1
|
Lawson CE, Wu S, Bhattacharjee AS, Hamilton JJ, McMahon KD, Goel R, Noguera DR. Metabolic network analysis reveals microbial community interactions in anammox granules. Nat Commun 2017; 8:15416. [PMID: 28561030 PMCID: PMC5460018 DOI: 10.1038/ncomms15416] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/23/2017] [Indexed: 01/22/2023] Open
Abstract
Microbial communities mediating anaerobic ammonium oxidation (anammox) represent one of the most energy-efficient environmental biotechnologies for nitrogen removal from wastewater. However, little is known about the functional role heterotrophic bacteria play in anammox granules. Here, we use genome-centric metagenomics to recover 17 draft genomes of anammox and heterotrophic bacteria from a laboratory-scale anammox bioreactor. We combine metabolic network reconstruction with metatranscriptomics to examine the gene expression of anammox and heterotrophic bacteria and to identify their potential interactions. We find that Chlorobi-affiliated bacteria may be highly active protein degraders, catabolizing extracellular peptides while recycling nitrate to nitrite. Other heterotrophs may also contribute to scavenging of detritus and peptides produced by anammox bacteria, and potentially use alternative electron donors, such as H2, acetate and formate. Our findings improve the understanding of metabolic activities and interactions between anammox and heterotrophic bacteria and offer the first transcriptional insights on ecosystem function in anammox granules.
Collapse
|
research-article |
8 |
414 |
2
|
Margot J, Kienle C, Magnet A, Weil M, Rossi L, de Alencastro LF, Abegglen C, Thonney D, Chèvre N, Schärer M, Barry DA. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 461-462:480-98. [PMID: 23751332 DOI: 10.1016/j.scitotenv.2013.05.034] [Citation(s) in RCA: 399] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/09/2013] [Accepted: 05/09/2013] [Indexed: 05/11/2023]
Abstract
Many organic micropollutants present in wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs). To reduce the release of these substances into the aquatic environment, advanced wastewater treatments are necessary. In this context, two large-scale pilot advanced treatments were tested in parallel over more than one year at the municipal WWTP of Lausanne, Switzerland. The treatments were: i) oxidation by ozone followed by sand filtration (SF) and ii) powdered activated carbon (PAC) adsorption followed by either ultrafiltration (UF) or sand filtration. More than 70 potentially problematic substances (pharmaceuticals, pesticides, endocrine disruptors, drug metabolites and other common chemicals) were regularly measured at different stages of treatment. Additionally, several ecotoxicological tests such as the Yeast Estrogen Screen, a combined algae bioassay and a fish early life stage test were performed to evaluate effluent toxicity. Both treatments significantly improved the effluent quality. Micropollutants were removed on average over 80% compared with raw wastewater, with an average ozone dose of 5.7 mg O3 l(-1) or a PAC dose between 10 and 20 mg l(-1). Depending on the chemical properties of the substances (presence of electron-rich moieties, charge and hydrophobicity), either ozone or PAC performed better. Both advanced treatments led to a clear reduction in toxicity of the effluents, with PAC-UF performing slightly better overall. As both treatments had, on average, relatively similar efficiency, further criteria relevant to their implementation were considered, including local constraints (e.g., safety, sludge disposal, disinfection), operational feasibility and cost. For sensitive receiving waters (drinking water resources or recreational waters), the PAC-UF treatment, despite its current higher cost, was considered to be the most suitable option, enabling good removal of most micropollutants and macropollutants without forming problematic by-products, the strongest decrease in toxicity and a total disinfection of the effluent.
Collapse
|
Comparative Study |
12 |
399 |
3
|
Kosma CI, Lambropoulou DA, Albanis TA. Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:421-38. [PMID: 23933429 DOI: 10.1016/j.scitotenv.2013.07.044] [Citation(s) in RCA: 327] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/13/2013] [Accepted: 07/13/2013] [Indexed: 05/18/2023]
Abstract
In the present work, an extensive study on the presence of eighteen pharmaceuticals and personal care products (PPCPs) in eight wastewater treatment plants (WWTPs) of Greece has been conducted. The study covered four sampling periods over 1-year, where samples (influents; effluents) from eight WWTPs of various cities in Greece were taken. All WWTPs investigated are equipped with conventional activated sludge treatment. A common pre-concentration step based on SPE was applied, followed by LC-UV/Vis-ESI-MS. Further confirmation of positive findings was accomplished by using LC coupled to a high resolution Orbitrap mass spectrometer. The results showed the occurrence of all target compounds in the wastewater samples with concentrations up to 96.65 μg/L. Paracetamol, caffeine, trimethoprim, sulfamethoxazole, carbamazepine, diclofenac and salicylic acid were the dominant compounds, while tolfenamic acid, fenofibrate and simvastatin were the less frequently detected compounds with concentrations in effluents below the LOQ. The removal efficiencies showed that many WWTPs were unable to effectively remove most of the PPCPs investigated. Finally, the study provides an assessment of the environmental risk posed by their presence in wastewaters by means of the risk quotient (RQ). RQs were more than unity for various compounds in the effluents expressing possible threat for the aquatic environment. Triclosan was found to be the most critical compound in terms of contribution and environmental risk, concluding that it should be seriously considered as a candidate for regulatory monitoring and prioritization on a European scale on the basis of realistic PNECs. The results of the extensive monitoring study contributed to a better insight on PPCPs in Greece and their presence in influent and effluent wastewaters. Furthermore, the unequivocal identification of two transformation products of trimethoprim in real wastewaters by using the advantages of the LTQ Orbitrap capabilities provides information that should be taken into consideration in future PPCP monitoring studies in wastewaters.
