1
|
Abstract
Evidence for the presence of the vitamin D receptor in brain implies this vitamin may have some function in this organ. This study investigates whether vitamin D(3) acts during brain development. We demonstrate that rats born to vitamin D(3)-deficient mothers had profound alterations in the brain at birth. The cortex was longer but not wider, the lateral ventricles were enlarged, the cortex was proportionally thinner and there was more cell proliferation throughout the brain. There were reductions in brain content of nerve growth factor and glial cell line-derived neurotrophic factor and reduced expression of p75(NTR), the low-affinity neurotrophin receptor. Our findings would suggest that low maternal vitamin D(3) has important ramifications for the developing brain.
Collapse
|
|
22 |
404 |
2
|
Holick MF. The vitamin D deficiency pandemic and consequences for nonskeletal health: mechanisms of action. Mol Aspects Med 2008; 29:361-8. [PMID: 18801384 PMCID: PMC2629072 DOI: 10.1016/j.mam.2008.08.008] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
Vitamin D, the sunshine vitamin, is important for childhood bone health. Over the past two decades, it is now recognized that vitamin D not only is important for calcium metabolism and maintenance of bone health throughout life, but also plays an important role in reducing risk of many chronic diseases including type I diabetes, multiple sclerosis, rheumatoid arthritis, deadly cancers, heart disease and infectious diseases. How vitamin D is able to play such an important role in health is based on observation that all tissues and cells in the body have a vitamin D receptor, and, thus, respond to its active form 1,25-dihydroxyvitamin D. However, this did not explain how living at higher latitudes and being at risk of vitamin D deficiency increased risk of these deadly diseases since it was also known that the 1,25-dihydroxyvitamin D levels are normal or even elevated when a person is vitamin D insufficient. Moreover, increased intake of vitamin D or exposure to more sunlight will not induce the kidneys to produce more 1,25-dihydroxyvitamin D. The revelation that the colon, breast, prostate, macrophages and skin among other organs have the enzymatic machinery to produce 1,25-dihydroxyvitamin D provides further insight as to how vitamin D plays such an essential role for overall health and well being. This review will put into perspective many of the new biologic actions of vitamin D and on how 1,25-dihydroxyvitamin D is able to regulate directly or indirectly more than 200 different genes that are responsible for a wide variety of biologic processes.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
242 |
3
|
Arabi A, El Rassi R, El-Hajj Fuleihan G. Hypovitaminosis D in developing countries-prevalence, risk factors and outcomes. Nat Rev Endocrinol 2010; 6:550-61. [PMID: 20852586 DOI: 10.1038/nrendo.2010.146] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypovitaminosis D is a prevalent disorder in developing countries. Clinical manifestations of hypovitaminosis D include musculoskeletal disorders, such as nonspecific muscle pain, poor muscle strength and low BMD, as well as nonmusculoskeletal disorders, such as an increased risk of respiratory infections, diabetes mellitus and possibly cardiovascular diseases. In developing countries, the prevalence of hypovitaminosis D varies widely by and within regions; prevalence ranges between 30-90%, according to the cut-off value used within specific regions, and is independent of latitude. A high prevalence of the disorder exists in China and Mongolia, especially in children, of whom up to 50% are reported to have serum 25-hydroxyvitamin D levels <12.5 nmol/l. Despite ample sunshine throughout the year, one-third to one-half of individuals living in Sub-Saharan Africa and the Middle East have serum 25-hydroxyvitamin D levels <25 nmol/l, according to studies published in the past decade. Hypovitaminosis D is also prevalent in children and the elderly living in Latin America. Risk factors for hypovitaminosis D in developing countries are similar to those reported in Western countries and include extremes of age, female sex, winter season, dark skin pigmentation, malnutrition, lack of sun exposure, a covered clothing style and obesity. Clinical trials to assess the effect of vitamin D supplementation on classical and nonclassical clinical outcomes in developing countries are needed.
Collapse
|
Review |
15 |
233 |
4
|
Féron F, Burne THJ, Brown J, Smith E, McGrath JJ, Mackay-Sim A, Eyles DW. Developmental Vitamin D3 deficiency alters the adult rat brain. Brain Res Bull 2005; 65:141-8. [PMID: 15763180 DOI: 10.1016/j.brainresbull.2004.12.007] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 10/28/2004] [Accepted: 12/14/2004] [Indexed: 12/13/2022]
Abstract
There is growing evidence that Vitamin D(3) (1,25-dihydroxyvitamin D(3)) is involved in brain development. We have recently shown that the brains of newborn rats from Vitamin D(3) deficient dams were larger than controls, had increased cell proliferation, larger lateral ventricles, and reduced cortical thickness. Brains from these animals also had reduced expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor. The aim of the current study was to examine if there were any permanent outcomes into adulthood when the offspring of Vitamin D(3) deficient dams were restored to a normal diet. The brains of adult rats were examined at 10 weeks of age after Vitamin D(3) deficiency until birth or weaning. Compared to controls animals that were exposed to transient early Vitamin D(3) deficiency had larger lateral ventricles, reduced NGF protein content, and reduced expression of a number genes involved in neuronal structure, i.e. neurofilament or MAP-2 or neurotransmission, i.e. GABA-A(alpha4). We conclude that transient early life hypovitaminosis D(3) not only disrupts brain development but leads to persistent changes in the adult brain. In light of the high incidence of hypovitaminosis D(3) in women of child-bearing age, the public health implications of these findings warrant attention.
