1
|
Leopold DA, Logothetis NK. Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature 1996; 379:549-53. [PMID: 8596635 DOI: 10.1038/379549a0] [Citation(s) in RCA: 562] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
When the two eyes view dissimilar images, we experience binocular rivalry, in which one eye's view dominates for several seconds and is then replaced by that of the other eye. What causes these perceptual changes in the absence of any change in the stimulus? We showed previously that some neurons in monkey cortical area MT show changes in activity during motion rivalry that reflect the perceived direction of motion. To determine whether perception-related modulation of activity occurs in other visual cortical areas, we recorded from individual neurons in V1, V2 and V4 while monkeys reported the perceived orientation of rival gratings of two orthogonal orientations. Many cells, particularly in V4, showed patterns of activity that correlated with the perceptual dominance and suppression of one stimulus. The majority were orientation-selective and could be driven equally well from either eye. It has been previously suggested that binocular rivalry involves reciprocal inhibition between monocular neurons within V1 (for example, see ref. 4), but our results do not support this view; rather, we propose that binocular rivalry arises through interactions between binocular neurons at several levels in the visual pathways, and that similar mechanisms may underlie other multistable perceptual states that occur when viewing ambiguous images.
Collapse
|
|
29 |
562 |
2
|
Tsuchiya N, Koch C. Continuous flash suppression reduces negative afterimages. Nat Neurosci 2005; 8:1096-101. [PMID: 15995700 DOI: 10.1038/nn1500] [Citation(s) in RCA: 562] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 06/16/2005] [Indexed: 11/09/2022]
Abstract
Illusions that produce perceptual suppression despite constant retinal input are used to manipulate visual consciousness. Here we report on a powerful variant of existing techniques, continuous flash suppression. Distinct images flashed successively at approximately 10 Hz into one eye reliably suppress an image presented to the other eye. The duration of perceptual suppression is at least ten times greater than that produced by binocular rivalry. Using this tool we show that the strength of the negative afterimage of an adaptor was reduced by half when it was perceptually suppressed by input from the other eye. The more completely the adaptor was suppressed, the more strongly the afterimage intensity was reduced. Paradoxically, trial-to-trial visibility of the adaptor did not correlate with the degree of reduction. Our results imply that formation of afterimages involves neuronal structures that access input from both eyes but that do not correspond directly to the neuronal correlates of perceptual awareness.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
562 |
3
|
Tong F, Nakayama K, Vaughan JT, Kanwisher N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 1998; 21:753-9. [PMID: 9808462 DOI: 10.1016/s0896-6273(00)80592-9] [Citation(s) in RCA: 524] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used functional magnetic resonance imaging (fMRI) to monitor stimulus-selective responses of the human fusiform face area (FFA) and parahippocampal place area (PPA) during binocular rivalry in which a face and a house stimulus were presented to different eyes. Though retinal stimulation remained constant, subjects perceived changes from house to face that were accompanied by increasing FFA and decreasing PPA activity; perceived changes from face to house led to the opposite pattern of responses. These responses during rivalry were equal in magnitude to those evoked by nonrivalrous stimulus alternation, suggesting that activity in the FFA and PPA reflects the perceived rather than the retinal stimulus, and that neural competition during binocular rivalry has been resolved by these stages of visual processing.
Collapse
|
|
27 |
524 |
4
|
Abstract
Several authors have proposed that motion is analyzed by two separate processes: short-range and long-range. We claim that the differences between short-range and long-range motion phenomena are a direct consequence of the stimuli used in the two paradigms and are not evidence for the existence of two qualitatively different motion processes. We propose that a single style of motion analysis, similar to the well known Reichardt and Marr-Ullman motion detectors, underlies all motion phenomena. Although there are different detectors of this type specialized for different visual attributes (namely first-order and second-order stimuli), they all share the same mode of operation. We review the studies of second-order motion stimuli to show that they share the basic phenomena observed for first-order stimuli. The similarity across stimulus types suggests, not parallel streams of motion extraction, one short-range and passive and the other long-range and intelligent, but a concatenation of a common mode of initial motion extraction followed by a general inference process.