Collapse
|
|
11 |
327 |
4
|
Nidheesh PV, Gandhimathi R, Ramesh ST. Degradation of dyes from aqueous solution by Fenton processes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2099-132. [PMID: 23338990 DOI: 10.1007/s11356-012-1385-z] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/29/2012] [Indexed: 05/26/2023]
Abstract
Several industries are using dyes as coloring agents. The effluents from these industries are increasingly becoming an environmental problem. The removal of dyes from aqueous solution has a great potential in the field of environmental engineering. This paper reviews the classification, characteristics, and problems of dyes in detail. Advantages and disadvantages of different methods used for dye removal are also analyzed. Among these methods, Fenton process-based advanced oxidation processes are an emerging prospect in the field of dye removal. Fenton processes have been classified and represented as "Fenton circle". This paper analyzes the recent studies on Fenton processes. The studies include analyzing different configurations of reactors used for dye removal, its efficiency, and the effects of various operating parameters such as pH, catalyst concentration, H2O2 concentration, initial dye concentration, and temperature of Fenton processes. From the present study, it can be conclude that Fenton processes are very effective and environmentally friendly methods for dye removal.
Collapse
|
Review |
12 |
287 |
5
|
Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. JOURNAL OF HAZARDOUS MATERIALS 2012; 239-240:40-7. [PMID: 22608399 DOI: 10.1016/j.jhazmat.2012.04.068] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/25/2012] [Accepted: 04/29/2012] [Indexed: 05/05/2023]
Abstract
The occurrence of sixteen pharmaceutically active compounds in influent and effluent wastewater and in primary, secondary and digested sludge in one-year period has been evaluated. Solid-water partition coefficients (Kd) were calculated to evaluate the efficiency of removal of these compounds from wastewater by sorption onto sludge. The ecotoxicological risk to aquatic and terrestrial ecosystems, due to wastewater discharges to the receiving streams and to the application of digested sludge as fertilizer onto soils, was also evaluated. Twelve of the pharmaceuticals were detected in wastewater at mean concentrations from 0.1 to 32 μg/L. All the compounds found in wastewater were also found in sewage sludge, except diclofenac, at mean concentrations from 8.1 to 2206 μg/kg dm. Ibuprofen, salicylic acid, gemfibrozil and caffeine were the compounds at the highest concentrations. LogKd values were between 1.17 (naproxen) and 3.48 (carbamazepine). The highest ecotoxicological risk in effluent wastewater and digested sludge is due to ibuprofen (risk quotient (RQ): 3.2 and 4.4, respectively), 17α-ethinylestradiol (RQ: 12 and 22, respectively) and 17β-estradiol (RQ: 12 and 359, respectively). Ecotoxicological risk after wastewater discharge and sludge disposal is limited to the presence of 17β-estradiol in digested-sludge amended soil (RQ: 2.7).
Collapse
|
|
13 |
223 |
6
|
Ziajahromi S, Neale PA, Leusch FDL. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:2253-2269. [PMID: 27858783 DOI: 10.2166/wst.2016.414] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.
Collapse
|
Review |
9 |
156 |
7
|
Niemuth NJ, Klaper RD. Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish. CHEMOSPHERE 2015; 135:38-45. [PMID: 25898388 DOI: 10.1016/j.chemosphere.2015.03.060] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 05/02/2023]
Abstract
The occurrence of intersex fish, where male reproductive tissues show evidence of feminization, have been found in freshwater systems around the world, indicating the potential for significant endocrine disruption across species in the ecosystem. Estrogens from birth control medications in wastewater treatment plant effluent have been cited as the likely cause, but research has shown that endocrine disruption is not solely predictable based on hormone receptor interactions. Many other non-hormone pharmaceuticals are found in effluent at concentrations orders of magnitude higher than estrogens, yet there is little data indicating the impacts of these other medications. The widely prescribed anti-diabetic metformin is among the most abundant of pharmaceuticals found in effluent and is structurally dissimilar from hormones. However, we show here that exposing fathead minnows (Pimephales promelas) to a concentration of metformin found in wastewater effluent causes the development of intersex gonads in males, reduced size of treated male fish, and reduction in fecundity for treated pairs. Our results demonstrate that metformin acts as an endocrine disruptor at environmentally relevant concentrations.