Collapse
|
|
20 |
203 |
5
|
Narvaez CJ, Matthews D, Broun E, Chan M, Welsh J. Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue. Endocrinology 2009; 150:651-61. [PMID: 18845643 PMCID: PMC2646525 DOI: 10.1210/en.2008-1118] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increased adiposity is a feature of aging in both mice and humans, but the molecular mechanisms underlying age-related changes in adipose tissue stores remain unclear. In previous studies, we noted that 18-month-old normocalcemic vitamin D receptor (VDR) knockout (VDRKO) mice exhibited atrophy of the mammary adipose compartment relative to wild-type (WT) littermates, suggesting a role for VDR in adiposity. Here we monitored body fat depots, food intake, metabolic factors, and gene expression in WT and VDRKO mice on the C57BL6 and CD1 genetic backgrounds. Regardless of genetic background, both sc and visceral white adipose tissue depots were smaller in VDRKO mice than WT mice. The lean phenotype of VDRKO mice was associated with reduced serum leptin and compensatory increased food intake. Similar effects on adipose tissue, leptin and food intake were observed in mice lacking Cyp27b1, the 1alpha-hydroxylase enzyme that generates 1,25-dihydroxyvitamin D(3), the VDR ligand. Although VDR ablation did not reduce expression of peroxisome proliferator-activated receptor-gamma or fatty acid synthase, PCR array screening identified several differentially expressed genes in white adipose tissue from WT and VDRKO mice. Uncoupling protein-1, which mediates dissociation of cellular respiration from energy production, was greater than 25-fold elevated in VDRKO white adipose tissue. Consistent with elevation in uncoupling protein-1, VDRKO mice were resistant to high-fat diet-induced weight gain. Collectively, these studies identify a novel role for 1,25-dihydroxyvitamin D(3) and the VDR in the control of adipocyte metabolism and lipid storage in vivo.
Collapse
|
Comparative Study |
16 |
190 |
6
|
Lim C, Lovell RT. Pathology of the vitamin C deficiency syndrome in channel catfish (Ictalurus punctatus). J Nutr 1978; 108:1137-46. [PMID: 660305 DOI: 10.1093/jn/108.7.1137] [Citation(s) in RCA: 185] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Channel catfish fingerlings fed purified diets devoid of vitamin C showed reduced growth rate, deformed spinal columns, external and internal hemorrhages, erosion of fins, dark skin color and reduced bone collagen content after 8 to 12 weeks, whereas fish fed a diet containing 30 mg/kg of vitamin C had none of these anomalies after 22 weeks. A dietary level of 30 mg of vitamin C per kg was insufficient to prevent distortion of gill filament cartilage, although 60 mg of vitamin C per kg was sufficient. Vertebral collagen percentages of 25 or below and liver ascorbic acid levels of 30 microgram/g or below appeared to be indicative of vitamin C deficiency in channel catfish fingerlings. Epidermis and dermis were almost completely healed and extensive collagen fiber formation had commenced in the somatic muscle, in experimentally inflicted wounds after 10 days in fish fed the vitamin C-free diet. Skin and muscle at the wound site were almost regenerated to normal after 10 days in fish fed 60 mg of vitamin C per kg of diet.
Collapse
|
|
47 |
185 |
7
|
Ceglia L, Niramitmahapanya S, da Silva Morais M, Rivas DA, Harris SS, Bischoff-Ferrari H, Fielding RA, Dawson-Hughes B. A randomized study on the effect of vitamin D₃ supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. J Clin Endocrinol Metab 2013; 98:E1927-35. [PMID: 24108316 PMCID: PMC3849671 DOI: 10.1210/jc.2013-2820] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Studies examining whether vitamin D supplementation increases muscle mass or muscle-specific vitamin D receptor (VDR) concentration are lacking. OBJECTIVE Our objective was to determine whether vitamin D₃ 4000 IU/d alters muscle fiber cross-sectional area (FCSA) and intramyonuclear VDR concentration over 4 months. DESIGN AND SETTING This was a randomized, double-blind, placebo-controlled study in a single center. PARTICIPANTS Participants were 21 mobility-limited women (aged ≥ 65 years) with serum 25-hydroxyvitamin D (25OHD) levels of 22.5 to 60 nmol/L. MAIN OUTCOME MEASURES Baseline and 4-month FCSA and intramyonuclear VDR were measured from vastus lateralis muscle cross-sections probed for muscle fiber type (I/IIa/IIx) and VDR using immunofluorescence. RESULTS At baseline, mean (±SD) age was 78 ± 5 years; body mass index was 27 ± 5 kg/m², 25OHD was 46.3 ± 9.5 nmol/L, and a short physical performance battery score was 7.95 ± 1.57 out of 12. At 4 months, 25OHD level was 52.5 ± 17.1 (placebo) vs 80.0 ± 11.5 nmol/L (vitamin D [VD]; P < .01), and change in 25OHD level was strongly associated with percent change in intramyonuclear VDR concentration-independent of group (r = 0.87, P < .001). By treatment group, percent change in intramyonuclear VDR concentration was 7.8% ± 18.2% (placebo) vs 29.7% ± 11.7% (VD; P = .03) with a more pronounced group difference in type II vs I fibers. Percent change in total (type I/II) FCSA was -7.4% ± 18.9% (placebo) vs 10.6% ± 20.0% (VD; P = .048). CONCLUSION Vitamin D₃ supplementation increased intramyonuclear VDR concentration by 30% and increased muscle fiber size by 10% in older, mobility-limited, vitamin D-insufficient women. Further work is needed to determine whether the observed effect of vitamin D on fiber size is mediated by the VDR and to identify which signaling pathways are involved.
