1
|
Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:5026-31. [PMID: 18678044 DOI: 10.1021/es800249a] [Citation(s) in RCA: 1290] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plastics debris is accumulating in the environment and is fragmenting into smaller pieces; as it does, the potential for ingestion by animals increases. The consequences of macroplastic debris for wildlife are well documented, however the impacts of microplastic (< 1 mm) are poorly understood. The mussel, Mytilus edulis, was used to investigate ingestion, translocation, and accumulation of this debris. Initial experiments showed that upon ingestion, microplastic accumulated in the gut. Mussels were subsequently exposed to treatments containing seawater and microplastic (3.0 or 9.6 microm). After transfer to clean conditions, microplastic was tracked in the hemolymph. Particles translocated from the gut to the circulatory system within 3 days and persisted for over 48 days. Abundance of microplastic was greatest after 12 days and declined thereafter. Smaller particles were more abundant than larger particles and our data indicate as plastic fragments into smaller particles, the potential for accumulation in the tissues of an organism increases. The short-term pulse exposure used here did not result in significant biological effects. However, plastics are exceedingly durable and so further work using a wider range of organisms, polymers, and periods of exposure will be required to establish the biological consequences of this debris.
Collapse
|
Comparative Study |
17 |
1290 |
2
|
Auta HS, Emenike CU, Fauziah SH. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. ENVIRONMENT INTERNATIONAL 2017; 102:165-176. [PMID: 28284818 DOI: 10.1016/j.envint.2017.02.013] [Citation(s) in RCA: 1262] [Impact Index Per Article: 157.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/31/2017] [Accepted: 02/26/2017] [Indexed: 05/22/2023]
Abstract
UNLABELLED The presence of microplastics in the marine environment poses a great threat to the entire ecosystem and has received much attention lately as the presence has greatly impacted oceans, lakes, seas, rivers, coastal areas and even the Polar Regions. Microplastics are found in most commonly utilized products (primary microplastics), or may originate from the fragmentation of larger plastic debris (secondary microplastics). The material enters the marine environment through terrestrial and land-based activities, especially via runoffs and is known to have great impact on marine organisms as studies have shown that large numbers of marine organisms have been affected by microplastics. Microplastic particles have been found distributed in large numbers in Africa, Asia, Southeast Asia, India, South Africa, North America, and in Europe. This review describes the sources and global distribution of microplastics in the environment, the fate and impact on marine biota, especially the food chain. Furthermore, the control measures discussed are those mapped out by both national and international environmental organizations for combating the impact from microplastics. Identifying the main sources of microplastic pollution in the environment and creating awareness through education at the public, private, and government sectors will go a long way in reducing the entry of microplastics into the environment. Also, knowing the associated behavioral mechanisms will enable better understanding of the impacts for the marine environment. However, a more promising and environmentally safe approach could be provided by exploiting the potentials of microorganisms, especially those of marine origin that can degrade microplastics. CAPSULE The concentration, distribution sources and fate of microplastics in the global marine environment were discussed, so also was the impact of microplastics on a wide range of marine biota.
Collapse
|
Review |
8 |
1262 |
3
|
Gall SC, Thompson RC. The impact of debris on marine life. MARINE POLLUTION BULLETIN 2015; 92:170-179. [PMID: 25680883 DOI: 10.1016/j.marpolbul.2014.12.041] [Citation(s) in RCA: 953] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/11/2014] [Indexed: 05/04/2023]
Abstract
Marine debris is listed among the major perceived threats to biodiversity, and is cause for particular concern due to its abundance, durability and persistence in the marine environment. An extensive literature search reviewed the current state of knowledge on the effects of marine debris on marine organisms. 340 original publications reported encounters between organisms and marine debris and 693 species. Plastic debris accounted for 92% of encounters between debris and individuals. Numerous direct and indirect consequences were recorded, with the potential for sublethal effects of ingestion an area of considerable uncertainty and concern. Comparison to the IUCN Red List highlighted that at least 17% of species affected by entanglement and ingestion were listed as threatened or near threatened. Hence where marine debris combines with other anthropogenic stressors it may affect populations, trophic interactions and assemblages.