Collapse
|
|
10 |
154 |
8
|
Singh AK, Chandra R. Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:202-216. [PMID: 31029991 DOI: 10.1016/j.aquatox.2019.04.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/11/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The pulp paper industries release wastewater containing very complex organic and inorganic pollutants. These pollutants are discharged mainly pulping and bleaching process during paper manufacturing. The main gaseous pollutants hydrogen sulfides, sodium sulfide, methyl mercaptan, sulfur, and chlorine dioxide is reported for chronic, respiratory disorder and irritation to skin, eyes and cardiac problem along with nausea and headache. The major inorganic pollutants include ferrous, copper, zinc, nickel, and magnesium, which is reported for neurotoxicity, toxic to juvenile channel catfish (Ictalurus punctatus) and Accumulation to gill > liver > ovary > muscle. The detected major organic and inorganic pollutants are hexadecanoic acids, octacosane, β-sitosterol trimethylsilyl ether, 1-tetradecane, 2-methoxy phenol, trichlorocatechol, tetrachlorocatechol, chlorophenols, chloroguaiacols, chlorosyringols, chlorocatechols, terpenes, methanol, phenol, alkylated phenols, decalone, benzoic acid, abietic acid, and dehydroabietic acid. Several of these compounds are reported as endocrine-disrupting chemicals (EDCs). Therefore, direct toxicity of effluent to the reproductive system in aquatic flora and fauna are reported. Several reports have highlighted reduced gonad size, change in secondary sexual character, delayed maturity and suppression of sex hormone in fish rainbow trout (Oncorhynchus mykiss) and mosquitofish (Gambusia holbrooki) further the in-vitro studies of organic compounds on fish, Salmonella typhimurium, Vibrio fischeri, and Saccharomyces have shown inhibition in growth and luminescence properties. The presence of organic and inorganic pollutants in pulp paper industry wastewater causes phytotoxicity chromosomal aberration in Allium cepa. Thus the manuscript has concluded that detected pollutants produced foul odors and cause hermaphroditism in fish, hepatotoxicity and mutagenic effect. In addition, the growth of coliform bacteria in River and other aquatic resources has been reported due to contamination of PPI effluent. The studies also highlighted the presence of tannins, chlorophenols, dioxins, furans, biocide, fatty acids, and resin acids along with chlorolignine compounds as persistent organic pollutants (POP), which needs special attention for pollution prevention of rivers, lakes and other aquatic resources.
Collapse
|
Review |
6 |
128 |
9
|
Orias F, Perrodin Y. Characterisation of the ecotoxicity of hospital effluents: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 454-455:250-76. [PMID: 23545489 DOI: 10.1016/j.scitotenv.2013.02.064] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 05/12/2023]
Abstract
The multiple activities that take place in hospitals (surgery, drug treatments, radiology, cleaning of premises and linen, chemical and biological analysis laboratories, etc.), are a major source of pollutant emissions into the environment (disinfectants, detergents, drug residues, etc.). Most of these pollutants can be found in hospital effluents (HWW), then in urban sewer networks and WWTP (weakly adapted for their treatment) and finally in aquatic environments. In view to evaluating the impact of these pollutants on aquatic ecosystems, it is necessary to characterise their ecotoxicity. Several reviews have focused on the quantitative and qualitative characterisation of pollutants present in HWW. However, none have focused specifically on the characterisation of their experimental ecotoxicity. We have evaluated this according to two complementary approaches: (i) a "substance" approach based on the identification of the experimental data in the literature for different substances found in hospital effluents, and on the calculation of their PNEC (Predicted Non Effect Concentration), (ii) a "matrix" approach for which we have synthesised ecotoxicity data obtained from the hospital effluents directly. This work first highlights the diversity of the substances present within hospital effluents, and the very high ecotoxicity of some of them (minimum PNEC observed close to 0,01 pg/L). We also observed that the consumption of drugs in hospitals was a predominant factor chosen by authors to prioritise the compounds to be sought. Other criteria such as biodegradability, excretion rate and the bioaccumulability of pollutants are considered, though more rarely. Studies of the ecotoxicity of the particulate phase of effluents must also be taken into account. It is also necessary to monitor the effluents of each of the specialised departments of the hospital studied. These steps is necessary to define realistic environmental management policies for hospitals (replacement of toxic products by less pollutant ones, etc.).
