 01/10/2023] Open
Abstract
Despite a long history of investigation, many bacteria associated with the human oral cavity have yet to be cultured. Studies that correlate the presence or abundance of uncultured species with oral health or disease highlight the importance of these community members. Thus, we sequenced several single-cell genomic amplicons from Desulfobulbus and Desulfovibrio (class Deltaproteobacteria) to better understand their function within the human oral community and their association with periodontitis, as well as other systemic diseases. Genomic data from oral Desulfobulbus and Desulfovibrio species were compared to other available deltaproteobacterial genomes, including from a subset of host-associated species. While both groups share a large number of genes with other environmental Deltaproteobacteria genomes, they encode a wide array of unique genes that appear to function in survival in a host environment. Many of these genes are similar to virulence and host adaptation factors of known human pathogens, suggesting that the oral Deltaproteobacteria have the potential to play a role in the etiology of periodontal disease.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
32 |
9
|
Qu HQ, Jiang ZD. Clostridium difficile infection in diabetes. Diabetes Res Clin Pract 2014; 105:285-94. [PMID: 25015315 DOI: 10.1016/j.diabres.2014.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/26/2014] [Accepted: 06/13/2014] [Indexed: 01/08/2023]
Abstract
Diabetes-related hospitalization and hospital utilization is a serious challenge to the health care system, a situation which may be further aggravated by nosocomial Clostridium difficile (C. difficile) infection (CDI). Studies have demonstrated that diabetes increases the risk of recurrent CDI with OR (95% CI) 2.99 (1.88, 4.76). C. difficile is a gram-positive, spore-forming anaerobic bacterium which is widely distributed in the environment. Up to 7% of healthy adults and up to 45% of infants may have asymptomatic intestinal carriage of C. difficile. A large number of strains of C. difficile have been identified. A number of PCR or sequence-based molecular typing methods are available for typing C. difficile isolates. C. difficile virulence evolved independently in the highly epidemic lineages, associated with the expression of toxin genes and other virulence factors. This article briefly reviews recent progresses in the bateriology of C. difficile and highlights the limited knowledge of potential mechanisms for the increased risk of CDI in diabetes which warrants further research.
Collapse
|
Review |
11 |
29 |
10
|
van den Bosch TJM, Niemi O, Welte CU. Single gene enables plant pathogenic Pectobacterium to overcome host-specific chemical defence. MOLECULAR PLANT PATHOLOGY 2020; 21:349-359. [PMID: 31872947 PMCID: PMC7036374 DOI: 10.1111/mpp.12900] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/30/2019] [Accepted: 11/27/2019] [Indexed: 05/04/2023]
Abstract
Plants of the Brassicales order, including Arabidopsis and many common vegetables, produce toxic isothiocyanates to defend themselves against pathogens. Despite this defence, plant pathogenic microorganisms like Pectobacterium cause large yield losses in fields and during storage of crops. The bacterial gene saxA was previously found to encode isothiocyanate hydrolase that degrades isothiocyanates in vitro. Here we demonstrate in planta that saxA is a virulence factor that can overcome the chemical defence system of Brassicales plants. Analysis of the distribution of saxA genes in Pectobacterium suggests that saxA from three different phylogenetic origins are present within this genus. Deletion of saxA genes representing two of the most common classes from P. odoriferum and P. versatile resulted in significantly reduced virulence on Arabidopsis thaliana and Brassica oleracea. Furthermore, expressing saxA from a plasmid in a potato-specific P. parmentieri strain that does not naturally harbour this gene significantly increased the ability of the strain to macerate Arabidopsis. These findings suggest that a single gene may have a significant role in defining the host range of a plant pathogen.
Collapse
|
research-article |
5 |
23 |
11
|
Rodkhum C, Hirono I, Stork M, Di Lorenzo M, Crosa JH, Aoki T. Putative virulence-related genes in Vibrio anguillarum identified by random genome sequencing. JOURNAL OF FISH DISEASES 2006; 29:157-66. [PMID: 16533301 DOI: 10.1111/j.1365-2761.2006.00692.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The genome of Vibrio anguillarum strain H775-3 was partially determined by a random sequencing procedure. A total of 2,300 clones, 2,100 from a plasmid library and 200 from a cosmid library, were sequenced and subjected to homology search by the BLAST algorithm. The total length of the sequenced clones is 1.5 Mbp. The nucleotide sequences were classified into 17 broad functional categories. Forty putative virulence-related genes were identified, 36 of which are novel in V. anguillarum, including a repeat in toxin gene cluster, haemolysin genes, enterobactin gene, protease genes, lipopolysaccharide biosynthesis genes, capsule biosynthesis gene, flagellar genes and pilus genes.