Collapse
|
Review |
36 |
475 |
5
|
Reichle ED, Rayner K, Pollatsek A. The E-Z reader model of eye-movement control in reading: comparisons to other models. Behav Brain Sci 2004; 26:445-76; discussion 477-526. [PMID: 15067951 DOI: 10.1017/s0140525x03000104] [Citation(s) in RCA: 456] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The E-Z Reader model (Reichle et al. 1998; 1999) provides a theoretical framework for understanding how word identification, visual processing, attention, and oculomotor control jointly determine when and where the eyes move during reading. In this article, we first review what is known about eye movements during reading. Then we provide an updated version of the model (E-Z Reader 7) and describe how it accounts for basic findings about eye movement control in reading. We then review several alternative models of eye movement control in reading, discussing both their core assumptions and their theoretical scope. On the basis of this discussion, we conclude that E-Z Reader provides the most comprehensive account of eye movement control during reading. Finally, we provide a brief overview of what is known about the neural systems that support the various components of reading, and suggest how the cognitive constructs of our model might map onto this neural architecture.
Collapse
|
Review |
21 |
456 |
6
|
Hoffman DM, Girshick AR, Akeley K, Banks MS. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J Vis 2008; 8:33.1-30. [PMID: 18484839 PMCID: PMC2879326 DOI: 10.1167/8.3.33] [Citation(s) in RCA: 413] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Accepted: 01/31/2008] [Indexed: 11/24/2022] Open
Abstract
Three-dimensional (3D) displays have become important for many applications including vision research, operation of remote devices, medical imaging, surgical training, scientific visualization, virtual prototyping, and more. In many of these applications, it is important for the graphic image to create a faithful impression of the 3D structure of the portrayed object or scene. Unfortunately, 3D displays often yield distortions in perceived 3D structure compared with the percepts of the real scenes the displays depict. A likely cause of such distortions is the fact that computer displays present images on one surface. Thus, focus cues-accommodation and blur in the retinal image-specify the depth of the display rather than the depths in the depicted scene. Additionally, the uncoupling of vergence and accommodation required by 3D displays frequently reduces one's ability to fuse the binocular stimulus and causes discomfort and fatigue for the viewer. We have developed a novel 3D display that presents focus cues that are correct or nearly correct for the depicted scene. We used this display to evaluate the influence of focus cues on perceptual distortions, fusion failures, and fatigue. We show that when focus cues are correct or nearly correct, (1) the time required to identify a stereoscopic stimulus is reduced, (2) stereoacuity in a time-limited task is increased, (3) distortions in perceived depth are reduced, and (4) viewer fatigue and discomfort are reduced. We discuss the implications of this work for vision research and the design and use of displays.