Collapse
|
Randomized Controlled Trial |
12 |
179 |
8
|
Van den Berghe G, Van Roosbroeck D, Vanhove P, Wouters PJ, De Pourcq L, Bouillon R. Bone turnover in prolonged critical illness: effect of vitamin D. J Clin Endocrinol Metab 2003; 88:4623-32. [PMID: 14557432 DOI: 10.1210/jc.2003-030358] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In prolonged critical illness, increased bone resorption and osteoblast dysfunction have been reported facing low 25 hydroxy vitamin D [25(OH)D] concentrations. The current study investigates the extent to which lack of nutritional vitamin D and time in intensive care contribute to bone loss in the critically ill. Prolonged critically ill patients (n = 22) were compared with matched controls and then randomized to daily vitamin D supplement of either +/- 200 IU (low dose) or +/- 500 IU (high dose). At intensive care admission, serum concentrations of 25(OH)D, 1,25 dihydroxyvitamin D(3), vitamin D-binding protein, ionized calcium, IL-1, and soluble IL-6-receptor were low, and PTH was normal. Circulating type-I collagen propeptides were high, alkaline phosphatase was normal, and osteocalcin was low. Bone resorption markers [(carboxy terminal cross-linked telopeptide of type I collagen (betaCTX), pyridinoline, deoxypyridinoline (DPD)] were 6-fold increased. Serum C-reactive protein (CRP) was 40-fold, IL-6 400-fold, TNFalpha levels 5-fold, and osteoprotegerin concentrations 3-fold higher than in controls. Soluble receptor activator of nuclear factor kappaB ligand was undetectable. High-dose vitamin D only slightly increased circulating 25 hydroxy vitamin D (P < 0.05), but 1,25 dihydroxyvitamin D(3) was unaltered. High-dose vitamin D slightly increased serum osteocalcin (P < 0.05) and decreased carboxy terminal propeptide type-I collagen (P < 0.05) but did not affect other bone turnover markers. Bone-specific alkaline phosphatase, urinary pyridinoline and DPD, and serum betaCTX markedly increased with time (P < 0.01). Circulating CRP and IL-6 decreased with time, whereas TNFalpha and IL-1 remained unaltered. The fall in CRP and IL-6 was more pronounced with the high- than low-dose vitamin D (P < 0.05). Except for a mirroring of betaCTX rise by a fall in osteoprotegerin, cytokines were unrelated to the progressively aggravating bone resorption. In conclusion, prolonged critically ill patients were vitamin D deficient. The currently recommended vitamin D dose did not normalize vitamin D status. Furthermore, severe bone hyperresorption further aggravated (up to 15-fold the normal values) with time in intensive care and was associated with impaired osteoblast function.
Collapse
|
Clinical Trial |
22 |
179 |
9
|
Wimalawansa SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J Steroid Biochem Mol Biol 2018; 175:177-189. [PMID: 27662816 DOI: 10.1016/j.jsbmb.2016.09.017] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/23/2022]
Abstract
The aim of this study is to determine the relationships of vitamin D with diabetes, insulin resistance obesity, and metabolic syndrome. Intra cellular vitamin D receptors and the 1-α hydroxylase enzyme are distributed ubiquitously in all tissues suggesting a multitude of functions of vitamin D. It plays an indirect but an important role in carbohydrate and lipid metabolism as reflected by its association with type 2 diabetes (T2D), metabolic syndrome, insulin secretion, insulin resistance, polycystic ovarian syndrome, and obesity. Peer-reviewed papers, related to the topic were extracted using key words, from PubMed, Medline, and other research databases. Correlations of vitamin D with diabetes, insulin resistance and metabolic syndrome were examined for this evidence-based review. In addition to the well-studied musculoskeletal effects, vitamin D decreases the insulin resistance, severity of T2D, prediabetes, metabolic syndrome, inflammation, and autoimmunity. Vitamin D exerts autocrine and paracrine effects such as direct intra-cellular effects via its receptors and the local production of 1,25(OH)2D3, especially in muscle and pancreatic β-cells. It also regulates calcium homeostasis and calcium flux through cell membranes, and activation of a cascade of key enzymes and cofactors associated with metabolic pathways. Cross-sectional, observational, and ecological studies reported inverse correlations between vitamin D status with hyperglycemia and glycemic control in patients with T2D, decrease the rate of conversion of prediabetes to diabetes, and obesity. However, no firm conclusions can be drawn from current studies, because (A) studies were underpowered; (B) few were designed for glycemic outcomes, (C) the minimum (or median) serum 25(OH) D levels achieved are not measured or reported; (D) most did not report the use of diabetes medications; (E) some trials used too little (F) others used too large, unphysiological and infrequent doses of vitamin D; and (G) relative paucity of rigorous clinical data on the effects of vitamin D sufficiency on non-calcium endpoints. Although a large number of observational studies support improving T2D, insulin resistance, obesity, and metabolic syndrome with vitamin D adequacy, there is a lack of conclusive evidence from randomized control clinical trials that, these disorders are prevented following optimization of serum levels of 25(OH)D. However, none of the currently conducted clinical studies would resolve these issues. Thus, specifically designed, new clinical studies are needed to be conducted in well-defined populations, following normalizing the serum vitamin D levels in vitamin D deficient prediabetes subjects, to test the hypothesis that hypovitaminosis D worsens these disorders and correction would alleviate it.