Collapse
|
Comparative Study |
19 |
21 |
12
|
Novović K, Mihajlović S, Dinić M, Malešević M, Miljković M, Kojić M, Jovčić B. Acinetobacter spp. porin Omp33-36: Classification and transcriptional response to carbapenems and host cells. PLoS One 2018; 13:e0201608. [PMID: 30071077 PMCID: PMC6072067 DOI: 10.1371/journal.pone.0201608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023] Open
Abstract
Acinetobacter baumannii has been recognized as one of the most challeging pathogens in clinical settings worldwide. Outer membrane porins play a significant role in Acinetobacter antibiotic resistance and virulence. A. baumannii carbapenem resistance and virulence factor porin Omp33-36 was the subject of this study. We investigated the omp33-36 gene transcriptional response in the growth phase, its response to carbapenems, and the effect of contact with host cells. Additionally, the cytotoxic effect of A. baumannii towards keratinocytes was assessed, as well as correlation between omp33-36 gene transcription and cytotoxicity. Further, Acinetobacter spp. Omp33-36 was classified and its characteristics relevant for vaccine candidature were determined. The level of the omp33-36 gene transcription varied between growth phases, but a common pattern could not be established among different strains. Treatment with subinhibitory concentrations of carbapenems decreased, while contact with keratinocytes increased omp33-36 expression in the analysed A. baumannii strains. Variations in omp33-36 mRNA levels did not correlate with cytotoxicity levels. Decrease of omp33-36 mRNA during treatment with subinhibitory concentrations of carbapenems, indicated the importance of transcriptional changes in reversible resistance to carbapenems due to the absence of Omp33-36. The transcription of omp33-36 increased after contact with keratinocytes, indicating the important role of de novo transcription during the initial phase of A. baumannii infection. Primary structural analysis of Acinetobacter spp. Omp33-36 revealed three distinct groups (among four A. baumannii variants). Although we have shown that Omp33-36 was highly polymorphic, we propose a potential antigen (PLAEAAFL motif) for vaccine development. According to PROVEAN analysis, the highly polymorphic structure of Omp33-36 porin should not influence its function significantly.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
14 |
13
|
Rath PP, Gourinath S. The actin cytoskeleton orchestra in Entamoeba histolytica. Proteins 2020; 88:1361-1375. [PMID: 32506560 DOI: 10.1002/prot.25955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Years of evolution have kept actin conserved throughout various clades of life. It is an essential protein starring in many cellular processes. In a primitive eukaryote named Entamoeba histolytica, actin directs the process of phagocytosis. A finely tuned coordination between various actin-binding proteins (ABPs) choreographs this process and forms one of the virulence factors for this protist pathogen. The ever-expanding world of ABPs always has space to accommodate new and varied types of proteins to the earlier existing repertoire. In this article, we report the identification of 390 ABPs from Entamoeba histolytica. These proteins are part of diverse families that have been known to regulate actin dynamics. Most of the proteins are primarily uncharacterized in this organism; however, this study aims to annotate the ABPs based on their domain arrangements. A unique characteristic about some of the ABPs found is the combination of domains present in them unlike any other reported till date. Calponin domain-containing proteins formed the largest group among all types with 38 proteins, followed by 29 proteins with the infamous BAR domain in them, and 23 proteins belonging to actin-related proteins. The other protein families had a lesser number of members. Presence of exclusive domain arrangements in these proteins could guide us to yet unknown actin regulatory mechanisms prevalent in nature. This article is the first step to unraveling them.
