1
|
Kümmerer K. Antibiotics in the aquatic environment--a review--part I. CHEMOSPHERE 2009; 75:417-34. [PMID: 19185900 DOI: 10.1016/j.chemosphere.2008.11.086] [Citation(s) in RCA: 2184] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 11/27/2008] [Accepted: 11/27/2008] [Indexed: 05/17/2023]
Abstract
Although antibiotics have been used in large quantities for some decades, until recently the existence of these substances in the environment has received little notice. It is only in recent years that a more complex investigation of antibiotic substances has been undertaken in order to permit an assessment of the environmental risks they may pose. Within the last decade an increasing number of studies covering antibiotic input, occurrence, fate and effects have been published, but there is still a lack of understanding and knowledge about antibiotics in the aquatic environment despite the numerous studies performed. This review addresses the present state of knowledge concerning the input, occurrence, fate and effects of antibiotics in the environment. It brings up important questions that are still open, and addresses some significant issues which must be tackled in the future for a better understanding of the behavior of antibiotics in the environment, as well as the risks associated with their occurrence. Questions related to resistance in the environment that may be caused by antibiotics will be addressed in the second part.
Collapse
|
Review |
16 |
2184 |
2
|
Deborde M, von Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review. WATER RESEARCH 2008; 42:13-51. [PMID: 17915284 DOI: 10.1016/j.watres.2007.07.025] [Citation(s) in RCA: 1109] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 07/13/2007] [Accepted: 07/18/2007] [Indexed: 05/17/2023]
Abstract
Numerous inorganic and organic micropollutants can undergo reactions with chlorine. However, for certain compounds, the expected chlorine reactivity is low and only small modifications in the parent compound's structure are expected under typical water treatment conditions. To better understand/predict chlorine reactions with micropollutants, the kinetic and mechanistic information on chlorine reactivity available in literature was critically reviewed. For most micropollutants, HOCl is the major reactive chlorine species during chlorination processes. In the case of inorganic compounds, a fast reaction of ammonia, halides (Br(-) and I(-)), SO(3)(2-), CN(-), NO(2)(-), As(III) and Fe(II) with HOCl is reported (10(3)-10(9)M(-1)s(-1)) whereas low chlorine reaction rates with Mn(II) were shown in homogeneous systems. Chlorine reactivity usually results from an initial electrophilic attack of HOCl on inorganic compounds. In the case of organic compounds, second-order rate constants for chlorination vary over 10 orders of magnitude (i.e. <0.1-10(9)M(-1)s(-1)). Oxidation, addition and electrophilic substitution reactions with organic compounds are possible pathways. However, from a kinetic point of view, usually only electrophilic attack is significant. Chlorine reactivity limited to particular sites (mainly amines, reduced sulfur moieties or activated aromatic systems) is commonly observed during chlorination processes and small modifications in the parent compound's structure are expected for the primary attack. Linear structure-activity relationships can be used to make predictions/estimates of the reactivity of functional groups based on structural analogy. Furthermore, comparison of chlorine to ozone reactivity towards aromatic compounds (electrophilic attack) shows a good correlation, with chlorine rate constants being about four orders of magnitude smaller than those for ozone.
Collapse
|
Review |
17 |
1109 |
3
|
Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3782. [PMID: 32466586 PMCID: PMC7312803 DOI: 10.3390/ijerph17113782] [Citation(s) in RCA: 1106] [Impact Index Per Article: 221.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a toxic non-essential transition metal that poses a health risk for both humans and animals. It is naturally occurring in the environment as a pollutant that is derived from agricultural and industrial sources. Exposure to cadmium primarily occurs through the ingestion of contaminated food and water and, to a significant extent, through inhalation and cigarette smoking. Cadmium accumulates in plants and animals with a long half-life of about 25-30 years. Epidemiological data suggest that occupational and environmental cadmium exposure may be related to various types of cancer, including breast, lung, prostate, nasopharynx, pancreas, and kidney cancers. It has been also demonstrated that environmental cadmium may be a risk factor for osteoporosis. The liver and kidneys are extremely sensitive to cadmium's toxic effects. This may be due to the ability of these tissues to synthesize metallothioneins (MT), which are Cd-inducible proteins that protect the cell by tightly binding the toxic cadmium ions. The oxidative stress induced by this xenobiotic may be one of the mechanisms responsible for several liver and kidney diseases. Mitochondria damage is highly plausible given that these organelles play a crucial role in the formation of ROS (reactive oxygen species) and are known to be among the key intracellular targets for cadmium. When mitochondria become dysfunctional after exposure to Cd, they produce less energy (ATP) and more ROS. Recent studies show that cadmium induces various epigenetic changes in mammalian cells, both in vivo and in vitro, causing pathogenic risks and the development of various types of cancers. The epigenetics present themselves as chemical modifications of DNA and histones that alter the chromatin without changing the sequence of the DNA nucleotide. DNA methyltransferase, histone acetyltransferase, histone deacetylase and histone methyltransferase, and micro RNA are involved in the epigenetic changes. Recently, investigations of the capability of sunflower (Helianthus annuus L.), Indian mustard (Brassica juncea), and river red gum (Eucalyptus camaldulensis) to remove cadmium from polluted soil and water have been carried out. Moreover, nanoparticles of TiO2 and Al2O3 have been used to efficiently remove cadmium from wastewater and soil. Finally, microbial fermentation has been studied as a promising method for removing cadmium from food. This review provides an update on the effects of Cd exposure on human health, focusing on the cellular and molecular alterations involved.