Collapse
|
Review |
10 |
953 |
4
|
Ivar do Sul JA, Costa MF. The present and future of microplastic pollution in the marine environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 185:352-64. [PMID: 24275078 DOI: 10.1016/j.envpol.2013.10.036] [Citation(s) in RCA: 785] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 05/18/2023]
Abstract
Recently, research examining the occurrence of microplastics in the marine environment has substantially increased. Field and laboratory work regularly provide new evidence on the fate of microplastic debris. This debris has been observed within every marine habitat. In this study, at least 101 peer-reviewed papers investigating microplastic pollution were critically analysed (Supplementary material). Microplastics are commonly studied in relation to (1) plankton samples, (2) sandy and muddy sediments, (3) vertebrate and invertebrate ingestion, and (4) chemical pollutant interactions. All of the marine organism groups are at an eminent risk of interacting with microplastics according to the available literature. Dozens of works on other relevant issues (i.e., polymer decay at sea, new sampling and laboratory methods, emerging sources, externalities) were also analysed and discussed. This paper provides the first in-depth exploration of the effects of microplastics on the marine environment and biota. The number of scientific publications will increase in response to present and projected plastic uses and discard patterns. Therefore, new themes and important approaches for future work are proposed.
Collapse
|
|
11 |
785 |
5
|
Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, Boldgiv B. High-levels of microplastic pollution in a large, remote, mountain lake. MARINE POLLUTION BULLETIN 2014; 85:156-63. [PMID: 24973278 DOI: 10.1016/j.marpolbul.2014.06.001] [Citation(s) in RCA: 720] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 05/23/2014] [Accepted: 06/03/2014] [Indexed: 05/06/2023]
Abstract
Despite the large and growing literature on microplastics in the ocean, little information exists on microplastics in freshwater systems. This study is the first to evaluate the abundance, distribution, and composition of pelagic microplastic pollution in a large, remote, mountain lake. We quantified pelagic microplastics and shoreline anthropogenic debris in Lake Hovsgol, Mongolia. With an average microplastic density of 20,264 particles km(-2), Lake Hovsgol is more heavily polluted with microplastics than the more developed Lakes Huron and Superior in the Laurentian Great Lakes. Fragments and films were the most abundant microplastic types; no plastic microbeads and few pellets were observed. Household plastics dominated the shoreline debris and were comprised largely of plastic bottles, fishing gear, and bags. Microplastic density decreased with distance from the southwestern shore, the most populated and accessible section of the park, and was distributed by the prevailing winds. These results demonstrate that without proper waste management, low-density populations can heavily pollute freshwater systems with consumer plastics.
Collapse
|
|
11 |
720 |
6
|
Li WC, Tse HF, Fok L. Plastic waste in the marine environment: A review of sources, occurrence and effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:333-349. [PMID: 27232963 DOI: 10.1016/j.scitotenv.2016.05.084] [Citation(s) in RCA: 705] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 05/21/2023]
Abstract
This review article summarises the sources, occurrence, fate and effects of plastic waste in the marine environment. Due to its resistance to degradation, most plastic debris will persist in the environment for centuries and may be transported far from its source, including great distances out to sea. Land- and ocean-based sources are the major sources of plastic entering the environment, with domestic, industrial and fishing activities being the most important contributors. Ocean gyres are particular hotspots of plastic waste accumulation. Both macroplastics and microplastics pose a risk to organisms in the natural environment, for example, through ingestion or entanglement in the plastic. Many studies have investigated the potential uptake of hydrophobic contaminants, which can then bioaccumulate in the food chain, from plastic waste by organisms. To address the issue of plastic pollution in the marine environment, governments should first play an active role in addressing the issue of plastic waste by introducing legislation to control the sources of plastic debris and the use of plastic additives. In addition, plastics industries should take responsibility for the end-of-life of their products by introducing plastic recycling or upgrading programmes.
Collapse
|
Review |
9 |
705 |
7
|
Jung MR, Horgen FD, Orski SV, Rodriguez C V, Beers KL, Balazs GH, Jones TT, Work TM, Brignac KC, Royer SJ, Hyrenbach KD, Jensen BA, Lynch JM. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. MARINE POLLUTION BULLETIN 2018; 127:704-716. [PMID: 29475714 DOI: 10.1016/j.marpolbul.2017.12.061] [Citation(s) in RCA: 590] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 05/18/2023]
Abstract
Polymer identification of plastic marine debris can help identify its sources, degradation, and fate. We optimized and validated a fast, simple, and accessible technique, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), to identify polymers contained in plastic ingested by sea turtles. Spectra of consumer good items with known resin identification codes #1-6 and several #7 plastics were compared to standard and raw manufactured polymers. High temperature size exclusion chromatography measurements confirmed ATR FT-IR could differentiate these polymers. High-density (HDPE) and low-density polyethylene (LDPE) discrimination is challenging but a clear step-by-step guide is provided that identified 78% of ingested PE samples. The optimal cleaning methods consisted of wiping ingested pieces with water or cutting. Of 828 ingested plastics pieces from 50 Pacific sea turtles, 96% were identified by ATR FT-IR as HDPE, LDPE, unknown PE, polypropylene (PP), PE and PP mixtures, polystyrene, polyvinyl chloride, and nylon.