Collapse
|
|
5 |
7 |
14
|
Prathiviraj R, Chellapandi P. Deciphering Molecular Virulence Mechanism of Mycobacterium tuberculosis Dop isopeptidase Based on Its Sequence-Structure-Function Linkage. Protein J 2020; 39:33-45. [PMID: 31760575 DOI: 10.1007/s10930-019-09876-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The pupylation pathway marks proteins for prokaryotic ubiquitin-like protein (Pup)-proteasomal degradation and survival strategy of mycobacteria inside of the host macrophages. Deamidase of Pup (Dop) plays a central role in the pupylation pathway. It is still a matter of investigation to know the function of Dop in virulence of mycobacterial lineage. Hence, the present study was intended to describe the sequence-structure-function-virulence link of Dop for understanding the molecular virulence mechanism of Mycobacterium tuberculosis H37Rv (Mtb). Phylogenetic analysis of this study indicated that Dop has extensively diverged across the proteasome-harboring bacteria. The functional part of Dop was converged across the pathogenic mycobacterial lineage. The genome-wide analysis pointed out that the pupylation gene locus was identical to each other, but its genome neighborhood differed from species to species. Molecular modeling and dynamic studies proved that the predicted structure of Mtb Dop was energetically stable and low conformational freedom. Moreover, evolutionary constraints in Mtb Dop were intensively analyzed for inferring its sequence-structure-function relationships for the full virulence of Mtb. It indicated that evolutionary optimization was extensively required to stabilize its local structural environment at the side chains of mutable residues. The sequence-structure-function-virulence link of Dop might have retained in Mtb by reordering hydrophobic and hydrogen bonding patterns in the local structural environment. Thus, the results of our study provide a quest to understand the molecular virulence and pathogenesis mechanisms of Mtb during the infection process.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
5 |
15
|
Carlos C, Alexandrino F, Vieira MAM, Stoppe NC, Sato MIZ, Gomes TAT, Ottoboni LMM. Prevalence of virulence factors in Escherichia coli isolated from healthy animals and water sources in Brazil. JOURNAL OF WATER AND HEALTH 2011; 9:138-142. [PMID: 21301122 DOI: 10.2166/wh.2010.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/23/2010] [Indexed: 05/30/2023]
Abstract
The aim of this work was to verify the presence of seven virulence factors (ST, LT, eae, stx(1), stx(2), INV and EAEC) among Escherichia coli strains isolated from healthy humans, bovines, chickens, sheep, pigs and goats, from two sewage treatment plants and from the Tietê River. We have found a high prevalence of eae, stx(1) and stx(2) in ruminants. The EAEC gene was only found in humans and sewage. No strains presented ST, LT or INV. BOX-PCR fingerprints revealed a high diversity among the strains analysed and a non-clonal origin of strains that presented the same virulence factors. Therefore, we concluded that ruminants may constitute an important reservoir of most diarrheagenic E. coli in Brazil, except for EAEC strains. These results emphasize the importance of the identification of the animal source of fecal contamination for the correct water risk assessment.
Collapse
|
|
14 |
4 |
16
|
Cherkasov A, Jones SJM. An approach to large scale identification of non-obvious structural similarities between proteins. BMC Bioinformatics 2004; 5:61. [PMID: 15147578 PMCID: PMC434491 DOI: 10.1186/1471-2105-5-61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 05/17/2004] [Indexed: 11/13/2022] Open
Abstract
Background A new sequence independent bioinformatics approach allowing genome-wide search for proteins with similar three dimensional structures has been developed. By utilizing the numerical output of the sequence threading it establishes putative non-obvious structural similarities between proteins. When applied to the testing set of proteins with known three dimensional structures the developed approach was able to recognize structurally similar proteins with high accuracy. Results The method has been developed to identify pathogenic proteins with low sequence identity and high structural similarity to host analogues. Such protein structure relationships would be hypothesized to arise through convergent evolution or through ancient horizontal gene transfer events, now undetectable using current sequence alignment techniques. The pathogen proteins, which could mimic or interfere with host activities, would represent candidate virulence factors. The developed approach utilizes the numerical outputs from the sequence-structure threading. It identifies the potential structural similarity between a pair of proteins by correlating the threading scores of the corresponding two primary sequences against the library of the standard folds. This approach allowed up to 64% sensitivity and 99.9% specificity in distinguishing protein pairs with high structural similarity. Conclusion Preliminary results obtained by comparison of the genomes of Homo sapiens and several strains of Chlamydia trachomatis have demonstrated the potential usefulness of the method in the identification of bacterial proteins with known or potential roles in virulence.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
3 |
17
|
Cadag E, Tarczy-Hornoch P, Myler PJ. Learning pathogenic proteins across fractured and heterogeneous data. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2008:889. [PMID: 18999001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/17/2008] [Indexed: 05/27/2023]
Abstract
In the following work, we test a generalized approach to integrating, transforming and learning data from disparate data sources for the classification of bacterial proteins involved in pathogenesis. We rely on the implicit inter-linkages between biological databases to draw relevant records, and leverage statistical learning methods to infer classification based on abundant, albeit noisy, data. Results suggest that types of public biological information have varying degrees of effectiveness in predictive data mining.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
|