1
|
Vanderauwera J, Wouters J, Vandermosten M, Ghesquière P. Early dynamics of white matter deficits in children developing dyslexia. Dev Cogn Neurosci 2017; 27:69-77. [PMID: 28823983 PMCID: PMC6987857 DOI: 10.1016/j.dcn.2017.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/29/2017] [Accepted: 08/04/2017] [Indexed: 12/20/2022] Open
Abstract
Neural anomalies have been demonstrated in dyslexia. Recent studies in pre-readers at risk for dyslexia and in pre-readers developing poor reading suggest that these anomalies might be a cause of their reading impairment. Our study goes one step further by exploring the neurodevelopmental trajectory of white matter anomalies in pre-readers with and without a familial risk for dyslexia (n=61) of whom a strictly selected sample develops dyslexia later on (n=15). We collected longitudinal diffusion MRI and behavioural data until grade 3. The results provide evidence that children with dyslexia exhibit pre-reading white matter anomalies in left and right long segment of the arcuate fasciculus (AF), with predictive power of the left segment above traditional cognitive measures and familial risk. Whereas white matter differences in the left AF seem most strongly related to the development of dyslexia, differences in the left IFOF and in the right AF seem driven by both familial risk and later reading ability. Moreover, differences in the left AF appeared to be dynamic. This study supports and expands recent insights into the neural basis of dyslexia, pointing towards pre-reading anomalies related to dyslexia, as well as underpinning the dynamic character of white matter.
Collapse
|
Journal Article |
8 |
61 |
2
|
Zacharias HU, Weihs A, Habes M, Wittfeld K, Frenzel S, Rashid T, Stubbe B, Obst A, Szentkirályi A, Bülow R, Berger K, Fietze I, Penzel T, Hosten N, Ewert R, Völzke H, Grabe HJ. Association Between Obstructive Sleep Apnea and Brain White Matter Hyperintensities in a Population-Based Cohort in Germany. JAMA Netw Open 2021; 4:e2128225. [PMID: 34609493 PMCID: PMC8493431 DOI: 10.1001/jamanetworkopen.2021.28225] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/01/2021] [Indexed: 11/14/2022] Open
Abstract
Importance Underlying pathomechanisms of brain white matter hyperintensities (WMHs), commonly observed in older individuals and significantly associated with Alzheimer disease and brain aging, have not yet been fully elucidated. One potential contributing factor to WMH burden is chronic obstructive sleep apnea (OSA), a disorder highly prevalent in the general population with readily available treatment options. Objective To investigate potential associations between OSA and WMH burden. Design, Setting, and Participants Analyses were conducted in 529 study participants of the Study of Health in Pomerania-Trend baseline (SHIP-Trend-0) study with complete WMH, OSA, and important clinical data available. SHIP-Trend-0 is a general population-based, cross-sectional, observational study to facilitate the investigation of a large spectrum of common risk factors, subclinical disorders, and clinical diseases and their relationships among each other with patient recruitment from Western Pomerania, Germany, starting on September 1, 2008, with data collected until December 31, 2012. Data analysis was performed from February 1, 2019, to January 31, 2021. Exposures The apnea-hypopnea index (AHI) and oxygen desaturation index (ODI) were assessed during a single-night, laboratory-based polysomnography measurement. Main Outcomes and Measures The primary outcome was WMH data automatically segmented from 1.5-T magnetic resonance images. Results Of 529 study participants (mean [SD] age, 52.15 [13.58] years; 282 female [53%]), a total of 209 (40%) or 102 (19%) individuals were diagnosed with OSA according to AHI or ODI criteria (mean [SD] AHI, 7.98 [12.55] events per hour; mean [SD] ODI, 3.75 [8.43] events per hour). Both AHI (β = 0.024; 95% CI, 0.011-0.037; P <.001) and ODI (β = 0.033; 95% CI, 0.014-0.051; P <. 001) were significantly associated with brain WMH volumes. These associations remained even in the presence of additional vascular, metabolic, and lifestyle WMH risk factors. Region-specific WMH analyses found the strongest associations between periventricular frontal WMH volumes and both AHI (β = 0.0275; 95% CI, 0.013-0.042, P < .001) and ODI (β = 0.0381; 95% CI, 0.016-0.060, P < .001) as well as periventricular dorsal WMH volumes and AHI (β = 0.0165; 95% CI, 0.004-0.029, P = .008). Conclusions and Relevance This study found significant associations between OSA and brain WMHs, indicating a novel, potentially treatable WMH pathomechanism.