Collapse
|
Review |
12 |
128 |
10
|
Xu Y, Xu J, Mao D, Luo Y. Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:900-908. [PMID: 27876226 DOI: 10.1016/j.envpol.2016.10.074] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Our previous study demonstrated that high levels of antibiotic resistance genes (ARGs) in the Haihe River were directly attributed to the excessive use of antibiotics in animal agriculture. The antibiotic residues of the Xiangjiang River determined in this study were much lower than those of the Haihe River, but the relative abundance of 16 detected ARGs (sul1, sul2 and sul3, qepA, qnrA, qnrB, qnrD and qnrS, tetA, tetB, tetW, tetM, tetQ and tetO, ermB and ermC), were as high as the Haihe River particularly in the downstream of the Xiangjiang River which is close to the extensive metal mining. The ARGs discharged from the pharmaceutical wastewater treatment plant (PWWTP) are a major source of ARGs in the upstream of the Xiangjiang River. In the downstream, selective stress of heavy metals rather than source release had a significant influence on the distinct distribution pattern of ARGs. Some heavy metals showed a positive correlation with certain ARG subtypes. Additionally, there is a positive correlation between individual ARG subtypes and heavy metal resistance genes, suggesting that heavy metals may co select the ARGs on the same plasmid of antibiotic resistant bacteria. The co-selection mechanism between specific metal and antibiotic resistance was further confirmed by these isolations encoding the resistance genotypes to antibiotics and metals. To our knowledge, this is the first study on the fate and distribution of ARGs under the selective pressure exerted by heavy metals in the catchment scale. These results are beneficial to understand the fate, and to discern the contributors of ARGs from either the source release or the selective pressure by sub-lethal levels of environmental stressors during their transport on a river catchment scale.
Collapse
|
|
8 |
116 |
11
|
Frédéric O, Yves P. Pharmaceuticals in hospital wastewater: their ecotoxicity and contribution to the environmental hazard of the effluent. CHEMOSPHERE 2014; 115:31-9. [PMID: 24502927 DOI: 10.1016/j.chemosphere.2014.01.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/16/2013] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Nowadays, pharmaceuticals are found in every compartment of the environment. Hospitals are one of the main sources of these pollutant emissions sent to wastewater treatment plants (WWTP) that are poorly equipped to treat these types of compounds efficiently. In this work, for each pharmaceutical compound found in hospital wastewater (HWW), we have calculated a hazard quotient (HQ) corresponding to the highest concentration measured in HWW divided by its predicted no effect concentration (PNEC). Thus we have assessed the contribution of each compound to the ecotoxicological threat of HWW taken as a whole. Fifteen compounds are identified as particularly hazardous in HWW. In future more attention should be given to their analysis and replacement in hospitals, and to their elimination in WWTPs. This work also highlights the lack of knowledge of the ecotoxicity of certain pharmaceutical compounds found in HWW at high concentrations (mgL(-1)). In order to extend this study, it is now necessary to investigate ecotoxic risks linked to various emission scenarios, focusing in particular on dilution in the aquatic environment and the production of metabolites, especially during transit inside WWTPs.
Collapse
|
|
11 |
115 |
12
|
Cruz-Morató C, Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D, Marco-Urrea E, Vicent T, Sarrà M. Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. WATER RESEARCH 2013; 47:5200-10. [PMID: 23866144 DOI: 10.1016/j.watres.2013.06.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/27/2013] [Accepted: 06/01/2013] [Indexed: 05/20/2023]
Abstract
The constant detection of pharmaceuticals (PhACs) in the environment demonstrates the inefficiency of conventional wastewater treatment plants to completely remove them from wastewaters. So far, many studies have shown the feasibility of using white rot fungi to remove these contaminants. However, none of them have studied the degradation of several PhACs in real urban wastewater under non-sterile conditions, where mixtures of contaminants presents at low concentrations (ng L(-1) to μg L(-1)) as well as other active microorganisms are present. In this work, a batch fluidized bed bioreactor was used to study, for the first time, the degradation of PhACs present in urban wastewaters at their pre-existent concentrations under non-sterile conditions. Glucose and ammonium tartrate were continuously supplied as carbon and nitrogen source, respectively, and pH was maintained at 4.5. Complete removal of 7 out of the 10 initially detected PhACs was achieved in non-sterile treatment, while only 2 were partially removed and 1 of the PhACs analyzed increased its concentration. In addition, Microtox test showed an important reduction of toxicity in the wastewater after the treatment.