Collapse
|
Comparative Study |
17 |
413 |
7
|
Stein J. The magnocellular theory of developmental dyslexia. DYSLEXIA (CHICHESTER, ENGLAND) 2001; 7:12-36. [PMID: 11305228 DOI: 10.1002/dys.186] [Citation(s) in RCA: 403] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Low literacy is termed 'developmental dyslexia' when reading is significantly behind that expected from the intelligence quotient (IQ) in the presence of other symptoms--incoordination, left-right confusions, poor sequencing--that characterize it as a neurological syndrome. 5-10% of children, particularly boys, are found to be dyslexic. Reading requires the acquisition of good orthographic skills for recognising the visual form of words which allows one to access their meaning directly. It also requires the development of good phonological skills for sounding out unfamiliar words using knowledge of letter sound conversion rules. In the dyslexic brain, temporoparietal language areas on the two sides are symmetrical without the normal left-sided advantage. Also brain 'warts' (ectopias) are found, particularly clustered round the left temporoparietal language areas. The visual magnocellular system is responsible for timing visual events when reading. It therefore signals any visual motion that occurs if unintended movements lead to images moving off the fovea ('retinal slip'). These signals are then used to bring the eyes back on target. Thus, sensitivity to visual motion seems to help determine how well orthographic skill can develop in both good and bad readers. In dyslexics, the development of the visual magnocellular system is impaired: development of the magnocellular layers of the dyslexic lateral geniculate nucleus (LGN) is abnormal; their motion sensitivity is reduced; many dyslexics show unsteady binocular fixation; hence poor visual localization, particularly on the left side (left neglect). Dyslexics' binocular instability and visual perceptual instability, therefore, can cause the letters they are trying to read to appear to move around and cross over each other. Hence, blanking one eye (monocular occlusion) can improve reading. Thus, good magnocellular function is essential for high motion sensitivity and stable binocular fixation, hence proper development of orthographic skills. Many dyslexics also have auditory/phonological problems. Distinguishing letter sounds depends on picking up the changes in sound frequency and amplitude that characterize them. Thus, high frequency (FM) and amplitude modulation (AM) sensitivity helps the development of good phonological skill, and low sensitivity impedes the acquisition of these skills. Thus dyslexics' sensitivity to FM and AM is significantly lower than that of good readers and this explains their problems with phonology. The cerebellum is the head ganglion of magnocellular systems; it contributes to binocular fixation and to inner speech for sounding out words, and it is clearly defective in dyslexics. Thus, there is evidence that most reading problems have a fundamental sensorimotor cause. But why do magnocellular systems fail to develop properly? There is a clear genetic basis for impaired development of magnocells throughout the brain. The best understood linkage is to the region of the Major Histocompatibility Complex (MHC) Class 1 on the short arm of chromosome 6 which helps to control the production of antibodies. The development of magnocells may be impaired by autoantibodies affecting the developing brain. Magnocells also need high amounts of polyunsaturated fatty acids to preserve the membrane flexibility that permits the rapid conformational changes of channel proteins which underlie their transient sensitivity. But the genes that underlie magnocellular weakness would not be so common unless there were compensating advantages to dyslexia. In developmental dyslexics there may be heightened development of parvocellular systems that underlie their holistic, artistic, 'seeing the whole picture' and entrepreneurial talents.
Collapse
|
Review |
24 |
403 |
8
|
Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M. Experience leaves a lasting structural trace in cortical circuits. Nature 2009; 457:313-7. [PMID: 19005470 PMCID: PMC6485433 DOI: 10.1038/nature07487] [Citation(s) in RCA: 383] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/02/2008] [Indexed: 12/03/2022]
Abstract
Sensory experiences exert a powerful influence on the function and future performance of neuronal circuits in the mammalian neocortex. Restructuring of synaptic connections is believed to be one mechanism by which cortical circuits store information about the sensory world. Excitatory synaptic structures, such as dendritic spines, are dynamic entities that remain sensitive to alteration of sensory input throughout life. It remains unclear, however, whether structural changes at the level of dendritic spines can outlast the original experience and thereby provide a morphological basis for long-term information storage. Here we follow spine dynamics on apical dendrites of pyramidal neurons in functionally defined regions of adult mouse visual cortex during plasticity of eye-specific responses induced by repeated closure of one eye (monocular deprivation). The first monocular deprivation episode doubled the rate of spine formation, thereby increasing spine density. This effect was specific to layer-5 cells located in binocular cortex, where most neurons increase their responsiveness to the non-deprived eye. Restoring binocular vision returned spine dynamics to baseline levels, but absolute spine density remained elevated and many monocular deprivation-induced spines persisted during this period of functional recovery. However, spine addition did not increase again when the same eye was closed for a second time. This absence of structural plasticity stands out against the robust changes of eye-specific responses that occur even faster after repeated deprivation. Thus, spines added during the first monocular deprivation experience may provide a structural basis for subsequent functional shifts. These results provide a strong link between functional plasticity and specific synaptic rearrangements, revealing a mechanism of how prior experiences could be stored in cortical circuits.