Collapse
|
research-article |
4 |
38 |
3
|
Ma S, Sun R, Jiang B, Gao J, Deng W, Liu P, He R, Cui J, Ji M, Yi W, Yang P, Wu X, Xiong Y, Qiu Z, Ye D, Guan KL. L2hgdh Deficiency Accumulates l-2-Hydroxyglutarate with Progressive Leukoencephalopathy and Neurodegeneration. Mol Cell Biol 2017; 37:e00492-16. [PMID: 28137912 PMCID: PMC5376639 DOI: 10.1128/mcb.00492-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 12/30/2022] Open
Abstract
l-2-Hydroxyglutarate aciduria (L-2-HGA) is an autosomal recessive neurometabolic disorder caused by a mutation in the l-2-hydroxyglutarate dehydrogenase (L2HGDH) gene. In this study, we generated L2hgdh knockout (KO) mice and observed a robust increase of l-2-hydroxyglutarate (L-2-HG) levels in multiple tissues. The highest levels of L-2-HG were observed in the brain and testis, with a corresponding increase in histone methylation in these tissues. L2hgdh KO mice exhibit white matter abnormalities, extensive gliosis, microglia-mediated neuroinflammation, and an expansion of oligodendrocyte progenitor cells (OPCs). Moreover, L2hgdh deficiency leads to impaired adult hippocampal neurogenesis and late-onset neurodegeneration in mouse brains. Our data provide in vivo evidence that L2hgdh mutation leads to L-2-HG accumulation, leukoencephalopathy, and neurodegeneration in mice, thereby offering new insights into the pathophysiology of L-2-HGA in humans.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
26 |
4
|
Choo AL, Burnham E, Hicks K, Chang SE. Dissociations among linguistic, cognitive, and auditory-motor neuroanatomical domains in children who stutter. JOURNAL OF COMMUNICATION DISORDERS 2016; 61:29-47. [PMID: 27010940 PMCID: PMC4880500 DOI: 10.1016/j.jcomdis.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 02/04/2016] [Accepted: 03/12/2016] [Indexed: 05/26/2023]
Abstract
The onset of developmental stuttering typically occurs between 2 to 4 years of age, coinciding with a period of rapid development in speech, language, motor and cognitive domains. Previous studies have reported generally poorer performance and uneven, or "dissociated" development across speech and language domains in children who stutter (CWS) relative to children who do not stutter (CWNS) (Anderson, Pellowski, & Conture, 2005). The aim of this study was to replicate and expand previous findings by examining whether CWS exhibit dissociated development across speech-language, cognitive, and motor domains that are also reflected in measures of neuroanatomical development. Participants were 66CWS (23 females) and 53CWNS (26 females) ranging from 3 to 10 years. Standardized speech, language, cognitive, and motor skills measures, and fractional anisotropy (FA) values derived from diffusion tensor imaging from speech relevant "dorsal auditory" left perisylvian areas (Hickok & Poeppel, 2007) were analyzed using a correlation-based statistical procedure (Coulter, Anderson, & Conture, 2009) that quantified dissociations across domains. Overall, CWS scored consistently lower on speech, language, cognitive and motor measures, and exhibited dissociated development involving these same measures and white matter neuroanatomical indices relative to CWNS. Boys who stutter exhibited a greater number of dissociations compared to girls who stutter. Results suggest a subgroup of CWS may have incongruent development across multiple domains, and the resolution of this imbalance may be a factor in recovery from stuttering.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
23 |
5
|
Schmitt JE, Yi JJ, Roalf DR, Loevner LA, Ruparel K, Whinna D, Souders MC, McDonald-McGinn DM, Yodh E, Vandekar S, Zackai EH, Gur RC, Emanuel BS, Gur RE. Incidental radiologic findings in the 22q11.2 deletion syndrome. AJNR Am J Neuroradiol 2014; 35:2186-91. [PMID: 24948496 DOI: 10.3174/ajnr.a4003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND PURPOSE The 22q11.2 deletion syndrome is a common genetic microdeletion syndrome that results in cognitive delays and an increased risk of several psychiatric disorders, particularly schizophrenia. The current study investigates the prevalence of incidental neuroradiologic findings within this population and their relationships with psychiatric conditions. MATERIALS AND METHODS Brain MR imaging from 58 individuals with 22q11.2 deletion syndrome was reviewed by board-certified radiologists by using standard clinical procedures. Intracranial incidental findings were classified into 8 categories and compared with a large typically developing cohort. RESULTS The rate of incidental findings was significantly higher (P < .0001) in 22q11.2 deletion syndrome compared with typically developing individuals, driven by a high prevalence of cavum septum pellucidum (19.0%) and white matter abnormalities (10.3%). Both of these findings were associated with psychosis in 22q11.2 deletion syndrome. CONCLUSIONS Cavum septum pellucidum and white matter hyperintensities are significantly more prevalent in patients with the 22q11.2 deletion syndrome and may represent biomarkers for psychosis.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