Collapse
|
Review |
7 |
177 |
10
|
Assa A, Vong L, Pinnell LJ, Avitzur N, Johnson-Henry KC, Sherman PM. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. J Infect Dis 2014; 210:1296-305. [PMID: 24755435 DOI: 10.1093/infdis/jiu235] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vitamin D, an important modulator of the immune system, has been shown to protect mucosal barrier homeostasis. This study investigates the effects of vitamin D deficiency on infection-induced changes in intestinal epithelial barrier function in vitro and on Citrobacter rodentium-induced colitis in mice. METHODS Polarized epithelial Caco2-bbe cells were grown in medium with or without vitamin D and challenged with enterohemorrhagic Escherichia coli O157:H7. Barrier function and tight junction protein expression were assessed. Weaned C57BL/6 mice were fed either a vitamin D-sufficient or vitamin D-deficient diet and then infected with C. rodentium. Disease severity was assessed by histological analysis, intestinal permeability assay, measurement of inflammatory cytokine levels, and microbiome analysis. RESULTS 1,25(OH)2D3 altered E. coli O157:H7-induced reductions in transepithelial electrical resistance (P < .01), decreased permeability (P < .05), and preserved barrier integrity. Vitamin D-deficient mice challenged with C. rodentium demonstrated increased colonic hyperplasia and epithelial barrier dysfunction (P < .0001 and P < .05, respectively). Vitamin D deficiency resulted in an altered composition of the fecal microbiome both in the absence and presence of C. rodentium infection. CONCLUSIONS This study demonstrates that vitamin D is an important mediator of intestinal epithelial defenses against infectious agents. Vitamin D deficiency predisposes to more-severe intestinal injury in an infectious model of colitis.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
171 |
11
|
Giulietti A, Gysemans C, Stoffels K, van Etten E, Decallonne B, Overbergh L, Bouillon R, Mathieu C. Vitamin D deficiency in early life accelerates Type 1 diabetes in non-obese diabetic mice. Diabetologia 2004; 47:451-462. [PMID: 14758446 DOI: 10.1007/s00125-004-1329-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2003] [Revised: 11/27/2003] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS 1,25-dihydroxyvitamin D(3), the active form of vitamin D, prevents Type 1 diabetes in non-obese diabetic (NOD) mice. Epidemiological data show a threefold increase in human Type 1 diabetes when vitamin D deficiency was present in the first months of life. To evaluate whether a similar dietary deficiency affects diabetes incidence in NOD mice, we generated NOD mice with vitamin D deficiency in early life. METHODS Breeding pairs of NOD mice, as well as their offspring (test mice), were kept in surroundings devoid of ultraviolet light and were fed a vitamin D-depleted diet for 100 days. Mice were followed for 250 days. RESULTS At 250 days, 35% (12/35) male and 66% (22/33) female vitamin D-deficient mice were diabetic compared to 15% (6/40, p=0.05) and 45% (13/29, p<0.01) of the control mice. At 100 days no difference in insulitis was seen, but more vitamin D-deficient mice were glucose intolerant. Higher IL1 expression was detected in islets of vitamin D-deficient mice and their peritoneal macrophages had an aberrant cytokine profile (low IL1 and IL6, high IL15). Thymus and lymph nodes of vitamin D-deficient mice contained less CD4(+)CD62L(+) cells. CONCLUSION/INTERPRETATION Vitamin D status increases the expression of Type 1 diabetes in NOD mice. Our data in NOD mice, as well as human epidemiological data, point to the importance of preventing vitamin D deficiency in early childhood. Controlling this dietary factor could be an easy and safe way to reduce the incidence of Type 1 diabetes in subjects who are genetically at risk.
Collapse
|
|
21 |
147 |
12
|
Felson DT, Niu J, Clancy M, Aliabadi P, Sack B, Guermazi A, Hunter DJ, Amin S, Rogers G, Booth SL. Low levels of vitamin D and worsening of knee osteoarthritis: results of two longitudinal studies. ACTA ACUST UNITED AC 2007; 56:129-36. [PMID: 17195215 DOI: 10.1002/art.22292] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To confirm reports that 25-hydroxyvitamin D (25[OH]D) deficiency is associated with an increased risk of joint space narrowing or cartilage loss in osteoarthritis (OA). METHODS We measured 25(OH)D levels in subjects from 2 longitudinal cohort studies, the Framingham Osteoarthritis Study and the Boston Osteoarthritis of the Knee Study (BOKS). In the first, weight-bearing anteroposterior (AP) and lateral knee radiographs were obtained on subjects in 1993-1994 and again in 2002-2005 (mean interval 9 years); blood was drawn for measurement of vitamin D status in 1996-2000. In the second, subjects with symptomatic knee OA participating in a natural history study had fluoroscopically positioned semiflexed posteroanterior (PA) and lateral radiography of both knees and magnetic resonance imaging (MRI) of the more symptomatic knee performed at baseline and at 15 and 30 months. Blood was drawn at all visits, and the baseline specimen was used when available. In both studies, we defined radiographic worsening based on joint space loss in the tibiofemoral joint on either AP/PA or lateral weight-bearing views, using a semiquantitative scale (worsening defined as increase by > or =1 on a 0-3 scale). In the BOKS, we evaluated cartilage loss semiquantitatively, using the Whole-Organ Magnetic Resonance Imaging Score. In both studies, 25(OH)D levels were measured by radioimmunoassay. Analyses focused on whether vitamin D levels, defined in tertiles or as deficient (25[OH]D <20 ng/ml) versus nondeficient, predicted worsening of OA. Logistic