Collapse
|
|
7 |
590 |
8
|
Avio CG, Gorbi S, Regoli F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. MARINE ENVIRONMENTAL RESEARCH 2017; 128:2-11. [PMID: 27233985 DOI: 10.1016/j.marenvres.2016.05.012] [Citation(s) in RCA: 564] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/11/2016] [Accepted: 05/15/2016] [Indexed: 05/18/2023]
Abstract
Plastic production has increased dramatically worldwide over the last 60 years and it is nowadays recognized as a serious threat to the marine environment. Plastic pollution is ubiquitous, but quantitative estimates on the global abundance and weight of floating plastics are still limited, particularly for the Southern Hemisphere and the more remote regions. Some large-scale convergence zones of plastic debris have been identified, but there is the urgency to standardize common methodologies to measure and quantify plastics in seawater and sediments. Investigations on temporal trends, geographical distribution and global cycle of plastics have management implications when defining the origin, possible drifting tracks and ecological consequences of such pollution. An elevated number of marine species is known to be affected by plastic contamination, and a more integrated ecological risk assessment of these materials has become a research priority. Beside entanglement and ingestion of macro debris by large vertebrates, microplastics are accumulated by planktonic and invertebrate organisms, being transferred along food chains. Negative consequences include loss of nutritional value of diet, physical damages, exposure to pathogens and transport of alien species. In addition, plastics contain chemical additives and efficiently adsorb several environmental contaminants, thus representing a potential source of exposure to such compounds after ingestion. Complex ecotoxicological effects are increasingly reported, but the fate and impact of microplastics in the marine environment are still far to be fully clarified.
Collapse
|
|
8 |
564 |
9
|
Desforges JPW, Galbraith M, Dangerfield N, Ross PS. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. MARINE POLLUTION BULLETIN 2014; 79:94-9. [PMID: 24398418 DOI: 10.1016/j.marpolbul.2013.12.035] [Citation(s) in RCA: 539] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 05/22/2023]
Abstract
We document the abundance, composition and distribution of microplastics in sub-surface seawaters of the northeastern Pacific Ocean and coastal British Columbia. Samples were acid-digested and plastics were characterized using light microscopy by type (fibres or fragments) and size (<100, 100-500, 500-100 and >1000 μm). Microplastics concentrations ranged from 8 to 9200 particles/m(3); lowest concentrations were in offshore Pacific waters, and increased 6, 12 and 27-fold in west coast Vancouver Island, Strait of Georgia, and Queen Charlotte Sound, respectively. Fibres accounted for ∼ 75% of particles on average, although nearshore samples had more fibre content than offshore (p<0.05). While elevated microplastic concentrations near urban areas are consistent with land-based sources, the high levels in Queen Charlotte Sound appeared to be the result of oceanographic conditions that trap and concentrate debris. This assessment of microplastics in the NE Pacific is of interest in light of the on-coming debris from the 2011 Tohoku Tsunami.
Collapse
|
|
11 |
539 |
10
|
Hollender J, Zimmermann SG, Koepke S, Krauss M, McArdell CS, Ort C, Singer H, von Gunten U, Siegrist H. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:7862-9. [PMID: 19921906 DOI: 10.1021/es9014629] [Citation(s) in RCA: 488] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The removal efficiency for 220 micropollutants was studied at the scale of a municipal wastewater treatment plant (WWTP) upgraded with post-ozonation followed by sand filtration. During post-ozonation, compounds with activated aromatic moieties, amine functions, or double bonds such as sulfamethoxazole, diclofenac, or carbamazepine with second-order rate constants for the reaction with ozone >10(4) M(-1) s(-1) at pH 7 (fast-reacting) were eliminated to concentrations below the detection limit for an ozone dose of 0.47 g O3 g(-1) dissolved organic carbon (DOC). Compounds more resistant to oxidation by ozone such as atenolol and benzotriazole were increasingly eliminated with increasing ozone doses, resulting in >85% removal for a medium ozone dose (approximately 0.6 g O3 g(-1) DOC). Only a few micropollutants such as some X-ray contrast media and triazine herbicides with second-order rate constants <10(2) M(-1) s(-1) (slowly reacting) persisted to a large extent. With a medium ozone dose, only 11 micropollutants of 55 detected in the secondary effluent were found at >100 ng L(-1). The combination of reaction kinetics and reactor hydraulics, based on laboratory-and full-scale data, enabled a quantification of the results by model calculations. This conceptual approach allows a direct upscaling from laboratory- to full-scale systems and can be applied to other similar systems. The carcinogenic by-products N-nitrosodimethylamine (NDMA) (< or =14 ng L(-1)) and bromate (<10 microg L(-1)) were produced during ozonation, however their concentrations were below or in the range of the drinking water standards. Furthermore, it could be demonstrated that biological sand filtration is an efficient additional barrier for the elimination of biodegradable compounds formed during ozonation such as NDMA. The energy requirement for the additional post-ozonation step is about 0.035 kWh m(-3), which corresponds to 12% of a typical medium-sized nutrient removal plant (5 g DOC m(-3)).