Collapse
|
research-article |
16 |
383 |
9
|
Abstract
When different images are presented to the two eyes, they compete for perceptual dominance, such that one image is visible while the other is suppressed. This binocular rivalry is thought to reflect competition between monocular neurons within the primary visual cortex. However, neurons whose activity correlates with perception during rivalry are found mainly in higher cortical areas, and respond to input from both eyes. Thus rivalry may involve competition between alternative perceptual interpretations at a higher level of analysis. To investigate this, we tested the effect of rapidly alternating the rival stimuli between the two eyes. Under these conditions, the perceptual alternations exhibit the same temporal dynamics as with static patterns, and a single phase of perceptual dominance can span multiple alternations of the stimuli. Thus neural representations of the two stimuli compete for visual awareness independently of the eye through which they reach the higher visual areas. This finding places binocular rivalry in the general category of multistable phenomena, such as ambiguous figures, and provides a new way to study the neural cause and resolution of perceptual ambiguities.
Collapse
|
|
29 |
362 |
10
|
Polonsky A, Blake R, Braun J, Heeger DJ. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci 2000; 3:1153-9. [PMID: 11036274 DOI: 10.1038/80676] [Citation(s) in RCA: 353] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During binocular rivalry, two incompatible monocular images compete for perceptual dominance, with one pattern temporarily suppressed from conscious awareness. We measured fMRI signals in early visual cortex while subjects viewed rival dichoptic images of two different contrasts; the contrast difference served as a 'tag' for the neuronal representations of the two monocular images. Activity in primary visual cortex (V1) increased when subjects perceived the higher contrast pattern and decreased when subjects perceived the lower contrast pattern. These fluctuations in V1 activity during rivalry were about 55% as large as those evoked by alternately presenting the two monocular images without rivalry. The rivalry-related fluctuations in V1 activity were roughly equal to those observed in other visual areas (V2, V3, V3a and V4v). These results challenge the view that the neuronal mechanisms responsible for binocular rivalry occur primarily in later visual areas.
Collapse
|
|
25 |
353 |
11
|
DeAngelis GC, Freeman RD, Ohzawa I. Length and width tuning of neurons in the cat's primary visual cortex. J Neurophysiol 1994; 71:347-74. [PMID: 8158236 DOI: 10.1152/jn.1994.71.1.347] [Citation(s) in RCA: 334] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. The classically defined receptive field of a visual neuron is the area of visual space over which the cell responds to visual stimuli. It is well established, however, that the discharge produced by an optimal stimulus can be modulated by the presence of additional stimuli that by themselves do not produce any response. This study examines inhibitory influences that originate from areas located outside of the classical (i.e., excitatory) receptive field. Previous work has shown that for some cells the response to a properly oriented bar of light becomes attenuated when the bar extends beyond the receptive field, a phenomenon known as end-inhibition (or length tuning). Analogously, it has been shown that increasing the number of cycles of a drifting grating stimulus may also inhibit the firing of some cells, an effect known as side-inhibition (or width tuning). Very little information is available, however, about the relationship between end- and side-inhibition. We have examined the spatial organization and tuning characteristics of these inhibitory effects by recording extracellularly from single neurons in the cat's striate cortex (Area 17). 2. For each cortical neuron, length and width tuning curves were obtained with the use of rectangular patches of drifting sinusoidal gratings that have variable length and width. Results from 82 cells show that the strengths of end- and side-inhibition tend to be correlated. Most cells that exhibit clear end-inhibition also show a similar degree of side-inhibition. For these cells, the excitatory receptive field is surrounded on all sides by inhibitory zones. Some cells exhibit only end- or side-inhibition, but not both. Data for 28 binocular cells show that length and width tuning curves for the dominant and nondominant eyes tend to be closely matched. 3. We also measured tuning characteristics of end- and side-inhibition. To obtain these data, the excitatory receptive field was stimulated with a grating patch having optimal orientation, spatial frequency, and size, whereas the end- or side-inhibitory regions were stimulated with patches of gratings that had a variable parameter (such as orientation). Results show that end- and side-inhibition tend to be strongest at the orientation and spatial frequency that yield maximal excitation. However, orientation and spatial frequency tuning curves for inhibition are considerably broader than those for excitation, suggesting that inhibition is mediated by a pool of neurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