Collapse
|
Review |
5 |
1106 |
4
|
Lee J, von Gunten U, Kim JH. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3064-3081. [PMID: 32062964 DOI: 10.1021/acs.est.9b07082] [Citation(s) in RCA: 1072] [Impact Index Per Article: 214.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reports that promote persulfate-based advanced oxidation process (AOP) as a viable alternative to hydrogen peroxide-based processes have been rapidly accumulating in recent water treatment literature. Various strategies to activate peroxide bonds in persulfate precursors have been proposed and the capacity to degrade a wide range of organic pollutants has been demonstrated. Compared to traditional AOPs in which hydroxyl radical serves as the main oxidant, persulfate-based AOPs have been claimed to involve different in situ generated oxidants such as sulfate radical and singlet oxygen as well as nonradical oxidation pathways. However, there exist controversial observations and interpretations around some of these claims, challenging robust scientific progress of this technology toward practical use. This Critical Review comparatively examines the activation mechanisms of peroxymonosulfate and peroxydisulfate and the formation pathways of oxidizing species. Properties of the main oxidizing species are scrutinized and the role of singlet oxygen is debated. In addition, the impacts of water parameters and constituents such as pH, background organic matter, halide, phosphate, and carbonate on persulfate-driven chemistry are discussed. The opportunity for niche applications is also presented, emphasizing the need for parallel efforts to remove currently prevalent knowledge roadblocks.
Collapse
|
|
5 |
1072 |
5
|
Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 152:686-92. [PMID: 17720286 DOI: 10.1016/j.envpol.2007.06.056] [Citation(s) in RCA: 915] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 06/23/2007] [Accepted: 06/26/2007] [Indexed: 05/02/2023]
Abstract
Consumption of food crops contaminated with heavy metals is a major food chain route for human exposure. We studied the health risks of heavy metals in contaminated food crops irrigated with wastewater. Results indicate that there is a substantial buildup of heavy metals in wastewater-irrigated soils, collected from Beijing, China. Heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher (P<or=0.001) than in plants grown in the reference soil, and exceeded the permissible limits set by the State Environmental Protection Administration (SEPA) in China and the World Health Organization (WHO). Furthermore, this study highlights that both adults and children consuming food crops grown in wastewater-irrigated soils ingest significant amount of the metals studied. However, health risk index values of less than 1 indicate a relative absence of health risks associated with the ingestion of contaminated vegetables.
Collapse
|
|
17 |
915 |
6
|
Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I, Gómez M, Ternes T. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. WATER RESEARCH 2004; 38:2918-26. [PMID: 15223286 DOI: 10.1016/j.watres.2004.03.029] [Citation(s) in RCA: 819] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 01/22/2004] [Accepted: 03/10/2004] [Indexed: 05/05/2023]
Abstract
Two cosmetic ingredients (galaxolide, tonalide), eight pharmaceuticals (carbamazepine, diazepam, diclofenac, ibuprofen, naproxen, roxithromycin, sulfamethoxazole and iopromide) and three hormones (estrone, 17beta-estradiol and 17alpha-ethinylestradiol) have been surveyed along the different units of a municipal Sewage Treatment Plant (STP) in Galicia, NW Spain. Among all the substances considered, significant concentrations in the influent were only found for the two musks (galaxolide and tonalide), two anti-inflammatories (ibuprofen and naproxen), two natural estrogens (estrone, 17beta-estradiol), one antibiotic (sulfamethoxazole) and the X-ray contrast medium (iopromide), where the other compounds studied were below the limit of quantification. In the primary treatment, only the fragrances (30-50%) and 17beta-estradiol (20%) were partially removed. On the other hand, the aerobic treatment (activated sludges) caused an important reduction in all compounds detected, between 35% and 75%, with the exception of iopromide, which remained in the aqueous phase. The overall removal efficiencies within the STP ranged between 70-90% for the fragrances, 40-65% for the anti-inflammatories, around 65% for 17beta-estradiol and 60% for sulfamethoxazole. However, the concentration of estrone increased along the treatment due to the partial oxidation of 17beta-estradiol in the aeration tank.