Collapse
|
|
16 |
488 |
11
|
Lechner A, Keckeis H, Lumesberger-Loisl F, Zens B, Krusch R, Tritthart M, Glas M, Schludermann E. The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe's second largest river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 188:177-81. [PMID: 24602762 PMCID: PMC3989055 DOI: 10.1016/j.envpol.2014.02.006] [Citation(s) in RCA: 464] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/31/2014] [Accepted: 02/05/2014] [Indexed: 05/18/2023]
Abstract
Previous studies on plastic pollution of aquatic ecosystems focused on the world's oceans. Large rivers as major pathways for land-based plastic litter, has received less attention so far. Here we report on plastic quantities in the Austrian Danube. A two year survey (2010, 2012) using stationary driftnets detected mean plastic abundance (n = 17,349; mean ± S.D: 316.8 ± 4664.6 items per 1000 m(-3)) and mass (4.8 ± 24.2 g per 1000 m(-3)) in the river to be higher than those of drifting larval fish (n = 24,049; 275.3 ± 745.0 individuals. 1000 m(-3) and 3.2 ± 8.6 g 1000 m(-3)). Industrial raw material (pellets, flakes and spherules) accounted for substantial parts (79.4%) of the plastic debris. The plastic input via the Danube into the Black Sea was estimated to 4.2 t per day.
Collapse
|
brief-report |
11 |
464 |
12
|
Peng G, Zhu B, Yang D, Su L, Shi H, Li D. Microplastics in sediments of the Changjiang Estuary, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:283-290. [PMID: 28408187 DOI: 10.1016/j.envpol.2016.12.064] [Citation(s) in RCA: 433] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/28/2016] [Accepted: 12/23/2016] [Indexed: 05/06/2023]
Abstract
Microplastics are plastics that measure less than 5 mm in diameter. They enter the marine environment as primary sources directly from industrial uses, as well as secondary sources resulting from the degradation of large plastic debris. To improve the knowledge of microplastic pollution in China, we investigated samples from 53 estuarine sediment locations collected with a box corer within the Changjiang Estuary. Microplastics (<5 mm) were extracted from sediments by density separation, after which they were observed under a microscope and categorized according to shape, color and size. Identification was carried out using Micro-Fourier-Transform Infrared Spectroscopy (μ-FT-IR). The abundance of microplastics in the Changjiang Estuary was mapped. The mean concentration was 121 ± 9 items per kg of dry weight, varying from 20 to 340 items per kg of dry weight. It was found that the concentration of microplastics was the highest on the southeast coast of Shanghai. The distribution pattern of microplastics may be affected by the Changjiang diluted water in summer. All of the microplastics collected were categorized according to shape, color and size. Among which fiber (93%), transparent (42%) and small microplastics (<1 mm) (58%) were the most abundant types. No clear correlation between microplastics and the finer sediment fraction was found. Rayon, polyester, and acrylic were the most abundant types of microplastics identified, indicating that the main source of microplastics in the Changjiang Estuary was from washing clothes (the primary source). It is possible to compare microplastic abundance in this study with the results of other related studies using the same quantification method. The identification of microplastics raises the awareness of microplastic pollution from drainage systems. The prevalence of microplastic pollution calls for monitoring microplastics at a national scale on a regular basis.