regression analysis adjusted for age, body mass index, sex, and baseline OA level was used. RESULTS The 715 subjects in the Framingham Study had a mean 25(OH)D level of 20 ng/ml at baseline, and 20.3% of the knees showed worsening, during the course of the study, with most knees having had no evidence of OA at baseline. The 277 subjects with OA in the BOKS had a mean 25(OH)D level of 20 ng/ml at baseline with 23.6% of knees showing radiographic worsening. We found no association of baseline 25(OH)D levels with radiographic worsening in either cohort, and confidence limits in the analyses of vitamin D deficiency were narrow, suggesting that results were not based on insufficient power. In fact, the risk of worsening was slightly, but not significantly, lower in persons with low levels of vitamin D than in persons with higher levels. In the BOKS, vitamin D levels were unrelated to cartilage loss seen on MRI. CONCLUSION The findings indicate that vitamin D status is unrelated to the risk of joint space or cartilage loss in knee OA.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
121 |
13
|
Henry HL, Taylor AN, Norman AW. Response of chick parathyroid glands to the vitamin D metabolites, 1,25-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol. J Nutr 1977; 107:1918-26. [PMID: 903834 DOI: 10.1093/jn/107.10.1918] [Citation(s) in RCA: 115] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
|
48 |
115 |
14
|
Balden R, Selvamani A, Sohrabji F. Vitamin D deficiency exacerbates experimental stroke injury and dysregulates ischemia-induced inflammation in adult rats. Endocrinology 2012; 153:2420-35. [PMID: 22408173 PMCID: PMC3339639 DOI: 10.1210/en.2011-1783] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vitamin D deficiency (VDD) is widespread and considered a risk factor for cardiovascular disease and stroke. Low vitamin D levels are predictive for stroke and more fatal strokes in humans, whereas vitamin D supplements are associated with decreased risk of all-cause mortality. Because VDD occurs with other comorbid conditions that are also independent risk factors for stroke, this study examined the specific effect of VDD on stroke severity in rats. Adult female rats were fed control or VDD diet for 8 wk and were subject to middle cerebral artery occlusion thereafter. The VDD diet reduced circulating vitamin D levels to one fifth (22%) of that observed in rats fed control chow. Cortical and striatal infarct volumes in animals fed VDD diet were significantly larger, and sensorimotor behavioral testing indicated that VDD animals had more severe poststroke behavioral impairment than controls. VDD animals were also found to have significantly lower levels of the neuroprotective hormone IGF-I in plasma and the ischemic hemisphere. Cytokine analysis indicated that VDD significantly reduced IL-1α, IL-1β, IL-2, IL-4, IFN-γ, and IL-10 expression in ischemic brain tissue. However, ischemia-induced IL-6 up-regulation was significantly higher in VDD animals. In a separate experiment, the therapeutic potential of acute vitamin D treatments was evaluated, where animals received vitamin D injections 4 h after stroke and every 24 h thereafter. Acute vitamin D treatment did not improve infarct volume or behavioral performance. Our data indicate that VDD exacerbates stroke severity, involving both a dysregulation of the inflammatory response as well as suppression of known neuroprotectants such as IGF-I.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
107 |
15
|
Yiu YF, Chan YH, Yiu KH, Siu CW, Li SW, Wong LY, Lee SWL, Tam S, Wong EWK, Cheung BMY, Tse HF. Vitamin D deficiency is associated with depletion of circulating endothelial progenitor cells and endothelial dysfunction in patients with type 2 diabetes. J Clin Endocrinol Metab 2011; 96:E830-5. [PMID: 21325459 DOI: 10.1210/jc.2010-2212] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Vitamin D (Vit-D) deficiency is associated with type 2 diabetes mellitus (DM) and endothelial dysfunction. The relationship of Vit-D deficiency with circulating endothelial progenitor cells and endothelial dysfunction in type 2 DM patients nonetheless remains unclear. OBJECTIVE We aimed to investigate the cross-sectional association of Vit-D status with brachial flow-mediated dilation (FMD) and circulating endothelial progenitor cell (EPC) numbers in type 2 DM patients. DESIGN, SETTING, AND PARTICIPANTS We conducted a cross-sectional study of 280 patients (59% male, aged 68 ± 10 yr) with type 2 DM recruited in outpatient clinics during the winter period. MAIN OUTCOME MEASURE We measured serum 25-hydroxyvitamin D [25(OH)D] by an ELISA kit, circulating CD34+/kinase insert domain-containing receptor (KDR)+ and CD133+/KDR+ EPCs by flow cytometry and brachial artery FMD by vascular ultrasound, respectively. RESULTS The mean serum 25(OH)D concentration was 25.00 ± 9.17 ng/ml, and 34.3% of patients had Vit-D deficiency [25(OH)D < 20 ng/ml]. Serum 25(OH)D concentration had a significant correlation with hemoglobin A1c level [B = -0.018, 95% confidence interval (CI) -0.035 to -0.002, P = 0.032]. Patients with Vit-D deficiency status had significantly lower brachial FMD (mean difference -1.43%, 95% CI -2.31 to -0.55, P = 0.001) and CD133+/KDR+EPC counts (mean difference -0.12%, 95% CI -0.21 to -0.019, P = 0.022) than those with sufficient Vit-D status after adjustment for age, sex, and cardiovascular risk factors, including hemoglobin A1c levels. CONCLUSIONS Our results demonstrate that serum 25(OH)D status was significantly associated with brachial artery FMD and circulating CD133+/KDR+EPCs. This suggests that Vit-D deficiency might contribute to depletion of EPCs and endothelial dysfunction in patients with type 2 DM.