Collapse
|
|
21 |
819 |
7
|
Lee KM, Lai CW, Ngai KS, Juan JC. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. WATER RESEARCH 2016; 88:428-448. [PMID: 26519627 DOI: 10.1016/j.watres.2015.09.045] [Citation(s) in RCA: 817] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 05/19/2023]
Abstract
Today, a major issue about water pollution is the residual dyes from different sources (e.g., textile industries, paper and pulp industries, dye and dye intermediates industries, pharmaceutical industries, tannery and craft bleaching industries, etc.), and a wide variety of persistent organic pollutants have been introduced into our natural water resources or wastewater treatment systems. In fact, it is highly toxic and hazardous to the living organism; thus, the removal of these organic contaminants prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade those organic contaminants and advanced heterogeneous photocatalysis involving zinc oxide (ZnO) photocatalyst appears to be one of the most promising technology. In recent years, ZnO photocatalyst have attracted much attention due to their extraordinary characteristics. The high efficiency of ZnO photocatalyst in heterogeneous photocatalysis reaction requires a suitable architecture that minimizes electron loss during excitation state and maximizes photon absorption. In order to further improve the immigration of photo-induced charge carriers during excitation state, considerable effort has to be exerted to further improve the heterogeneous photocatalysis under UV/visible/solar illumination. Lately, interesting and unique features of metal doping or binary oxide photocatalyst system have gained much attention and became favourite research matter among various groups of scientists. It was noted that the properties of this metal doping or binary oxide photocatalyst system primarily depend on the nature of the preparation method and the role of optimum dopants content incorporated into the ZnO photocatalyst. Therefore, this paper presents a critical review of recent achievements in the modification of ZnO photocatalyst for organic contaminants degradation.
Collapse
|
Review |
9 |
817 |
8
|
McCormick A, Hoellein TJ, Mason SA, Schluep J, Kelly JJ. Microplastic is an abundant and distinct microbial habitat in an urban river. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11863-71. [PMID: 25230146 DOI: 10.1021/es503610r] [Citation(s) in RCA: 788] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent research has documented microplastic particles (< 5 mm in diameter) in ocean habitats worldwide and in the Laurentian Great Lakes. Microplastic interacts with biota, including microorganisms, in these habitats, raising concerns about its ecological effects. Rivers may transport microplastic to marine habitats and the Great Lakes, but data on microplastic in rivers is limited. In a highly urbanized river in Chicago, Illinois, USA, we measured concentrations of microplastic that met or exceeded those measured in oceans and the Great Lakes, and we demonstrated that wastewater treatment plant effluent was a point source of microplastic. Results from high-throughput sequencing showed that bacterial assemblages colonizing microplastic within the river were less diverse and were significantly different in taxonomic composition compared to those from the water column and suspended organic matter. Several taxa that include plastic decomposing organisms and pathogens were more abundant on microplastic. These results demonstrate that microplastic in rivers are a distinct microbial habitat and may be a novel vector for the downstream transport of unique bacterial assemblages. In addition, this study suggests that urban rivers are an overlooked and potentially significant component of the global microplastic life cycle.
Collapse
|
|
11 |
788 |
9
|
Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:6649-63. [PMID: 16190224 DOI: 10.1021/es0484799] [Citation(s) in RCA: 766] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The potential occurrence of endocrine-disrupting compounds (EDCs) as well as pharmaceuticals and personal care products (PPCPs) in drinking water supplies raises concern over the removal of these compounds by common drinking water treatment processes. Three drinking water supplies were spiked with 10 to 250 ng/L of 62 different EDC/ PPCPs; one model water containing an NOM isolate was spiked with 49 different EDC/PPCPs. Compounds were detected by LC/MS/MS or GC/MS/MS. These test waters were subjected to bench-scale experimentation to simulate individual treatment processes in a water treatment plant (WTP). Aluminum sulfate and ferric chloride coagulants or chemical lime softening removed some polyaromatic hydrocarbons (PAHs) but removed <25% of most other EDC/ PPCPs. Addition of 5 mg/L of powder activated carbon (PAC) with a 4-h contact time removed 50% to >98% of GC/ MS/MS compounds (more volatile) and 10% to >95% of LC/ MS/MS compounds (more polar); higher PAC dosages improved EDC/PPCP removal. EDC/PPCP percentage removal was independent of the initial compound concentration. Octanol-water partition coefficients served as a reasonable indicator of compound removal under controlled PAC test conditions, except for EDC/PPCPs that were protonated or deprotonated at the test pH and some that contained heterocyclic or aromatic nitrogen. Separate chlorine or ozone experiments decreased the EDC/PPCP initial concentration by <10% to >90%; EDC/PPCPs were likely transformed to oxidation byproducts. Ozone oxidized steroids containing phenolic moieties (estradiol, ethynylestradiol, or estrone) more efficiently than those without aromatic or phenolic moieties (androstenedione, progesterone, and testosterone). EDC/PPCP reactivity with oxidants were separated into three general groups: (1) compounds easily oxidized (>80% reacted) by chlorine are always oxidized at least as efficiently by ozone; (2) 6 of the -60 compounds (TCEP, BHC, chlordane, dieldrin, heptachlor epoxide, musk ketone) were poorly oxidized (<20% reacted) by chlorine or ozone; (3) compounds (24 of 60) reacting preferentially (higher removals) with ozone rather than chlorine. Conventional treatment (coagulation plus chlorination) would have low removal of many EDC/PPCPs, while addition of PAC and/or ozone could substantially improve their removals. Existing strategies that predict relative removals of herbicides, pesticides, and other organic pollutants by activated carbon or oxidation can be directly applied for the removal of many EDC/PPCPs, but these strategies need to be modified to account for charged (protonated bases or deprotonated acids) and aliphatic species. Some compounds (e.g., DEET, ibuprofen, gemfibrozil) had low removals unless ozonation was used. Other compounds had low removals by all the WTP processes considered (atrazine, iopromide, meprobamate, TCEP), and removal processes capable of removing these types of compounds should be investigated.