Collapse
|
|
8 |
433 |
13
|
Cai L, Wang J, Peng J, Tan Z, Zhan Z, Tan X, Chen Q. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24928-24935. [PMID: 28918553 DOI: 10.1007/s11356-017-0116-x] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/05/2017] [Indexed: 05/18/2023]
Abstract
Microplastic pollution has exhibited a global distribution, including seas, lakes, rivers, and terrestrial environment in recent years. However, little attention was paid on the atmospheric environment, though the fact that plastic debris can escape as wind-blown debris was previously reported. Thus, characteristics of microplastics in the atmospheric fallout from Dongguan city were preliminarily studied. Microplastics of three different polymers, i.e., PE, PP, and PS, were identified. Diverse shapes of microplastics including fiber, foam, fragment, and film were found, and fiber was the dominant shape of the microplastics. SEM images illustrated that adhering particles, grooves, pits, fractures, and flakes were the common patterns of degradation. The concentrations of non-fibrous microplastics and fibers ranged from 175 to 313 particles/m2/day in the atmospheric fallout. Thus, dust emission and deposition between atmosphere, land surface, and aquatic environment were associated with the transportation of microplastics.
Collapse
|
|
8 |
426 |
14
|
Ali I, Asim M, Khan TA. Low cost adsorbents for the removal of organic pollutants from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 113:170-83. [PMID: 23023039 DOI: 10.1016/j.jenvman.2012.08.028] [Citation(s) in RCA: 426] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/27/2012] [Accepted: 08/07/2012] [Indexed: 05/13/2023]
Abstract
Water pollution due to organic contaminants is a serious issue because of acute toxicities and carcinogenic nature of the pollutants. Among various water treatment methods, adsorption is supposed as the best one due to its inexpensiveness, universal nature and ease of operation. Many waste materials used include fruit wastes, coconut shell, scrap tyres, bark and other tannin-rich materials, sawdust and other wood type materials, rice husk, petroleum wastes, fertilizer wastes, fly ash, sugar industry wastes blast furnace slag, chitosan and seafood processing wastes, seaweed and algae, peat moss, clays, red mud, zeolites, sediment and soil, ore minerals etc. These adsorbents have been found to remove various organic pollutants ranging from 80 to 99.9%. The present article describes the conversion of waste products into effective adsorbents and their application for water treatment. The possible mechanism of adsorption on these adsorbents has also been included in this article. Besides, attempts have been made to discuss the future perspectives of low cost adsorbents in water treatment.
Collapse
|
|
13 |
426 |
15
|
Enders K, Lenz R, Stedmon CA, Nielsen TG. Abundance, size and polymer composition of marine microplastics ≥10μm in the Atlantic Ocean and their modelled vertical distribution. MARINE POLLUTION BULLETIN 2015; 100:70-81. [PMID: 26454631 DOI: 10.1016/j.marpolbul.2015.09.027] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 05/21/2023]
Abstract
We studied abundance, size and polymer type of microplastic down to 10μm along a transect from the European Coast to the North Atlantic Subtropical Gyre (NASG) using an underway intake filtration technique and Raman micro-spectrometry. Concentrations ranged from 13 to 501itemsm(-3). Highest concentrations were observed at the European coast, decreasing towards mid-Atlantic waters but elevated in the western NASG. We observed highest numbers among particles in the 10-20μm size fraction, whereas the total volume was highest in the 50-80μm range. Based on a numerical model size-dependent depth profiles of polyethylene microspheres in a range from 10-1000μm were calculated and show a strong dispersal throughout the surface mixed layer for sizes smaller than 200μm. From model and field study results we conclude that small microplastic is ubiquitously distributed over the ocean surface layer and has a lower residence time than larger plastic debris in this compartment.
Collapse
|
|
10 |
419 |
16
|
Lusher AL, Burke A, O'Connor I, Officer R. Microplastic pollution in the Northeast Atlantic Ocean: validated and opportunistic sampling. MARINE POLLUTION BULLETIN 2014; 88:325-33. [PMID: 25224764 DOI: 10.1016/j.marpolbul.2014.08.023] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/09/2014] [Accepted: 08/16/2014] [Indexed: 05/21/2023]
Abstract
Levels of marine debris, including microplastics, are largely un-documented in the Northeast Atlantic Ocean. Broad scale monitoring efforts are required to understand the distribution, abundance and ecological implications of microplastic pollution. A method of continuous sampling was developed to be conducted in conjunction with a wide range of vessel operations to maximise vessel time. Transects covering a total of 12,700 km were sampled through continuous monitoring of open ocean sub-surface water resulting in 470 samples. Items classified as potential plastics were identified in 94% of samples. A total of 2315 particles were identified, 89% were less than 5mm in length classifying them as microplastics. Average plastic abundance in the Northeast Atlantic was calculated as 2.46 particles m(-3). This is the first report to demonstrate the ubiquitous nature of microplastic pollution in the Northeast Atlantic Ocean and to present a potential method for standardised monitoring of microplastic pollution.