Collapse
|
|
14 |
105 |
16
|
Quesada-Gomez JM, Entrenas-Castillo M, Bouillon R. Vitamin D receptor stimulation to reduce acute respiratory distress syndrome (ARDS) in patients with coronavirus SARS-CoV-2 infections: Revised Ms SBMB 2020_166. J Steroid Biochem Mol Biol 2020; 202:105719. [PMID: 32535032 PMCID: PMC7289092 DOI: 10.1016/j.jsbmb.2020.105719] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus infection is a serious health problem awaiting an effective vaccine and/or antiviral treatment. The major complication of coronavirus disease 2019 (COVID-19), the Acute Respiratory Distress syndrome (ARDS), is due to a variety of mechanisms including cytokine storm, dysregulation of the renin-angiotensin system, neutrophil activation and increased (micro)coagulation. Based on many preclinical studies and observational data in humans, ARDS may be aggravated by vitamin D deficiency and tapered down by activation of the vitamin D receptor. Several randomized clinical trials using either oral vitamin D or oral Calcifediol (25OHD) are ongoing. Based on a pilot study, oral calcifediol may be the most promising approach. These studies are expected to provide guidelines within a few months.
Collapse
|
Review |
5 |
102 |
17
|
Coen G, Mantella D, Manni M, Balducci A, Nofroni I, Sardella D, Ballanti P, Bonucci E. 25-hydroxyvitamin D levels and bone histomorphometry in hemodialysis renal osteodystrophy. Kidney Int 2005; 68:1840-8. [PMID: 16164662 DOI: 10.1111/j.1523-1755.2005.00603.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The importance of 25-hydroxyvitamin D (25-OHD) serum levels in hemodialysis chronic renal failure has not been so far histologically evaluated. Information still lacking relate to the effect of 25-OHD deficiency on serum parathyroid hormone (PTH) levels and on bone and its relationship with calcitriol levels. METHODS This retrospective study has been performed on a cohort of 104 patients on hemodialysis from more than 12 months, subjected to transiliac bone biopsy for histologic, histomorphometric, and histodynamic evaluation. The patients, 61 males and 43 females, mean age 52.9 +/- 11.7 years, hemodialysis length 97.4 +/- 61.4 months, were treated with standard hemodialysis and did not receive any vitamin D supplementation. Treatment with calcitriol was not underway at the time of the biopsy. Transiliac bone biopsies were performed after double tetracycline labels. In addition, serum intact PTH (iPTH), alkaline phosphatase, and 25-OHD were measured. Calcitriol serum levels was also measured in a subset of patients (N= 53). The patients were divided according to serum 25-OHD levels in three groups: (1) 0 to 15 (15 patients), (2) 15 to 30 (38 patients), and (3) >30 ng/mL (51 patients). RESULTS There was no significant difference in average age, hemodialysis age, serum PTH [490 +/- 494, 670 +/- 627, and 489 +/- 436 pg/mL, respectively (mean +/- SD)], alkaline phosphatase, and calcitriol between the three groups. The parameters double-labeled surface, trabecular mineralizing surface, and bone formation rate were significantly lower in group 1 than in the other groups (P < 0.03, < 0.03, and < 0.02, respectively). Osteoblast surface and adjusted apposition rate were borderline significantly lower in group 1 (P < 0.06 and < 0.10). There was no statistical difference in the biochemical and bone parameters between groups 2 and 3. A positive significant correlation was found between several bone static and dynamic parameters and 25-OHD levels in the range 0 to 30 ng/mL, showing a vitamin D dependence of bone turnover at these serum levels. However, actual evidence of an effect on bone of 25-OHD deficiency was found at serum levels below 20 ng/mL. With increasing 25-OHD levels beyond 40 ng/mL, a downslope of parameters of bone turnover was also observed. CONCLUSION Since PTH serum levels are equally elevated in low and high 25-OHD patients, while calcitriol levels are constantly low, an effect of 25-OHD deficiency (group 1) on bone, consisting of a mineralization and bone formation defect, can be hypothesized. The effect of vitamin D deficiency or bone turnover is found below 20 ng/mL. The optimal level of 25-OHD appears to be in the order of 20 to 40 ng/mL. Levels of the D metabolite higher than 40 ng/mL are accompanied by a reduction of bone turnover.
Collapse
|
|
20 |
97 |
18
|
Abstract
Vitamin D is currently one of the hottest topics in research and clinics, as well as in everyday life. Over the past decades, scientists gathered overwhelming evidence indicating that the observed global vitamin D deficiency not only has a negative impact on human skeletal system, but also facilitates development and progression of multiple disease of civilization, including cardiovascular diseases, diabetes, autoimmune disease, and cancer. This Special Issue, entitled “Vitamin D and Human Health”, summarizes recent advances in our understanding of pleiotropic activity of vitamin D in the form of eight comprehensive reviews. Furthermore, eight research papers provide new insight into vitamin D research and highlight new directions.