Collapse
|
|
20 |
766 |
10
|
Kümmerer K. Antibiotics in the aquatic environment--a review--part II. CHEMOSPHERE 2009; 75:435-41. [PMID: 19178931 DOI: 10.1016/j.chemosphere.2008.12.006] [Citation(s) in RCA: 755] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 12/07/2008] [Indexed: 05/22/2023]
Abstract
Although antibiotics have been used in large quantities for some decades, until recently the existence of these substances in the environment has received little notice. It is only in recent years that a more complex investigation of antibiotic substances has been undertaken in order to permit an assessment of the environmental risks they may pose. Within the last decade, an increasing number of studies covering antibiotic input, occurrence, fate and effects have been published. Antibiotics are one of the most important groups of pharmaceuticals. Antibiotic resistance is one of the major challenges for human medicine and veterinary medicine. However, there is still a lack of understanding and knowledge about sources, presence and significance of resistance of bacteria against antibiotics in the aquatic environment despite the numerous studies performed. This review summarizes this topic. It names important open questions and addresses some significant issues which must be tackled in the future for a better understanding of resistance related to antibiotics in the environment.
Collapse
|
Review |
16 |
755 |
11
|
Abstract
Water is a naturally circulating resource that is constantly recharged. Therefore, even though the stocks of water in natural and artificial reservoirs are helpful to increase the available water resources for human society, the flow of water should be the main focus in water resources assessments. The climate system puts an upper limit on the circulation rate of available renewable freshwater resources (RFWR). Although current global withdrawals are well below the upper limit, more than two billion people live in highly water-stressed areas because of the uneven distribution of RFWR in time and space. Climate change is expected to accelerate water cycles and thereby increase the available RFWR. This would slow down the increase of people living under water stress; however, changes in seasonal patterns and increasing probability of extreme events may offset this effect. Reducing current vulnerability will be the first step to prepare for such anticipated changes.
Collapse
|
Review |
19 |
728 |
12
|
Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. JOURNAL OF HAZARDOUS MATERIALS 2014; 267:194-205. [PMID: 24457611 DOI: 10.1016/j.jhazmat.2013.12.062] [Citation(s) in RCA: 720] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 05/20/2023]
Abstract
Recent industrial and urban activities have led to elevated concentrations of a wide range of contaminants in groundwater and wastewater, which affect the health of millions of people worldwide. In recent years, the use of zero-valent iron (ZVI) for the treatment of toxic contaminants in groundwater and wastewater has received wide attention and encouraging treatment efficiencies have been documented. This paper gives an overview of the recent advances of ZVI and progress obtained during the groundwater remediation and wastewater treatment utilizing ZVI (including nanoscale zero-valent iron (nZVI)) for the removal of: (a) chlorinated organic compounds, (b) nitroaromatic compounds, (c) arsenic, (d) heavy metals, (e) nitrate, (f) dyes, and (g) phenol. Reaction mechanisms and removal efficiencies were studied and evaluated. It was found that ZVI materials with wide availability have appreciable removal efficiency for several types of contaminants. Concerning ZVI for future research, some suggestions are proposed and conclusions have been drawn.