Collapse
|
Validation Study |
11 |
389 |
17
|
Peng G, Xu P, Zhu B, Bai M, Li D. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:448-456. [PMID: 29207296 DOI: 10.1016/j.envpol.2017.11.034] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 05/06/2023]
Abstract
Microplastics, which are plastic debris with a particle diameter of less than 5 mm, have attracted growing attention in recent years. Its widespread distributions in a variety of habitats have urged scientists to understand deeper regarding their potential impact on the marine living resources. Most studies on microplastics hitherto are focused on the marine environment, and research on risk assessment methodology is still limited. To understand the distribution of microplastics in urban rivers, this study investigated river sediments in Shanghai, the largest urban area in China. Seven sites were sampled to ensure maximum coverage of the city's central districts, and a tidal flat was also included to compare with river samples. Density separation, microscopic inspection and μ-FT-IR analysis were conducted to analyze the characteristics of microplastics and the type of polymers. The average abundance of microplastics in six river sediment samples was 802 items per kilogram of dry weight. The abundance in rivers was one to two orders of magnitude higher than in the tidal flat. White microplastic spheres were most commonly distributed in river sediments. Seven types of microplastics were identified, of which polypropylene was the most prevailing polymers presented. The study then conducted risk assessment of microplastics in sediments based on the observed results, and proposed a framework of environmental risk assessment. After reviewing waste disposal related legislation and regulations in China, this study conclude that in situ data and legitimate estimations should be incorporated as part of the practice when developing environmental policies aiming to tackle microplastic pollution.
Collapse
|
|
7 |
369 |
18
|
Spranghers T, Ottoboni M, Klootwijk C, Ovyn A, Deboosere S, De Meulenaer B, Michiels J, Eeckhout M, De Clercq P, De Smet S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2594-2600. [PMID: 27734508 DOI: 10.1002/jsfa.8081] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Black soldier fly larvae are converters of organic waste into edible biomass, of which the composition may depend on the substrate. In this study, larvae were grown on four substrates: chicken feed, vegetable waste, biogas digestate, and restaurant waste. Samples of prepupae and substrates were freeze-dried and proximate, amino acid, fatty acid and mineral analyses were performed. RESULTS Protein content of prepupae varied between 399 and 431 g kg-1 dry matter (DM) among treatments. Differences in amino acid profile of prepupae were small. On the other hand, the ether extract (EE) and ash contents differed substantially. Prepupae reared on digestate were low in EE and high in ash (218 and 197 g kg-1 DM, respectively) compared to those reared on vegetable waste (371 and 96 g kg-1 DM, respectively), chicken feed (336 and 100 g kg-1 DM, respectively) and restaurant waste (386 and 27 g kg-1 DM, respectively). Prepupal fatty acid profiles were characterised by high levels of C12:0 in all treatments. CONCLUSION Since protein content and quality were high and comparable for prepupae reared on different substrates, black soldier fly could be an interesting protein source for animal feeds. However, differences in EE and ash content as a function of substrate should be considered. © 2016 Society of Chemical Industry.
Collapse
|
|
8 |
336 |
19
|
Kummu M, de Moel H, Porkka M, Siebert S, Varis O, Ward PJ. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 438:477-89. [PMID: 23032564 DOI: 10.1016/j.scitotenv.2012.08.092] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/20/2012] [Accepted: 08/27/2012] [Indexed: 05/20/2023]
Abstract
Reducing food losses and waste is considered to be one of the most promising measures to improve food security in the coming decades. Food losses also affect our use of resources, such as freshwater, cropland, and fertilisers. In this paper we estimate the global food supply losses due to lost and wasted food crops, and the resources used to produce them. We also quantify the potential food supply and resource savings that could be made by reducing food losses and waste. We used publically available global databases to conduct the study at the country level. We found that around one quarter of the produced food supply (614 kcal/cap/day) is lost within the food supply chain (FSC). The production of these lost and wasted food crops accounts for 24% of total freshwater resources used in food crop production (27 m(3)/cap/yr), 23% of total global cropland area (31 × 10(-3)ha/cap/yr), and 23% of total global fertiliser use (4.3 kg/cap/yr). The per capita use of resources for food losses is largest in North Africa & West-Central Asia (freshwater and cropland) and North America & Oceania (fertilisers). The smallest per capita use of resources for food losses is found in Sub-Saharan Africa (freshwater and fertilisers) and in Industrialised Asia (cropland). Relative to total food production, the smallest food supply and resource losses occur in South & Southeast Asia. If the lowest loss and waste percentages achieved in any region in each step of the FSC could be reached globally, food supply losses could be halved. By doing this, there would be enough food for approximately one billion extra people. Reducing the food losses and waste would thus be an important step towards increased food security, and would also increase the efficiency of resource use in food production.