31 |
334 |
12
|
McKee SP, Levi DM, Movshon JA. The pattern of visual deficits in amblyopia. J Vis 2003; 3:380-405. [PMID: 12875634 DOI: 10.1167/3.5.5] [Citation(s) in RCA: 318] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Indexed: 11/24/2022] Open
Abstract
Amblyopia is usually defined as a deficit in optotype (Snellen) acuity with no detectable organic cause. We asked whether this visual abnormality is completely characterized by the deficit in optotype acuity, or whether it has distinct forms that are determined by the conditions associated with the acuity loss, such as strabismus or anisometropia. To decide this issue, we measured optotype acuity, Vernier acuity, grating acuity, contrast sensitivity, and binocular function in 427 adults with amblyopia or with risk factors for amblyopia and in a comparison group of 68 normal observers. Optotype acuity accounts for much of the variance in Vernier and grating acuity, and somewhat less of the variance in contrast sensitivity. Nevertheless, there are differences in the patterns of visual loss among the clinically defined categories, particularly between strabismic and anisometropic categories. We used factor analysis to create a succinct representation of our measurement space. This analysis revealed two main dimensions of variation in the visual performance of our abnormal sample, one related to the visual acuity measures (optotype, Vernier, and grating acuity) and the other related to the contrast sensitivity measures (Pelli-Robson and edge contrast sensitivity). Representing our data in this space reveals distinctive distributions of visual loss for different patient categories, and suggests that two consequences of the associated conditions--reduced resolution and loss of binocularity--determine the pattern of visual deficit. Non-binocular observers with mild-to-moderate acuity deficits have, on average, better monocular contrast sensitivity than do binocular observers with the same acuity loss. Despite their superior contrast sensitivity, non-binocular observers typically have poorer optotype acuity and Vernier acuity, at a given level of grating acuity, than those with residual binocular function.
Collapse
|
|
22 |
318 |
13
|
Braddick O, Atkinson J, Wattam-Bell J. Normal and anomalous development of visual motion processing: motion coherence and 'dorsal-stream vulnerability'. Neuropsychologia 2003; 41:1769-84. [PMID: 14527540 DOI: 10.1016/s0028-3932(03)00178-7] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Directional motion processing is a pervasive and functionally important feature of the visual system. Behavioural and VEP studies indicate that it appears as a cortical function after about 7 weeks of age, with global processing, motion based segmentation, and the use of motion in complex perceptual tasks emerging shortly afterwards. A distinct, subcortical motion system controls optokinetic nystagmus (OKN) from birth, showing characteristic monocular asymmetries which disappear as binocular cortical function takes over in normal development. Asymmetries in cortical responses are linked to this interaction in a way that is not yet fully understood. Beyond infancy, a range of developmental disorders show a deficit of global motion compared to global form processing which we argue reflects a general 'dorsal-stream vulnerability'.
Collapse
|
Review |
22 |
311 |
14
|
Abstract
To understand conscious vision, scientists must elucidate how the brain selects specific visual signals for awareness. When different monocular patterns are presented to the two eyes, they rival for conscious expression such that only one monocular image is perceived at a time. Controversy surrounds whether this binocular rivalry reflects neural competition among pattern representations or monocular channels. Here we show that rivalry arises from interocular competition, using functional magnetic resonance imaging of activity in a monocular region of primary visual cortex corresponding to the blind spot. This cortical region greatly prefers stimulation of the ipsilateral eye to that of the blind-spot eye. Subjects reported their dominant percept while viewing rivalrous orthogonal gratings in the visual location corresponding to the blind spot and its surround. As predicted by interocular rivalry, the monocular blind-spot representation was activated when the ipsilateral grating became perceptually dominant and suppressed when the blind-spot grating became dominant. These responses were as large as those observed during actual alternations between the gratings, indicating that rivalry may be fully resolved in monocular visual cortex. Our findings provide the first physiological evidence, to our knowledge, that interocular competition mediates binocular rivalry, and indicate that V1 may be important in the selection and expression of conscious visual information.