Collapse
|
Review |
11 |
720 |
13
|
Loos R, Carvalho R, António DC, Comero S, Locoro G, Tavazzi S, Paracchini B, Ghiani M, Lettieri T, Blaha L, Jarosova B, Voorspoels S, Servaes K, Haglund P, Fick J, Lindberg RH, Schwesig D, Gawlik BM. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. WATER RESEARCH 2013; 47:6475-87. [PMID: 24091184 DOI: 10.1016/j.watres.2013.08.024] [Citation(s) in RCA: 709] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/03/2013] [Accepted: 08/17/2013] [Indexed: 05/22/2023]
Abstract
In the year 2010, effluents from 90 European wastewater treatment plants (WWTPs) were analyzed for 156 polar organic chemical contaminants. The analyses were complemented by effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analyzed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays. Analyses of organic substances were performed by solid-phase extraction (SPE) or liquid-liquid extraction (LLE) followed by liquid chromatography tandem mass spectrometry (LC-MS-MS) or gas chromatography high-resolution mass spectrometry (GC-HRMS). Target microcontaminants were pharmaceuticals and personal care products (PPCPs), veterinary (antibiotic) drugs, perfluoroalkyl substances (PFASs), organophosphate ester flame retardants, pesticides (and some metabolites), industrial chemicals such as benzotriazoles (corrosion inhibitors), iodinated x-ray contrast agents, and gadolinium magnetic resonance imaging agents; in addition biological endpoints were measured. The obtained results show the presence of 125 substances (80% of the target compounds) in European wastewater effluents, in concentrations ranging from low nanograms to milligrams per liter. These results allow for an estimation to be made of a European median level for the chemicals investigated in WWTP effluents. The most relevant compounds in the effluent waters with the highest median concentration levels were the artificial sweeteners acesulfame and sucralose, benzotriazoles (corrosion inhibitors), several organophosphate ester flame retardants and plasticizers (e.g. tris(2-chloroisopropyl)phosphate; TCPP), pharmaceutical compounds such as carbamazepine, tramadol, telmisartan, venlafaxine, irbesartan, fluconazole, oxazepam, fexofenadine, diclofenac, citalopram, codeine, bisoprolol, eprosartan, the antibiotics trimethoprim, ciprofloxacine, sulfamethoxazole, and clindamycine, the insect repellent N,N'-diethyltoluamide (DEET), the pesticides MCPA and mecoprop, perfluoroalkyl substances (such as PFOS and PFOA), caffeine, and gadolinium.
Collapse
|
|
12 |
709 |
14
|
Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:303-320. [PMID: 28437649 DOI: 10.1016/j.scitotenv.2017.04.102] [Citation(s) in RCA: 695] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 05/17/2023]
Abstract
In recent years, many of micropollutants have been widely detected because of continuous input of pharmaceuticals and personal care products (PPCPs) into the environment and newly developed state-of-the-art analytical methods. PPCP residues are frequently detected in drinking water sources, sewage treatment plants (STPs), and water treatment plants (WTPs) due to their universal consumption, low human metabolic capability, and improper disposal. When partially metabolized PPCPs are transferred into STPs, they elicit negative effects on biological treatment processes; therefore, conventional STPs are insufficient when it comes to PPCP removal. Furthermore, the excreted metabolites may become secondary pollutants and can be further modified in receiving water bodies. Several advanced treatment systems, including membrane filtration, granular activated carbon, and advanced oxidation processes, have been used for the effective removal of individual PPCPs. This review covers the occurrence patterns of PPCPs in water environments and the techniques adopted for their treatment in STP/WTP unit processes operating in various countries. The aim of this review is to provide a comprehensive summary of the removal and fate of PPCPs in different treatment facilities as well as the optimum methods for their elimination in STP and WTP systems.
Collapse
|
Review |
8 |
695 |
15
|
Dabrowski A, Hubicki Z, Podkościelny P, Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. CHEMOSPHERE 2004; 56:91-106. [PMID: 15120554 DOI: 10.1016/j.chemosphere.2004.03.006] [Citation(s) in RCA: 690] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 03/02/2004] [Indexed: 05/21/2023]
Abstract
By ion exchange undesirable ions are replaced by others which don't contribute to contamination of the environment. The method is technologically simple and enables efficient removal of even traces of impurities from solutions. Examples of selective removal of heavy metal ions by ion-exchange are presented. They include removal of Pb(II), Hg(II), Cd(II), Ni(II), V(IV,V), Cr(III,VI), Cu(II) and Zn(II) from water and industrial wastewaters by means various modern types of ion exchangers.
Collapse
|
Review |
21 |
690 |
16
|
Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:2711-23. [PMID: 19138787 DOI: 10.1016/j.scitotenv.2008.11.059] [Citation(s) in RCA: 689] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 11/13/2008] [Accepted: 11/25/2008] [Indexed: 05/20/2023]
Abstract
The presence of 28 antibiotics in three hospital effluents, five wastewater treatment plants (WWTPs), six rivers and a drinking water storage catchment were investigated within watersheds of South-East Queensland, Australia. All antibiotics were detected at least once, with the exception of the polypeptide bacitracin which was not detected at all. Antibiotics were found in hospital effluent ranging from 0.01-14.5 microg L(-1), dominated by the beta-lactam, quinolone and sulphonamide groups. Antibiotics were found in WWTP influent up to 64 microg L(-1), dominated by the beta-lactam, quinolone and sulphonamide groups. Investigated WWTPs were highly effective in removing antibiotics from the water phase, with an average removal rate of greater than 80% for all targeted antibiotics. However, antibiotics were still detected in WWTP effluents in the low ng L(-1) range up to a maximum of 3.4 microg L(-1), with the macrolide, quinolone and sulphonamide antibiotics most prevalent. Similarly, antibiotics were detected quite frequently in the low ng L(-1) range, up to 2 microg L(-1) in the surface waters of six investigated rivers including freshwater, estuarine and marine samples. The total investigated antibiotic concentration (TIAC) within the Nerang River was significantly lower (p<0.05) than all other rivers sampled. The absence of WWTP discharge to this river is a likely explanation for the significantly lower TIAC and suggests that WWTP discharges are a dominant source of antibiotics to investigated surface waters. A significant difference (p<0.001) was identified between TIACs at surface water sites with WWTP discharge compared to sites with no WWTP discharge, providing further evidence that WWTPs are an important source of antibiotics to streams. Despite the presence of antibiotics in surface waters used for drinking water extraction, no targeted antibiotics were detected in any drinking water samples.