Collapse
|
Introductory Journal Article |
6 |
94 |
19
|
Della Corte C, Carpino G, De Vito R, De Stefanis C, Alisi A, Cianfarani S, Overi D, Mosca A, Stronati L, Cucchiara S, Raponi M, Gaudio E, Byrne CD, Nobili V. Docosahexanoic Acid Plus Vitamin D Treatment Improves Features of NAFLD in Children with Serum Vitamin D Deficiency: Results from a Single Centre Trial. PLoS One 2016; 11:e0168216. [PMID: 27977757 PMCID: PMC5158039 DOI: 10.1371/journal.pone.0168216] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There are no licensed treatments for non alcoholic fatty liver disease (NAFLD) in adults or children. In NAFLD, several studies have shown a benefit of omega-3 fatty acid treatment on lipid profile, insulin-sensitivity and hepatic steatosis and it has also been suggested that Vitamin D treatment has potential antifibrotic properties in liver disease. TRIAL DESIGN To date, however, there are no studies that have tested the combination of Docosahexanoic acid (DHA) and vitamin D treatment which may benefit the whole spectrum of disease in NAFLD. Our aim therefore, was to test the effect of daily DHA (500 mg) plus vitamin D (800 IU) treatment, in obese children with biopsy-proven NAFLD and vitamin D deficiency, in a randomized, double-blind placebo-controlled trial. METHODS The 41/43 patients completed the study (18-treatment, 23-placebo). At 12 months: i) the main outcome was liver histology improvement, defined by NAS; ii) the secondary outcome was amelioration of metabolic parameters. RESULTS DHA plus vitamin D treatment reduced the NAFLD Activity Score (NAS), in the treatment group (5.4 v1.92; p<0.001 for baseline versus end of study). There was no change in fibrosis score, but a reduction of the activation of hepatic stellate cells (HSC) and fibrillar collagen content was noted (3.51±1.66 v. 1.59±1.37; p = 0.003) in treatment group. Moreover, the triglycerides (174.5 vs. 102.15 mg/dl), ALT (40.25 vs. 24.5 UI/l) and HOMA-IR (4.59 vs. 3.42) were all decreased with treatment. CONCLUSION DHA plus vitamin D treatment improved insulin-resistance, lipid profile, ALT and NAS. There was also decreased HSC activation and collagen content with treatment.
Collapse
|
Randomized Controlled Trial |
9 |
78 |
20
|
Abstract
The effects of different levels of dietary boron were determined in vitamin D deficient rats. Vitamin D deficient diets containing either 0.158 ppm or 2.72 ppm of boron were fed to rats for 11 w, and calcium, magnesium, and phosphorus apparent absorption and balance were measured in the twelfth week. Higher apparent absorption and balance values for calcium and phosphorus were observed in the rats with higher dietary boron, but very few differences were seen in body wt, organ wt, and bone parameters. Balance measurements represented the present status of the rats after 12 w on the diets, but other measurements represented an accumulation over the lifetime of the rat, including a suckling period with ample vitamin D and boron. The data demonstrated that when rats are vitamin D deficient, as indicated by hypocalcemia, the level of boron in the diet affects mineral balance.
Collapse
|
|
34 |
78 |
21
|
Muralidhar S, Filia A, Nsengimana J, Poźniak J, O'Shea SJ, Diaz JM, Harland M, Randerson-Moor JA, Reichrath J, Laye JP, van der Weyden L, Adams DJ, Bishop DT, Newton-Bishop J. Vitamin D-VDR Signaling Inhibits Wnt/β-Catenin-Mediated Melanoma Progression and Promotes Antitumor Immunity. Cancer Res 2019; 79:5986-5998. [PMID: 31690667 DOI: 10.1158/0008-5472.can-18-3927] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022]
Abstract
1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome, although a causal mechanism has not been established. As patients with melanoma commonly avoid sun exposure, and consequent vitamin D deficiency might worsen outcomes, we interrogated 703 primary melanoma transcriptomes to understand the role of vitamin D-VDR signaling and replicated the findings in The Cancer Genome Atlas metastases. VDR expression was independently protective for melanoma-related death in both primary and metastatic disease. High tumor VDR expression was associated with upregulation of pathways mediating antitumor immunity and corresponding with higher imputed immune cell scores and histologically detected tumor-infiltrating lymphocytes. High VDR-expressing tumors had downregulation of proliferative pathways, notably Wnt/β-catenin signaling. Deleterious low VDR levels resulted from promoter methylation and gene deletion in metastases. Vitamin D deficiency (<25 nmol/L ∼ 10 ng/mL) shortened survival in primary melanoma in a VDR-dependent manner. In vitro functional validation studies showed that elevated vitamin D-VDR signaling inhibited Wnt/β-catenin signaling genes. Murine melanoma cells overexpressing VDR produced fewer pulmonary metastases than controls in tail-vein metastasis assays. In summary, vitamin D-VDR signaling contributes to controlling pro-proliferative/immunosuppressive Wnt/β-catenin signaling in melanoma and this is associated with less metastatic disease and stronger host immune responses. This is evidence of a causal relationship between vitamin D-VDR signaling and melanoma survival, which should be explored as a therapeutic target in primary resistance to checkpoint blockade. SIGNIFICANCE: VDR expression could potentially be used as a biomarker to stratify patients with melanoma that may respond better to immunotherapy.
Collapse
|
|
6 |
75 |
22
|
Feige J, Moser T, Bieler L, Schwenker K, Hauer L, Sellner J. Vitamin D Supplementation in Multiple Sclerosis: A Critical Analysis of Potentials and Threats. Nutrients 2020; 12:nu12030783. [PMID: 32188044 PMCID: PMC7146466 DOI: 10.3390/nu12030783] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). In recent years, vitamin D has gained attention, as low serum levels are suspected to increase the risk for MS. Cholecalciferol supplementation has been tested in several clinical trials, since hypovitaminosis D was linked to higher disease activity and may even play a role in long-term outcome. Here, we review the current understanding of the molecular effects of vitamin D beyond calcium homeostasis, the potential beneficial action in MS and hazards including complications of chronic and high-dose therapy. In clinical trials, doses of up to 40,000 IU/day were tested and appeared safe as add-on therapy for short-term periods. A recent meta-analysis of a randomized, double-blind, placebo-controlled clinical trial investigating vitamin D as add-on therapy in MS, however, suggested that vitamin D had no therapeutic effect on disability or relapse rate. We recognize a knowledge gap for chronic and high-dose therapy, which can lead to life-threatening complications related to vitamin D toxicity including renal failure, cardiac arrythmia and status epilepticus. Moreover, vitamin D toxicity may manifest as fatigue, muscle weakness or urinary dysfunction, which may mimic the natural course of progressive MS. Given these limitations, vitamin D supplementation in MS is a sensitive task which needs to be supervised by physicians. While there is strong evidence for vitamin D deficiency and the development of MS, the risk-benefit profile of dosage and duration of add-on supplementation needs to be further clarified.