Collapse
|
|
24 |
311 |
15
|
Abstract
Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3%-3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
309 |
16
|
Abstract
UNLABELLED A powerful paradigm (the pedestal-plus-test display) is combined with several subsidiary paradigms (interocular presentation, stimulus superpositions with varying phases, and attentional manipulations) to determine the functional architecture of visual motion perception: i.e. the nature of the various mechanisms of motion perception and their relations to each other. Three systems are isolated: a first-order system that uses a primitive motion energy computation to extract motion from moving luminance modulations; a second-order system that uses motion energy to extract motion from moving texture-contrast modulations; and a third-order system that tracks features. Pedestal displays exclude feature-tracking and thereby yield pure measures of the first- and second-order systems which are found to be exclusively monocular. Interocular displays exclude the first- and second-order systems and thereby to yield pure measures of feature-tracking. RESULTS both first- and second-order systems are fast (with temporal frequency cutoff at 12 Hz) and sensitive. Feature tracking operates interocularly almost as well as monocularly. It is slower (cutoff frequency is 3 Hz) and it requires much more stimulus contrast than the first- and second-order systems. Feature tracking is both bottom-up (it computes motion from luminance modulation, texture-contrast modulation, depth modulation, motion modulation, flicker modulation, and from other types of stimuli) and top-down--e.g. attentional instructions can determine the direction of perceived motion.
Collapse
|
|
30 |
296 |
17
|
Martinez-Conde S, Macknik SL, Troncoso XG, Dyar TA. Microsaccades Counteract Visual Fading during Fixation. Neuron 2006; 49:297-305. [PMID: 16423702 DOI: 10.1016/j.neuron.2005.11.033] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/29/2005] [Accepted: 11/09/2005] [Indexed: 11/28/2022]
Abstract
Our eyes move continually, even while we fixate our gaze on an object. If fixational eye movements are counteracted, our perception of stationary objects fades completely, due to neural adaptation. Some studies have suggested that fixational microsaccades refresh retinal images, thereby preventing adaptation and fading. However, other studies disagree, and so the role of microsaccades remains unclear. Here, we correlate visibility during fixation to the occurrence of microsaccades. We asked subjects to indicate when Troxler fading of a peripheral target occurs, while simultaneously recording their eye movements with high precision. We found that before a fading period, the probability, rate, and magnitude of microsaccades decreased. Before transitions toward visibility, the probability, rate, and magnitude of microsaccades increased. These results reveal a direct link between suppression of microsaccades and fading and suggest a causal relationship between microsaccade production and target visibility during fixation.
Collapse
|
|
19 |
289 |
18
|
Cumming BG, Parker AJ. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature 1997; 389:280-3. [PMID: 9305841 DOI: 10.1038/38487] [Citation(s) in RCA: 276] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The identification of brain regions that are associated with the conscious perception of visual stimuli is a major goal in neuroscience. Here we present a test of whether the signals on neurons in cortical area V1 correspond directly to our conscious perception of binocular stereoscopic depth. Depth perception requires that image features on one retina are first matched with appropriate features on the other retina. The mechanisms that perform this matching can be examined by using random-dot stereograms, in which the left and right eyes view randomly positioned but binocularly correlated dots. We exploit the fact that anticorrelated random-dot stereograms (in which dots in one eye are matched geometrically to dots of the opposite contrast in the other eye) do not give rise to the perception of depth because the matching process does not find a consistent solution. Anti-correlated random-dot stereograms contain binocular features that could excite neurons that have not solved the correspondence problem. We demonstrate that disparity-selective neurons in V1 signal the disparity of anticorrelated random-dot stereograms, indicating that they do not unambiguously signal stereoscopic depth. Hence single V1 neurons cannot account for the conscious perception of stereopsis, although combining the outputs of many V1 neurons could solve the matching problem. The accompanying paper suggests an additional function for disparity signals from V1: they may be important for the rapid involuntary control of vergence eye movements (eye movements that bring the images on the two foveae into register).