Collapse
|
|
16 |
689 |
17
|
Leenheer JA, Croué JP. Characterizing aquatic dissolved organic matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003. [PMID: 12542280 DOI: 10.1021/es032333c] [Citation(s) in RCA: 683] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
Review |
22 |
683 |
18
|
Mintenig SM, Int-Veen I, Löder MGJ, Primpke S, Gerdts G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. WATER RESEARCH 2017; 108:365-372. [PMID: 27838027 DOI: 10.1016/j.watres.2016.11.015] [Citation(s) in RCA: 678] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 05/22/2023]
Abstract
The global presence of microplastic (MP) in aquatic ecosystems has been shown by various studies. However, neither MP concentrations nor their sources or sinks are completely known. Waste water treatment plants (WWTPs) are considered as significant point sources discharging MP to the environment. This study investigated MP in the effluents of 12 WWTPs in Lower Saxony, Germany. Samples were purified by a plastic-preserving enzymatic-oxidative procedure and subsequent density separation using a zinc chloride solution. For analysis, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FT-IR) and focal plane array (FPA)-based transmission micro-FT-IR imaging were applied. This allowed the identification of polymers of all MP down to a size of 20 μm. In all effluents MP was found with quantities ranging from 0 to 5 × 101 m-3 MP > 500 μm and 1 × 101 to 9 × 103 m-3 MP < 500 μm. By far, polyethylene was the most frequent polymer type in both size classes. Quantities of synthetic fibres ranged from 9 × 101 to 1 × 103 m-3 and were predominantly made of polyester. Considering the annual effluxes of tested WWTPs, total discharges of 9 × 107 to 4 × 109 MP particles and fibres per WWTP could be expected. Interestingly, one tertiary WWTP had an additionally installed post-filtration that reduced the total MP discharge by 97%. Furthermore, the sewage sludge of six WWTPs was examined and the existence of MP, predominantly polyethylene, revealed. Our findings suggest that WWTPs could be a sink but also a source of MP and thus can be considered to play an important role for environmental MP pollution.
Collapse
|
|
8 |
678 |
19
|
Radjenović J, Petrović M, Barceló D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. WATER RESEARCH 2009; 43:831-41. [PMID: 19091371 DOI: 10.1016/j.watres.2008.11.043] [Citation(s) in RCA: 638] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/10/2008] [Accepted: 11/14/2008] [Indexed: 05/05/2023]
Abstract
In this paper we report on the performances of full-scale conventional activated sludge (CAS) treatment and two pilot-scale membrane bioreactors (MBRs) in eliminating various pharmaceutically active compounds (PhACs) belonging to different therapeutic groups and with diverse physico-chemical properties. Both aqueous and solid phases were analysed for the presence of 31 pharmaceuticals included in the analytical method. The most ubiquitous contaminants in the sewage water were analgesics and anti-inflammatory drugs ibuprofen (14.6-31.3 microg/L) and acetaminophen (7.1-11.4 microg/L), antibiotic ofloxacin (0.89-31.7 microg/L), lipid regulators gemfibrozil (2.0-5.9 microg/L) and bezafibrate (1.9-29.8 microg/L), beta-blocker atenolol (0.84-2.8 microg/L), hypoglycaemic agent glibenclamide (0.12-15.9 microg/L) and a diuretic hydrochlorothiazide (2.3-4.8 microg/L). Also, several pharmaceuticals such as ibuprofen, ketoprofen, diclofenac, ofloxacin and azithromycin were detected in sewage sludge at concentrations up to 741.1, 336.3, 380.7, 454.7 and 299.6 ng/g dry weight. Two pilot-scale MBRs exhibited enhanced elimination of several pharmaceutical residues poorly removed by the CAS treatment (e.g., mefenamic acid, indomethacin, diclofenac, propyphenazone, pravastatin, gemfibrozil), whereas in some cases more stable operation of one of the MBR reactors at prolonged SRT proved to be detrimental for the elimination of some compounds (e.g., beta-blockers, ranitidine, famotidine, erythromycin). Moreover, the anti-epileptic drug carbamazepine and diuretic hydrochlorothiazide by-passed all three treatments investigated. Furthermore, sorption to sewage sludge in the MBRs as well as in the entire treatment line of a full-scale WWTP is discussed for the encountered analytes. Among the pharmaceuticals encountered in sewage sludge, sorption to sludge could be a relevant removal pathway only for several compounds (i.e., mefenamic acid, propranolol, and loratidine). Especially in the case of loratidine the experimentally determined sorption coefficients (Kds) were in the range 2214-3321 L/kg (mean). The results obtained for the solid phase indicated that MBR wastewater treatment yielding higher biodegradation rate could reduce the load of pollutants in the sludge. Also, the overall output load in the aqueous and solid phase of the investigated WWTP was calculated, indicating that none of the residual pharmaceuticals initially detected in the sewage sludge were degraded during the anaerobic digestion. Out of the 26 pharmaceutical residues passing through the WWTP, 20 were ultimately detected in the treated sludge that is further applied on farmland.