Collapse
|
|
13 |
326 |
20
|
Romeo T, Pietro B, Pedà C, Consoli P, Andaloro F, Fossi MC. First evidence of presence of plastic debris in stomach of large pelagic fish in the Mediterranean Sea. MARINE POLLUTION BULLETIN 2015; 95:358-61. [PMID: 25936574 DOI: 10.1016/j.marpolbul.2015.04.048] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 05/18/2023]
Abstract
This study focuses, for the first time, on the presence of plastic debris in the stomach contents of large pelagic fish (Xiphias gladius, Thunnus thynnus and Thunnus alalunga) caught in the Mediterranean Sea between 2012 and 2013. Results highlighted the ingestion of plastics in the 18.2% of samples. The plastics ingested were microplastics (<5mm), mesoplastics (5-25mm) and macroplastics (>25mm). These preliminary results represent an important initial phase in exploring two main ecotoxicological aspects: (a) the assessment of the presence and impact of plastic debris on these large pelagic fish, and (b) the potential effects related to the transfer of contaminants on human health.
Collapse
|
|
10 |
320 |
21
|
Eriksen M, Maximenko N, Thiel M, Cummins A, Lattin G, Wilson S, Hafner J, Zellers A, Rifman S. Plastic pollution in the South Pacific subtropical gyre. MARINE POLLUTION BULLETIN 2013; 68:71-6. [PMID: 23324543 DOI: 10.1016/j.marpolbul.2012.12.021] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 05/20/2023]
Abstract
Plastic marine pollution in the open ocean of the southern hemisphere is largely undocumented. Here, we report the result of a (4489 km) 2424 nautical mile transect through the South Pacific subtropical gyre, carried out in March-April 2011. Neuston samples were collected at 48 sites, averaging 50 nautical miles apart, using a manta trawl lined with a 333 μm mesh. The transect bisected a predicted accumulation zone associated with the convergence of surface currents, driven by local winds. The results show an increase in surface abundance of plastic pollution as we neared the center and decrease as we moved away, verifying the presence of a garbage patch. The average abundance and mass was 26,898 particles km(-2) and 70.96 g km(-2), respectively. 88.8% of the plastic pollution was found in the middle third of the samples with the highest value of 396,342 particles km(-2) occurring near the center of the predicted accumulation zone.
Collapse
|
|
12 |
316 |
22
|
Lee H, Shim WJ, Kwon JH. Sorption capacity of plastic debris for hydrophobic organic chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:1545-52. [PMID: 24012321 DOI: 10.1016/j.scitotenv.2013.08.023] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 05/02/2023]
Abstract
The occurrence of microplastics (MPs) in the ocean is an emerging world-wide concern. Due to high sorption capacity of plastics for hydrophobic organic chemicals (HOCs), sorption may play an important role in the transport processes of HOCs. However, sorption capacity of various plastic materials is rarely documented except in the case of those used for environmental sampling purposes. In this study, we measured partition coefficients between MPs and seawater (KMPsw) for 8 polycyclic aromatic hydrocarbons (PAHs), 4 hexachlorocyclohexanes (HCHs) and 2 chlorinated benzenes (CBs). Three surrogate polymers - polyethylene, polypropylene, and polystyrene - were used as model plastic debris because they are the major components of microplastic debris found. Due to the limited solubility of HOCs in seawater and their long equilibration time, a third-phase partitioning method was used for the determination of KMPsw. First, partition coefficients between polydimethylsiloxane (PDMS) and seawater (KPDMSsw) were measured. For the determination of KMPsw, the distribution of HOCs between PDMS or plastics and solvent mixture (methanol:water=8:2 (v/v)) was determined after apparent equilibrium up to 12 weeks. Plastic debris was prepared in a laboratory by physical crushing; the median longest dimension was 320-440 μm. Partition coefficients between polyethylene and seawater obtained using the third-phase equilibrium method agreed well with experimental partition coefficients between low-density polyethylene and water in the literature. The values of KMPsw were generally in the order of polystyrene, polyethylene, and polypropylene for most of the chemicals tested. The ranges of log KMPsw were 2.04-7.87, 2.18-7.00, and 2.63-7.52 for polyethylene, polypropylene, and polystyrene, respectively. The partition coefficients of plastic debris can be as high as other frequently used partition coefficients, such as 1-octanol-water partition coefficients (Kow) and log KMPsw showed good linear correlations with log Kow. High sorption capacity of microplastics implies the importance of MP-associated transport of HOCs in the marine environment.