Collapse
|
|
12 |
108 |
13
|
|
Editorial |
12 |
106 |
14
|
Chowdhary P, Raj A, Bharagava RN. Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review. CHEMOSPHERE 2018; 194:229-246. [PMID: 29207355 DOI: 10.1016/j.chemosphere.2017.11.163] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/27/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Distillery industries are the key contributor to the world's economy, but these are also one of the major sources of environmental pollution due to the discharge of a huge volume of dark colored wastewater. This dark colored wastewater contains very high biological oxygen demand, chemical oxygen demand, total solids, sulfate, phosphate, phenolics and various toxic metals. Distillery wastewater also contains a mixture of organic and inorganic pollutants such as melanoidins, di-n-octyl phthalate, di-butyl phthalate, benzenepropanoic acid and 2-hydroxysocaproic acid and toxic metals, which are well reported as genotoxic, carcinogenic, mutagenic and endocrine disrupting in nature. In aquatic resources, it causes serious environmental problems by reducing the penetration power of sunlight, photosynthetic activities and dissolved oxygen content. On other hand, in agricultural land, it causes inhibition of seed germination and depletion of vegetation by reducing the soil alkalinity and manganese availability, if discharged without adequate treatment. Thus, this review article provides a comprehensive knowledge on the distillery wastewater pollutants, various techniques used for their analysis as well as its toxicological effects on environments, human and animal health. In addition, various physico-chemicals, biological as well as emerging treatment methods have been also discussed for the protection of environment, human and animal health.
Collapse
|
Review |
7 |
104 |
15
|
Elliott EG, Ettinger AS, Leaderer BP, Bracken MB, Deziel NC. A systematic evaluation of chemicals in hydraulic-fracturing fluids and wastewater for reproductive and developmental toxicity. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:90-99. [PMID: 26732376 DOI: 10.1038/jes.2015.81] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 05/17/2023]
Abstract
Hydraulic-fracturing fluids and wastewater from unconventional oil and natural gas development contain hundreds of substances with the potential to contaminate drinking water. Challenges to conducting well-designed human exposure and health studies include limited information about likely etiologic agents. We systematically evaluated 1021 chemicals identified in hydraulic-fracturing fluids (n=925), wastewater (n=132), or both (n=36) for potential reproductive and developmental toxicity to triage those with potential for human health impact. We searched the REPROTOX database using Chemical Abstract Service registry numbers for chemicals with available data and evaluated the evidence for adverse reproductive and developmental effects. Next, we determined which chemicals linked to reproductive or developmental toxicity had water quality standards or guidelines. Toxicity information was lacking for 781 (76%) chemicals. Of the remaining 240 substances, evidence suggested reproductive toxicity for 103 (43%), developmental toxicity for 95 (40%), and both for 41 (17%). Of these 157 chemicals, 67 had or were proposed for a federal water quality standard or guideline. Our systematic screening approach identified a list of 67 hydraulic fracturing-related candidate analytes based on known or suspected toxicity. Incorporation of data on potency, physicochemical properties, and environmental concentrations could further prioritize these substances for future drinking water exposure assessments or reproductive and developmental health studies.
Collapse
|
|
8 |
101 |
16
|
Khan S, Malik A. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4446-4458. [PMID: 29185221 DOI: 10.1007/s11356-017-0783-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Water pollution caused by the discharge of hazardous textile effluents is a serious environmental problem worldwide. In order to assess the pollution level of the textile effluents, various physico-chemical parameters were analyzed in the textile wastewater and agricultural soil irrigated with the wastewater (contaminated soil) using atomic absorption spectrophotometer and gas chromatography-mass spectrometry (GC-MS) analysis that demonstrated the presence of several toxic heavy metals (Ni, Cu, Cr, Pb, Cd, and Zn) and a large number of organic compounds. Further, in order to get a comprehensive idea about the toxicity exerted by the textile effluent, mung bean seed germination test was performed that indicated the reduction in percent seed germination and radicle-plumule growth. The culturable microbial populations were also enumerated and found to be significantly lower in the wastewater and contaminated soil than the ground water irrigated soil, thus indicating the biotic homogenization of indigenous microflora. Therefore, the study was aimed to develop a cost effective and ecofriendly method of textile waste treatment using native soil bacterium, identified as Arthrobacter soli BS5 by 16S rDNA sequencing that showed remarkable ability to degrade a textile dye reactive black 5 with maximum degradation of 98% at 37 °C and pH in the range of 5-9 after 120 h of incubation.