Collapse
|
|
28 |
276 |
19
|
Stellwagen D, Shatz CJ. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 2002; 33:357-67. [PMID: 11832224 DOI: 10.1016/s0896-6273(02)00577-9] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A central hypothesis of neural development is that patterned activity drives the refinement of initially imprecise connections. We have examined this hypothesis directly by altering the frequency of spontaneous waves of activity that sweep across the mammalian retina prior to vision. Activity levels were increased in vivo using agents that elevate cAMP. When one eye is made more active, its layer within the LGN is larger despite the other eye having normal levels of activity. Remarkably, when the frequency of retinal waves is increased in both eyes, normally sized layers form. Because relative, rather than absolute, levels of activity between the eyes regulate the amount of LGN territory devoted to each eye, we conclude that activity acts instructively to guide binocular segregation during development.
Collapse
|
|
23 |
265 |
20
|
Haynes JD, Deichmann R, Rees G. Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature 2005; 438:496-9. [PMID: 16244649 PMCID: PMC1351280 DOI: 10.1038/nature04169] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 08/22/2005] [Indexed: 11/08/2022]
Abstract
When dissimilar images are presented to the two eyes, they compete for perceptual dominance so that each image is visible in turn for a few seconds while the other is suppressed. Such binocular rivalry is associated with relative suppression of local, eye-based representations that can also be modulated by high-level influences such as perceptual grouping. However, it is currently unclear how early in visual processing the suppression of eye-based signals can occur. Here we use high-resolution functional magnetic resonance imaging (fMRI) in conjunction with a new binocular rivalry stimulus to show that signals recorded from the human lateral geniculate nucleus (LGN) exhibit eye-specific suppression during rivalry. Regions of the LGN that show strong eye-preference independently show strongly reduced activity during binocular rivalry when the stimulus presented in their preferred eye is perceptually suppressed. The human LGN is thus the earliest stage of visual processing that reflects eye-specific dominance and suppression.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
264 |
21
|
Abstract
A biological system is often more efficient when it takes advantage of the regularities in its environment. Like other terrestrial creatures, our spatial sense relies on the regularities associated with the ground surface. A simple, but important, ecological fact is that the field of view of the ground surface extends upwards from near (feet) to infinity (horizon). It forms the basis of a trigonometric relationship wherein the further an object on the ground is, the higher in the field of view it looks, with an object at infinity being seen at the horizon. Here, we provide support for the hypothesis that the visual system uses the angular declination below the horizon for distance judgement. Using a visually directed action task, we found that when the angular declination was increased by binocularly viewing through base-up prisms, the observer underestimated distance. After adapting to the same prisms, however, the observer overestimated distance on prism removal. Most significantly, we show that the distance overestimation as an after-effect of prism adaptation was due to a lowered perceived eye level, which reduced the object's angular declination below the horizon.
Collapse
|
|
24 |
258 |
22
|
Abstract
Binocular disparity provides the visual system with information concerning the three-dimensional layout of the environment. Recent physiological studies in the primary visual cortex provide a successful account of the mechanisms by which single neurons are able to signal disparity. This work also reveals that additional processing is required to make explicit the types of signal required for depth perception (such as the ability to match features correctly between the two monocular images). Some of these signals, such as those encoding relative disparity, are found in extrastriate cortex. Several other lines of evidence also suggest that the link between perception and neuronal activity is stronger in extrastriate cortex (especially MT) than in the primary visual cortex.