22 |
6
|
Ngo CT, Alm KH, Metoki A, Hampton W, Riggins T, Newcombe NS, Olson IR. White matter structural connectivity and episodic memory in early childhood. Dev Cogn Neurosci 2017; 28:41-53. [PMID: 29175538 PMCID: PMC5909412 DOI: 10.1016/j.dcn.2017.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 01/19/2023] Open
Abstract
Episodic memory undergoes dramatic improvement in early childhood; the reason for this is poorly understood. In adults, episodic memory relies on a distributed neural network. Key brain regions that supporting these processes include the hippocampus, portions of the parietal cortex, and portions of prefrontal cortex, each of which shows different developmental profiles. Here we asked whether developmental differences in the axonal pathways connecting these regions may account for the robust gains in episodic memory in young children. Using diffusion weighted imaging, we examined whether white matter connectivity between brain regions implicated in episodic memory differed with age, and were associated with memory performance differences in 4- and 6-year-old children. Results revealed that white matter connecting the hippocampus to the inferior parietal lobule significantly predicted children's performance on episodic memory tasks. In contrast, variation in the white matter connecting the hippocampus to the medial prefrontal cortex did not relate to memory performance. These findings suggest that structural connectivity between the hippocampus and lateral parietal regions is relevant to the development of episodic memory.
Collapse
|
research-article |
8 |
21 |
7
|
Birner A, Seiler S, Lackner N, Bengesser SA, Queissner R, Fellendorf FT, Platzer M, Ropele S, Enzinger C, Schwingenschuh P, Mangge H, Pirpamer L, Deutschmann H, McIntyre RS, Kapfhammer HP, Reininghaus B, Reininghaus EZ. Cerebral White Matter Lesions and Affective Episodes Correlate in Male Individuals with Bipolar Disorder. PLoS One 2015; 10:e0135313. [PMID: 26252714 PMCID: PMC4529150 DOI: 10.1371/journal.pone.0135313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/20/2015] [Indexed: 12/21/2022] Open
Abstract
Background Cerebral white matter lesions (WML) have been found in normal aging, vascular disease and several neuropsychiatric conditions. Correlations of WML with clinical parameters in BD have been described, but not with the number of affective episodes, illness duration, age of onset and Body Mass Index in a well characterized group of euthymic bipolar adults. Herein, we aimed to evaluate the associations between bipolar course of illness parameters and WML measured with volumetric analysis. Methods In a cross-sectional study 100 euthymic individuals with BD as well as 54 healthy controls (HC) were enrolled to undergo brain magnetic resonance imaging using 3T including a FLAIR sequence for volumetric assessment of WML-load using FSL-software. Additionally, clinical characteristics and psychometric measures including Structured Clinical Interview according to DSM-IV, Hamilton-Depression, Young Mania Rating Scale and Beck’s Depression Inventory were evaluated. Results Individuals with BD had significantly more (F = 3.968, p < .05) WML (Mdn = 3710mm3; IQR = 2961mm3) than HC (Mdn = 2185mm3; IQR = 1665mm3). BD men (Mdn = 4095mm3; IQR = 3295mm3) and BD women (Mdn = 3032mm3; IQR = 2816mm3) did not significantly differ as to the WML-load or the number and type of risk factors for WML. However, in men only, the number of manic/hypomanic episodes (r = 0.72; p < .001) as well as depressive episodes (r = 0.51; p < .001) correlated positively with WML-load. Conclusions WML-load strongly correlated with the number of manic episodes in male BD patients, suggesting that men might be more vulnerable to mania in the context of cerebral white matter changes.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
16 |
8
|
Manelis A, Soehner A, Halchenko YO, Satz S, Ragozzino R, Lucero M, Swartz HA, Phillips ML, Versace A. White matter abnormalities in adults with bipolar disorder type-II and unipolar depression. Sci Rep 2021; 11:7541. [PMID: 33824408 PMCID: PMC8024340 DOI: 10.1038/s41598-021-87069-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/23/2021] [Indexed: 01/05/2023] Open
Abstract