Collapse
|
|
7 |
93 |
17
|
Rehman K, Imran A, Amin I, Afzal M. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. JOURNAL OF HAZARDOUS MATERIALS 2018; 349:242-251. [PMID: 29428685 DOI: 10.1016/j.jhazmat.2018.02.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/20/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to investigate the potential of plant-bacterial synergism in floating treatment wetlands (FTWs) for efficient remediation of an oil field wastewater. Two plants, Brachiara mutica and Phragmites australis, were vegetated on floatable mats to develop FTWs, and inoculated with bacterial cons which were then inoculated with a consortium of hydrocarbon-degrading bacteria (Bacillus subtilis strain LORI66, Klebsiella sp. strain LCRI87, Acinetobacter Junii strain TYRH47, Acinetobacter sp. strain LCRH81). Both plants successfully removed organic and inorganic pollutants from wastewater, but bioaugmentation of P. australis significantly enhanced the plant's efficiency to reduce oil content (97%), COD (93%), and BOD (97%), in wastewater. Analysis of alkane-degrading gene (alkB) abundance and its expression profile further validated a higher microbial growth and degradation activity in water around P. australis as well as its roots and shoots. This study provides insight into the available phytotechnology for remediation of crude oil-contaminated water and introduces a wetland macrophyte, P. australis, with tailor-made bacterial consortium as an effective tool for improved phytoremediation efficiency of FTWs.
Collapse
|
|
7 |
92 |
18
|
Isidori M, Lavorgna M, Russo C, Kundi M, Žegura B, Novak M, Filipič M, Mišík M, Knasmueller S, de Alda ML, Barceló D, Žonja B, Česen M, Ščančar J, Kosjek T, Heath E. Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:275-287. [PMID: 27814544 DOI: 10.1016/j.envpol.2016.10.039] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Anticancer drugs are continuously released into hospital and urban wastewaters, where they, most commonly, undergo conventional treatment in wastewater treatment plants (WWTPs). Wastewaters contain complex mixtures of substances including parent compounds, their metabolites and transformation products (TPs). In this study, samples of hospital effluents and WWTP influents and effluents from Slovenia and Spain were analyzed for twenty-two selected anticancer drugs, their metabolites and transformation products. Acute and chronic toxicity tests were performed on the crustacean Ceriodaphnia dubia, genotoxicity was determined with Tradescantia and Allium cepa micronucleus (MN) assays and in vitro comet assay in zebrafish (Danio rerio) liver cell line (ZFL cells). Sixty of the two hundred-twenty determinations revealed detectable levels of anticancer drug residues. Among the targeted compounds, platinum based were most frequently detected (90%). Furthermore, erlotinib was detected in 80%, cyclophosphamide and tamoxifen in 70% and methotrexate in 60% of the samples. Seven of ten samples were toxic to C. dubia after acute exposure, whereas after chronic exposure all samples reduced reproduction of C. dubia at high sample dilutions. Allium cepa proved insensitive to the potential genotoxicity of the tested samples, while in Tradescantia increased MN frequencies were induced by a hospital effluent and WWTP influents. In ZFL comet assay all but one sample induced a significant increase of DNA strand breaks. Correlations of chemotherapeutics or their TPs were detected for all bioassays except for Allium cepa genotoxicity test, however for each test the highest correlations were found for different substances indicating differential sensitivities of the test organisms.
Collapse
|
|
9 |
86 |
19
|
Zhang X, Gu P, Liu Y. Decontamination of radioactive wastewater: State of the art and challenges forward. CHEMOSPHERE 2019; 215:543-553. [PMID: 30342399 DOI: 10.1016/j.chemosphere.2018.10.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Radioactive substances have been widely used in many industrial sectors, e.g. nuclear power station, biomedical engineering, etc. With increasing applications of nuclear technology, more and more radioactive wastewater is being generated via different channels, which indeed is posing an emerging challenge and threat to the environment and human health. Given such a situation, this review attempts to offer a holistic view with regard to the state of the art of technology for decontamination of radioactive wastewater as well as shed lights on the challenges forward. Different from reclamation of other types of wastewaters, the most challenging issue in decontamination of radioactive wastewater is the effective stabilization and solidification of soluble radioactive nuclides present in wastewater, which are critical for final disposal. Moreover, the potential risk of human exposure to wastewater radiation needs to be carefully assessed, and this issue should also be taken into consideration in the selection, design and operation of the radioactive wastewater treatment process. These clearly differentiate the treatment principle of radioactive wastewater from those of traditional industrial and municipal wastewaters. Lastly, the challenges from the perspectives of technology development, environmental and human health impacts and possible solutions forward are also elucidated.