Collapse
|
|
16 |
638 |
20
|
Kümmerer K. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources--a review. CHEMOSPHERE 2001; 45:957-69. [PMID: 11695619 DOI: 10.1016/s0045-6535(01)00144-8] [Citation(s) in RCA: 605] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
After administration, pharmaceuticals are excreted by the patients into wastewater. Unused medications are sometimes disposed of in drains. The drugs enter the aquatic environment and eventually reach drinking water if they are not biodegraded or eliminated during sewage treatment. Additionally, antibiotics and disinfectants are supposed to disturb the wastewater treatment process and the microbial ecology in surface waters. Furthermore, resistant bacteria may be selected in the aeration tanks of STPs by the antibiotic substances present. Recently, pharmaceuticals have been detected in surface water, ground water and drinking water. However, only little is known about the significance of emissions from households and hospitals. A brief summary of input by different sources, occurrence, and elimination of different pharmaceutical groups such as antibiotics, anti-tumour drugs, anaesthetics and contrast media as well as AOX resulting from hospital effluent input into sewage water and surface water will be presented.
Collapse
|
Review |
24 |
605 |
21
|
Li B, Zhang T. Biodegradation and adsorption of antibiotics in the activated sludge process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:3468-73. [PMID: 20384353 DOI: 10.1021/es903490h] [Citation(s) in RCA: 548] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The removal of 11 antibiotics of 6 classes, that is, two beta-lactams (ampicillin and cefalexin), two sulfonamides (sulfamethoxazole and sulfadiazine), three fluoroquinolones (norfloxacin, ofloxacin, and ciprofloxacin), one tetracyclines (tetracycline), two macorlides (roxithromycin and anhydro-erythromycin), and one others (trimethoprim), in activated sludge process was investigated using two series of batch reactors treating freshwater and saline sewage respectively. At environmental relevant concentrations tested in this study, biodegradation and adsorption were the major removal routes for the target antibiotics, where volatilization and hydrolysis were neglectable. Among the 11 target antibiotics, cefalexin and the two sulfonamides were predominantly removed by biodegradation in both freshwater and saline sewage systems. Ampicillin, norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin, and trimethoprim were mainly removed by adsorption. Divalent cations (Ca(2+) and Mg(2+)) in saline sewage significantly decreased the adsorption of the three fluoroquinolones onto activated sludge. These three fluoroquinolones also exhibited certain biodegradability in the saline activated sludge reactor. Erythromycin-H(2)O was persistent in both saline and freshwater systems under the experimental conditions and could not be removed at all. Kinetics study showed that biodegradation of cefalexin, the two sulfonamides and the three fluoroquinolones followed first-order model well (R(2): 0.921-0.997) with the rate constants ranging from 5.2 x 10(-3) to 3.6 x 10(-1) h(-1).
Collapse
|
|
15 |
548 |
22
|
Fick J, Söderström H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ. Contamination of surface, ground, and drinking water from pharmaceutical production. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2009; 28:2522-7. [PMID: 19449981 DOI: 10.1897/09-073.1] [Citation(s) in RCA: 545] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/29/2009] [Indexed: 05/21/2023]
Abstract
Low levels of pharmaceuticals are detected in surface, ground, and drinking water worldwide. Usage and incorrect disposal have been considered the major environmental sources of these microcontaminants. Recent publications, however, suggest that wastewater from drug production can potentially be a source of much higher concentrations in certain locations. The present study investigated the environmental fate of active pharmaceutical ingredients in a major production area for the global bulk drug market. Water samples were taken from a common effluent treatment plant near Hyderabad, India, which receives process water from approximately 90 bulk drug manufacturers. Surface water was analyzed from the recipient stream and from two lakes that are not contaminated by the treatment plant. Water samples were also taken from wells in six nearby villages. The samples were analyzed for the presence of 12 pharmaceuticals with liquid chromatography-mass spectrometry. All wells were determined to be contaminated with drugs. Ciprofloxacin, enoxacin, cetirizine, terbinafine, and citalopram were detected at more than 1 microg/L in several wells. Very high concentrations of ciprofloxacin (14 mg/L) and cetirizine (2.1 mg/L) were found in the effluent of the treatment plant, together with high concentrations of seven additional pharmaceuticals. Very high concentrations of ciprofloxacin (up to 6.5 mg/L), cetirizine (up to 1.2 mg/L), norfloxacin (up to 0.52 mg/L), and enoxacin (up to 0.16 mg/L) were also detected in the two lakes, which clearly shows that the investigated area has additional environmental sources of insufficiently treated industrial waste. Thus, insufficient wastewater management in one of the world's largest centers for bulk drug production leads to unprecedented drug contamination of surface, ground, and drinking water. This raises serious concerns regarding the development of antibiotic resistance, and it creates a major challenge for producers and regulatory agencies to improve the situation.