Collapse
|
Review |
5 |
71 |
23
|
Brakta S, Diamond JS, Al-Hendy A, Diamond MP, Halder SK. Role of vitamin D in uterine fibroid biology. Fertil Steril 2015; 104:698-706. [PMID: 26079694 PMCID: PMC4561014 DOI: 10.1016/j.fertnstert.2015.05.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To provide a detailed summary of current scientific knowledge on uterine fibroids (leiomyomas) in vitro and in in vivo animal models, as well as to postulate the potential role of vitamin D3 as an effective, inexpensive, safe, long-term treatment option for uterine fibroids. DESIGN PubMed search articles were used to identify the most relevant studies on uterine fibroids, as well as effects of vitamin D3 on uterine fibroid cells and fibroid tumor growth in in vivo animal models. SETTING University research laboratory. PATIENT(S) Not applicable. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Not applicable. RESULT(S) Despite numerous publications available on uterine fibroids, information about the role that vitamin D3 plays in the regulation of uterine fibroids is limited. Most of the recent vitamin D3-related studies on uterine fibroids were published from our group. Recent studies have demonstrated that vitamin D deficiency plays a significant role in the development of uterine fibroids. Our recent studies have demonstrated that vitamin D3 reduces leiomyoma cell proliferation in vitro and leiomyoma tumor growth in in vivo animal models. These results postulate the potential role of vitamin D3 for an effective, safe, nonsurgical medical treatment option for uterine fibroids. CONCLUSION(S) This article reviews human and animal studies and uncovers new possibilities for understanding the vitamin D-based therapeutic option for an effective, safe, long-term treatment of uterine fibroids. On the basis of these results, a clinical trial with vitamin D3 or a hypocalcemic analog, paricalcitol, may be warranted for nonsurgical medical treatment of uterine fibroids.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
71 |
24
|
Chen S, Villalta A, Agrawal DK. FOXO1 Mediates Vitamin D Deficiency-Induced Insulin Resistance in Skeletal Muscle. J Bone Miner Res 2016; 31:585-95. [PMID: 26462119 PMCID: PMC4814301 DOI: 10.1002/jbmr.2729] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/25/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023]
Abstract
Prospective epidemiological studies have consistently shown a relationship between vitamin D deficiency, insulin resistance, and type 2 diabetes mellitus (DM2). This is supported by recent trials showing that vitamin D supplementation in prediabetic or insulin-resistant patients with inadequate vitamin D levels improves insulin sensitivity. However, the molecular mechanisms underlying vitamin D deficiency-induced insulin resistance and DM2 remain unknown. Skeletal muscle insulin resistance is a primary defect in the majority of patients with DM2. Although sustained activation of forkhead box O1 (FOXO1) in skeletal muscle causes insulin resistance, a relationship between vitamin D deficiency and FOXO1 activation in muscle is unknown. We generated skeletal muscle-specific vitamin D receptor (VDR)-null mice and discovered that these mice developed insulin resistance and glucose intolerance accompanied by increased expression and activity of FOXO1. We also found sustained FOXO1 activation in the skeletal muscle of global VDR-null mice. Treatment of C2C12 muscle cells with 1,25-dihydroxyvitamin D (VD3) reduced FOXO1 expression, nuclear translocation, and activity. The VD3-dependent suppression of FOXO1 activation disappeared by knockdown of VDR, indicating that it is VDR-dependent. Taken together, these results suggest that FOXO1 is a critical target mediating VDR-null signaling in skeletal muscle. The novel findings provide the conceptual support that persistent FOXO1 activation may be responsible for insulin resistance and impaired glucose metabolism in vitamin D signaling-deficient mice, as well as evidence for the utility of vitamin D supplementation for intervention in DM2.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
69 |
25
|
Yu S, Cantorna MT. Epigenetic reduction in invariant NKT cells following in utero vitamin D deficiency in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:1384-90. [PMID: 21191070 PMCID: PMC3127168 DOI: 10.4049/jimmunol.1002545] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vitamin D status changes with season, but the effect of these changes on immune function is not clear. In this study, we show that in utero vitamin D deficiency in mice results in a significant reduction in invariant NKT (iNKT) cell numbers that could not be corrected by later intervention with vitamin D or 1,25-dihydroxy vitamin D(3) (active form of the vitamin). Furthermore, this was intrinsic to hematopoietic cells, as vitamin D-deficient bone marrow is specifically defective in generating iNKT cells in wild-type recipients. This vitamin D deficiency-induced reduction in iNKT cells is due to increased apoptosis of early iNKT cell precursors in the thymus. Whereas both the vitamin D receptor and vitamin D regulate iNKT cells, the vitamin D receptor is required for both iNKT cell function and number, and vitamin D (the ligand) only controls the number of iNKT cells. Given the importance of proper iNKT cell function in health and disease, this prenatal requirement for vitamin D suggests that in humans, the amount of vitamin D available in the environment during prenatal development may dictate the number of iNKT cells and potential risk of autoimmunity.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
66 |