Collapse
|
Review |
6 |
85 |
20
|
Pham M, Schideman L, Scott J, Rajagopalan N, Plewa MJ. Chemical and biological characterization of wastewater generated from hydrothermal liquefaction of Spirulina. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2131-2138. [PMID: 23305492 DOI: 10.1021/es304532c] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Hydrothermal liquefaction (HTL) is an attractive method for converting wet biomass into petroleum-like biocrude oil that can be refined to make petroleum products. This approach is advantageous for conversion of low-lipid algae, which are promising feedstocks for sustainable large-scale biofuel production. As with natural petroleum formation, the water in contact with the produced oil contains toxic compounds. The objectives of this research were to: (1) identify nitrogenous organic compounds (NOCs) in wastewater from HTL conversion of Spirulina; (2) characterize mammalian cell cytotoxicity of specific NOCs, NOC mixture, and the complete HTL wastewater (HTL-WW) matrix; and (3) investigate mitigation measures to reduce toxicity in HTL-WW. Liquid-liquid extraction and nitrogen-phosphorus detection was used in conjunction with gas chromatography-mass spectrometry (GC-MS), which detected hundreds of NOCs in HTL-WW. Reference materials for nine of the most prevalent NOCs were used to identify and quantify their concentrations in HTL-WW. Mammalian cell cytotoxicity of the nine NOCs was quantified using a Chinese hamster ovary (CHO) cell assay, and the descending rank order for cytotoxicity was 3-dimethylamino-phenol > 2,2,6,6-tetramethyl-4-piperidone > 2,6-dimethyl-3-pyridinol > 2-picoline > pyridine > 1-methyl-2-pyrrolidinone > σ-valerolactam > 2-pyrrolidinone > ε-caprolactam. The organic mixture extracted from HTL-WW expressed potent CHO cell cytotoxic activity, with a LC(50) at 7.5% of HTL-WW. Although the toxicity of HTL-WW was substantial, 30% of the toxicity was removed biologically by recycling HTL-WW back into algal cultivation. The remaining toxicity of HTL-WW was mostly eliminated by subsequent treatment with granular activated carbon.
Collapse
|
|
12 |
80 |
21
|
Shehzadi M, Afzal M, Khan MU, Islam E, Mobin A, Anwar S, Khan QM. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. WATER RESEARCH 2014; 58:152-9. [PMID: 24755300 DOI: 10.1016/j.watres.2014.03.064] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 05/06/2023]
Abstract
Textile effluent is one of the main contributors of water pollution and it adversely affects fauna and flora. Constructed wetland is a promising approach to remediate the industrial effluent. The detoxification of industrial effluent in a constructed wetland system may be enhanced by applying beneficial bacteria that are able to degrade contaminants present in industrial effluent. The aim of this study was to evaluate the influence of inoculation of textile effluent-degrading endophytic bacteria on the detoxification of textile effluent in a vertical flow constructed wetland reactor. A wetland plant, Typha domingensis, was vegetated in reactor and inoculated with two endophytic bacterial strains, Microbacterium arborescens TYSI04 and Bacillus pumilus PIRI30. These strains possessed textile effluent-degrading and plant growth-promoting activities. Results indicated that bacterial inoculation improved plant growth, textile effluent degradation and mutagenicity reduction and were correlated with the population of textile effluent-degrading bacteria in the rhizosphere and endosphere of T. domingensis. Bacterial inoculation enhanced textile effluent-degrading bacterial population in rhizosphere, root and shoot of T. domingensis. Significant reductions in COD (79%), BOD (77%) TDS (59%) and TSS (27%) were observed by the combined use of plants and bacteria within 72 h. The resultant effluent meets the wastewater discharge standards of Pakistan and can be discharged into the environment without any risks. This study revealed that the combined use of plant and endophytic bacteria is one of the approaches to enhance textile effluent degradation in a constructed wetland system.
Collapse
|
|
11 |
80 |
22
|
Aguirre-Martínez GV, Buratti S, Fabbr E, DelValls AT, Martín-Díaz ML. Using lysosomal membrane stability of haemocytes in Ruditapes philippinarum as a biomarker of cellular stress to assess contamination by caffeine, ibuprofen, carbamazepine and novobiocin. J Environ Sci (China) 2013; 25:1408-1418. [PMID: 24218854 DOI: 10.1016/s1001-0742(12)60207-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although pharmaceuticals have been detected in the environment only in the range from ng/L to microg/L, it has been demonstrated that they can adversely affect the health status of aquatic organisms. Lysosomal membrane stability (LMS) has previously been applied as an indicator of cellular well-being to determine health status in bivalve mussels. The objective of this study is to evaluate LMS in Ruditapes philippinarum haemolymph using the neutral red retention assay (NRRA). Clams were exposed in laboratory conditions to caffeine (0.1, 5, 15, 50 microg/L), ibuprofen (0.1, 5, 10, 50 microg/L), carbamazepine and novobiocin (both at 0.1, 1, 10, 50 microg/L) for 35 days. Results show a dose-dependent effect of the pharmaceuticals. The neutral red retention time measured at the end of the bioassay was significantly reduced by 50% after exposure to environmental concentrations (p < 0.05) (caffeine = 15 microg/L; ibuprofen = 10 microg/L; carbamazepine = 1 microg/L and novobiocin = 1 microg/L), compared to controls. Clams exposed to these pharmaceuticals were considered to present a diminished health status (retention time < 45 min), significantly worse than controls (96 min) (p < 0.05). The predicted no environmental effect concentration (PNEC) results showed that these pharmaceuticals are very toxic at the environmental concentrations tested. Measurement of the alteration of LMS has been found to be a sensitive technique that enables evaluation of the health status of clams after exposure to pharmaceuticals under laboratory conditions, thus representing a robust Tier-1 screening biomarker.