Collapse
|
|
11 |
314 |
23
|
Fazey FMC, Ryan PG. Biofouling on buoyant marine plastics: An experimental study into the effect of size on surface longevity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:354-60. [PMID: 26803792 DOI: 10.1016/j.envpol.2016.01.026] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 05/21/2023]
Abstract
Recent estimates suggest that roughly 100 times more plastic litter enters the sea than is found floating at the sea surface, despite the buoyancy and durability of many plastic polymers. Biofouling by marine biota is one possible mechanism responsible for this discrepancy. Microplastics (<5 mm in diameter) are more scarce than larger size classes, which makes sense because fouling is a function of surface area whereas buoyancy is a function of volume; the smaller an object, the greater its relative surface area. We tested whether plastic items with high surface area to volume ratios sank more rapidly by submerging 15 different sizes of polyethylene samples in False Bay, South Africa, for 12 weeks to determine the time required for samples to sink. All samples became sufficiently fouled to sink within the study period, but small samples lost buoyancy much faster than larger ones. There was a direct relationship between sample volume (buoyancy) and the time to attain a 50% probability of sinking, which ranged from 17 to 66 days of exposure. Our results provide the first estimates of the longevity of different sizes of plastic debris at the ocean surface. Further research is required to determine how fouling rates differ on free floating debris in different regions and in different types of marine environments. Such estimates could be used to improve model predictions of the distribution and abundance of floating plastic debris globally.
Collapse
|
|
9 |
308 |
24
|
Cooper DA, Corcoran PL. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. MARINE POLLUTION BULLETIN 2010; 60:650-4. [PMID: 20106491 DOI: 10.1016/j.marpolbul.2009.12.026] [Citation(s) in RCA: 306] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/07/2009] [Accepted: 12/12/2009] [Indexed: 05/22/2023]
Abstract
Plastic debris is accumulating on the beaches of Kauai at an alarming rate, averaging 484 pieces/day in one locality. Particles sampled were analyzed to determine the effects of mechanical and chemical processes on the breakdown of polymers in a subtropical setting. Scanning electron microscopy (SEM) indicates that plastic surfaces contain fractures, horizontal notches, flakes, pits, grooves, and vermiculate textures. The mechanically produced textures provide ideal loci for chemical weathering to occur which further weakens the polymer surface leading to embrittlement. Fourier transform infrared spectroscopy (FTIR) results show that some particles have highly oxidized surfaces as indicated by intense peaks in the lower wavenumber region of the spectra. Our textural analyses suggest that polyethylene has the potential to degrade more readily than polypropylene. Further evaluation of plastic degradation in the natural environment may lead to a shift away from the production and use of plastic materials with longer residence times.
Collapse
|
|
15 |
306 |
25
|
Zhang W, Zhang S, Wang J, Wang Y, Mu J, Wang P, Lin X, Ma D. Microplastic pollution in the surface waters of the Bohai Sea, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:541-548. [PMID: 28843202 DOI: 10.1016/j.envpol.2017.08.058] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 05/20/2023]
Abstract
The ubiquitous presence and persistency of microplastics in aquatic environments is of particular concern because these pollutants represent an increasing threat to marine organisms and ecosystems. An identification of the patterns of microplastic distribution will help to understand the scale of their potential effect on the environment and on organisms. In this study, the occurrence and distribution of microplastics in the Bohai Sea are reported for the first time. We sampled floating microplastics at 11 stations in the Bohai Sea using a 330 μm trawling net in August 2016. The abundance, composition, size, shape and color of collected debris samples were analyzed after pretreatment. The average microplastic concentration was 0.33 ± 0.34 particles/m3. Micro-Fourier transform infrared spectroscopy analysis showed that the main types of microplastics were polyethylene, polypropylene, and polystyrene. As the size of the plastics decreased, the percentage of polypropylene increased, whereas the percentages of polyethylene and polystyrene decreased. Plastic fragments, lines, and films accounted for most of the collected samples. Accumulation at some stations could be associated with transport and retention mechanisms that are linked to wind and the dynamics of the rim current, as well as different sources of the plastics.
Collapse
|
|
8 |
299 |