Collapse
|
Review |
24 |
256 |
23
|
Williams MA, Morris AP, McGlone F, Abbott DF, Mattingley JB. Amygdala responses to fearful and happy facial expressions under conditions of binocular suppression. J Neurosci 2004; 24:2898-904. [PMID: 15044528 PMCID: PMC6729857 DOI: 10.1523/jneurosci.4977-03.2004] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human amygdala plays a crucial role in processing affective information conveyed by sensory stimuli. Facial expressions of fear and anger, which both signal potential threat to an observer, result in significant increases in amygdala activity, even when the faces are unattended or presented briefly and masked. It has been suggested that afferent signals from the retina travel to the amygdala via separate cortical and subcortical pathways, with the subcortical pathway underlying unconscious processing. Here we exploited the phenomenon of binocular rivalry to induce complete suppression of affective face stimuli presented to one eye. Twelve participants viewed brief, rivalrous visual displays in which a fearful, happy, or neutral face was presented to one eye while a house was presented simultaneously to the other. We used functional magnetic resonance imaging to study activation in the amygdala and extrastriate visual areas for consciously perceived versus suppressed face and house stimuli. Activation within the fusiform and parahippocampal gyri increased significantly for perceived versus suppressed faces and houses, respectively. Amygdala activation increased bilaterally in response to fearful versus neutral faces, regardless of whether the face was perceived consciously or suppressed because of binocular rivalry. Amygdala activity also increased significantly for happy versus neutral faces, but only when the face was suppressed. This activation pattern suggests that the amygdala has a limited capacity to differentiate between specific facial expressions when it must rely on information received via a subcortical route. We suggest that this limited capacity reflects a tradeoff between specificity and speed of processing.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
256 |
24
|
Mrsic-Flogel TD, Hofer SB, Ohki K, Reid RC, Bonhoeffer T, Hübener M. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 2007; 54:961-72. [PMID: 17582335 DOI: 10.1016/j.neuron.2007.05.028] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 03/27/2007] [Accepted: 05/31/2007] [Indexed: 11/15/2022]
Abstract
Experience-dependent plasticity is crucial for the precise formation of neuronal connections during development. It is generally thought to depend on Hebbian forms of synaptic plasticity. In addition, neurons possess other, homeostatic means of compensating for changes in sensory input, but their role in cortical plasticity is unclear. We used two-photon calcium imaging to investigate whether homeostatic response regulation contributes to changes of eye-specific responsiveness after monocular deprivation (MD) in mouse visual cortex. Short MD durations decreased deprived-eye responses in neurons with binocular input. Longer MD periods strengthened open-eye responses, and surprisingly, also increased deprived-eye responses in neurons devoid of open-eye input. These bidirectional response adjustments effectively preserved the net visual drive for each neuron. Our finding that deprived-eye responses were either weaker or stronger after MD, depending on the amount of open-eye input a cell received, argues for both Hebbian and homeostatic mechanisms regulating neuronal responsiveness during experience-dependent plasticity.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
255 |
25
|
Wann JP, Rushton S, Mon-Williams M. Natural problems for stereoscopic depth perception in virtual environments. Vision Res 1995; 35:2731-6. [PMID: 7483313 DOI: 10.1016/0042-6989(95)00018-u] [Citation(s) in RCA: 253] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The use of virtual reality (VR) display systems has escalated over the last 5 yr and may have consequences for those working within vision research. This paper provides a brief review of the literature pertaining to the representation of depth in stereoscopic VR displays. Specific attention is paid to the response of the accommodation system with its cross-links to vergence eye movements, and to the spatial errors that arise when portraying three-dimensional space on a two-dimensional window. It is suggested that these factors prevent large depth intervals of three-dimensional visual space being rendered with integrity through dual two-dimensional arrays.
Collapse
|
Review |
30 |
253 |