Collapse
|
|
16 |
545 |
23
|
Ishii SKL, Boyer TH. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2006-17. [PMID: 22280543 DOI: 10.1021/es2043504] [Citation(s) in RCA: 532] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) has been widely used to characterize dissolved organic matter (DOM). Characterization is based on the intensity and location of independent fluorescent components identified in models constructed from excitation-emission matrices (EEMs). Similar fluorescent components have been identified in PARAFAC studies across a wide range of systems; however, there is a lack of discussion regarding the consistency with which these similar components behave. The overall goal of this critical review is to compare results for PARAFAC studies published since the year 2000 which include one or more of three reoccurring humic-like components. Components are compared and characterized based on EEM location, characteristic ecosystems, and behavior in natural and engineered systems. This synthesis allows PARAFAC users to more confidently infer DOM characteristics based on identified components. Additionally, behavioral inconsistencies between similar components help elucidate DOM properties for which fluorescence spectroscopy with PARAFAC may be a weak predictive tool.
Collapse
|
Review |
13 |
532 |
24
|
Qin B, Zhu G, Gao G, Zhang Y, Li W, Paerl HW, Carmichael WW. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. ENVIRONMENTAL MANAGEMENT 2010; 45:105-12. [PMID: 19915899 DOI: 10.1007/s00267-009-9393-6] [Citation(s) in RCA: 487] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 10/07/2009] [Indexed: 05/22/2023]
Abstract
In late May, 2007, a drinking water crisis took place in Wuxi, Jiangsu Province, China, following a massive bloom of the toxin producing cyanobacteria Microcystis spp. in Lake Taihu, China's third largest freshwater lake. Taihu was the city's sole water supply, leaving approximately two million people without drinking water for at least a week. This cyanobacterial bloom event began two months earlier than previously documented for Microcystis blooms in Taihu. This was attributed to an unusually warm spring. The prevailing wind direction during this period caused the bloom to accumulate at the shoreline near the intake of the water plant. Water was diverted from the nearby Yangtze River in an effort to flush the lake of the bloom. However, this management action was counterproductive, because it produced a current which transported the bloom into the intake, exacerbating the drinking water contamination problem. The severity of this microcystin toxin containing bloom and the ensuing drinking water crisis were attributable to excessive nutrient enrichment; however, a multi-annual warming trend extended the bloom period and amplified its severity, and this was made worse by unanticipated negative impacts of water management. Long-term management must therefore consider both the human and climatic factors controlling these blooms and their impacts on water supply in this and other large lakes threatened by accelerating eutrophication.
Collapse
|
|
15 |
487 |
25
|
Abstract
Azo dyes are the most important group of synthetic colorants. They are generally considered as xenobiotic compounds that are very recalcitrant against biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several microorganisms are able, under certain environmental conditions, to transform azo dyes to non-colored products or even to completely mineralize them. Thus, various lignolytic fungi were shown to decolorize azo dyes using ligninases, manganese peroxidases or laccases. For some model dyes, the degradative pathways have been investigated and a true mineralization to carbon dioxide has been shown. The bacterial metabolism of azo dyes is initiated in most cases by a reductive cleavage of the azo bond, which results in the formation of (usually colorless) amines. These reductive processes have been described for some aerobic bacteria, which can grow with (rather simple) azo compounds. These specifically adapted microorganisms synthesize true azoreductases, which reductively cleave the azo group in the presence of molecular oxygen. Much more common is the reductive cleavage of azo dyes under anaerobic conditions. These reactions usually occur with rather low specific activities but are extremely unspecific with regard to the organisms involved and the dyes converted. In these unspecific anaerobic processes, low-molecular weight redox mediators (e.g. flavins or quinones) which are enzymatically reduced by the cells (or chemically by bulk reductants in the environment) are very often involved. These reduced mediator compounds reduce the azo group in a purely chemical reaction. The (sulfonated) amines that are formed in the course of these reactions may be degraded aerobically. Therefore, several (laboratory-scale) continuous anaerobic/aerobic processes for the treatment of wastewaters containing azo dyes have recently been described.
Collapse
|
Review |
24 |
487 |