Collapse
|
|
12 |
76 |
23
|
Zhuang H, Han H, Hou B, Jia S, Zhao Q. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts. BIORESOURCE TECHNOLOGY 2014; 166:178-186. [PMID: 24907577 DOI: 10.1016/j.biortech.2014.05.056] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/13/2014] [Accepted: 05/17/2014] [Indexed: 06/03/2023]
Abstract
Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application.
Collapse
|
Evaluation Study |
11 |
74 |
24
|
Yadav A, Raj A, Purchase D, Ferreira LFR, Saratale GD, Bharagava RN. Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a Common Effluent Treatment Plant (CETP) in Unnao district, India using Vigna radiata and Allium cepa. CHEMOSPHERE 2019; 224:324-332. [PMID: 30826702 DOI: 10.1016/j.chemosphere.2019.02.124] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 05/09/2023]
Abstract
The leather industry is a major source of environmental pollution in India. The wastewater generated by leather industries contains very high pollution parameters due to the presence of a complex mixture of organic and inorganic pollutants even after the treatment at a Common Effluent Treatment Plant (CETP) and disturbs the ecological flora and fauna. The nature, characteristics and toxicity of CETP treated wastewater is yet to be fully elucidated. Thus, this study aims to characterize and evaluate the toxicity of CETP treated tannery wastewater collected from the Unnao district of Uttar Pradesh, India. In addition to measuring the physico-chemical parameters, the residual organic pollutants was identified by GC-MS analysis and phytotoxicity, cytotoxicity and genotoxicity of the treated wastewater was evaluated using Vigna radiata L. and Allium cepa L. Results showed that the treated wastewater contained very high pollution parameters (TDS 3850 mg/L, BOD 680 mg/L, COD-1300 mg/L). GC-MS analysis revealed the presence of various types of residual organic pollutants including benzoic acid, 3-[4,-(T-butyl) Phenyl] furan-2-5-dione, benzeneacetamide, resorcinol, dibutyl phthalate, and benzene-1,2,4-triol. Further, toxicological studies showed the phytotoxic nature of the wastewater as it inhibited seed germination in V. radiata L. and root growth of A. cepa. Genotoxicity was evidenced in the root tip cell of A. cepa where chromosomal aberrations (stickiness, chromosome loss, C-mitosis, and vagrant chromosome) and nuclear abnormalities like micronucleated and binucleated cells were observed. Thus, results suggested that it is not safe to discharge these wastewater into the environment.
Collapse
|
|
6 |
73 |
25
|
Michael-Kordatou I, Iacovou M, Frontistis Z, Hapeshi E, Dionysiou DD, Fatta-Kassinos D. Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation. WATER RESEARCH 2015; 85:346-58. [PMID: 26360228 DOI: 10.1016/j.watres.2015.08.050] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 05/23/2023]
Abstract
This study evaluates the feasibility of UV-C-driven advanced oxidation process induced by sulfate radicals SO4(.)- in degrading erythromycin (ERY) in secondary treated wastewater. The results revealed that 10 mg L(-1) of sodium persulfate (SPS) can result in rapid and complete antibiotic degradation within 90 min of irradiation, while ERY decay exhibited a pseudo-first-order kinetics pattern under the different experimental conditions applied. ERY degradation rate was strongly affected by the chemical composition of the aqueous matrix and it decreased in the order of: ultrapure water (kapp = 0.55 min(-1)) > bottled water (kapp = 0.26 min(-1)) > humic acid solution (kapp = 0.05 min(-1)) > wastewater effluents (kapp = 0.03 min(-1)). Inherent pH conditions (i.e. pH 8) yielded an increased ERY degradation rate, compared to that observed at pH 3 and 5. The contribution of hydroxyl and sulfate radicals (HO. and SO4(.)-) on ERY degradation was found to be ca. 37% and 63%, respectively. Seven transformation products (TPs) were tentatively elucidated during ERY oxidation, with the 14-membered lactone ring of the ERY molecule being intact in all cases. The observed phytotoxicity against the tested plant species can potentially be attributed to the dissolved effluent organic matter (dEfOM) present in wastewater effluents and its associated-oxidation products and not to the TPs generated from the oxidation of ERY. This study evidences the potential use of the UV-C/SPS process in producing a final treated effluent with lower phytotoxicity (<10%) compared to the untreated wastewater. Finally, under the optimum experimental conditions, the UV-C/SPS process resulted in total inactivation of ERY-resistant Escherichia coli within 90 min.
Collapse
|
|
10 |
71 |