Discerning distinct neurobiological characteristics of related mood disorders such as bipolar disorder type-II (BD-II) and unipolar depression (UD) is challenging due to overlapping symptoms and patterns of disruption in brain regions. More than 60% of individuals with UD experience subthreshold hypomanic symptoms such as elevated mood, irritability, and increased activity. Previous studies linked bipolar disorder to widespread white matter abnormalities. However, no published work has compared white matter microstructure in individuals with BD-II vs. UD vs. healthy controls (HC), or examined the relationship between spectrum (dimensional) measures of hypomania and white matter microstructure across those individuals. This study aimed to examine fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and mean diffusivity (MD) across BD-II, UD, and HC groups in the white matter tracts identified by the XTRACT tool in FSL. Individuals with BD-II (n = 18), UD (n = 23), and HC (n = 24) underwent Diffusion Weighted Imaging. The categorical approach revealed decreased FA and increased RD in BD-II and UD vs. HC across multiple tracts. While BD-II had significantly lower FA and higher RD values than UD in the anterior part of the left arcuate fasciculus, UD had significantly lower FA and higher RD values than BD-II in the area of intersections between the right arcuate, inferior fronto-occipital and uncinate fasciculi and forceps minor. The dimensional approach revealed the depression-by-spectrum mania interaction effect on the FA, RD, and AD values in the area of intersection between the right posterior arcuate and middle longitudinal fasciculi. We propose that the white matter microstructure in these tracts reflects a unique pathophysiologic signature and compensatory mechanisms distinguishing BD-II from UD.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
12 |
9
|
Kaur P, do Rosario MC, Hebbar M, Sharma S, Kausthubham N, Nair K, Shrikiran A, Bhat Y R, Lewis LES, Nampoothiri S, Patil SJ, Suresh N, Bijarnia Mahay S, Dua Puri R, Pai S, Kaur A, KC R, Kamath N, Bajaj S, Kumble A, Shetty R, Shenoy R, Kamate M, Shah H, Muranjan MN, BL Y, Avabratha KS, Subramaniam G, Kadavigere R, Bielas S, Girisha KM, Shukla A. Clinical and genetic spectrum of 104 Indian families with central nervous system white matter abnormalities. Clin Genet 2021; 100:542-550. [PMID: 34302356 PMCID: PMC8918360 DOI: 10.1111/cge.14037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Genetic disorders with predominant central nervous system white matter abnormalities (CNS WMAs), also called leukodystrophies, are heterogeneous entities. We ascertained 117 individuals with CNS WMAs from 104 unrelated families. Targeted genetic testing was carried out in 16 families and 13 of them received a diagnosis. Chromosomal microarray (CMA) was performed for three families and one received a diagnosis. Mendeliome sequencing was used for testing 11 families and all received a diagnosis. Whole exome sequencing (WES) was performed in 80 families and was diagnostic in 52 (65%). Singleton WES was diagnostic for 50/75 (66.67%) families. Overall, genetic diagnoses were obtained in 77 families (74.03%). Twenty-two of 47 distinct disorders observed in this cohort have not been reported in Indian individuals previously. Notably, disorders of nuclear mitochondrial pathology were most frequent (9 disorders in 20 families). Thirty-seven of 75 (49.33%) disease-causing variants are novel. To sum up, the present cohort describes the phenotypic and genotypic spectrum of genetic disorders with CNS WMAs in our population. It demonstrates WES, especially singleton WES, as an efficient tool in the diagnosis of these heterogeneous entities. It also highlights possible founder events and recurrent disease-causing variants in our population and their implications on the testing strategy.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
12 |
10
|
Mormina E, Briguglio M, Morabito R, Arrigo A, Marino S, Di Rosa G, Micalizzi A, Valente EM, Salpietro V, Vinci SL, Longo M, Granata F. A rare case of cerebellar agenesis: a probabilistic Constrained Spherical Deconvolution tractographic study. Brain Imaging Behav 2016; 10:158-67. [PMID: 25832852 DOI: 10.1007/s11682-015-9377-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aim of this study is to show the potential of probabilistic tractographic techniques, based on the Constrained Spherical Deconvolution (CSD) algorithms, in recognizing white matter fiber bundle anomalies in patients with complex cerebral malformations, such as cerebellar agenesis. The morphological and tractographic study of a 17-year-old male patient affected by cerebellar agenesis was performed by using a 3Tesla MRI scanner. Genetic and neuropsychological tests were carried out. An MRI morphological study showed the absence of both cerebellar hemispheres and the flattening of the anterior side of the pons. Moreover, it showed a severe vermian hypoplasia with a minimal vermian residual. The study recognized two thin cerebellar remnants, medially in contact with the small vermian residual, at the pontine level. The third ventricle, morphologically normal, communicated with a permagna cerebello-medullary cistern. Probabilistic CSD tractography identified some abnormal and aberrant infratentorial tracts, symmetrical on both sides. In particular, the transverse pontine fibers were absent and the following tracts with aberrant trajectories have been identified: "cerebello-thalamic" tracts; "fronto-cerebellar" tracts; and ipsilateral and contralateral "spino-cerebellar" tracts. Abnormal tracts connecting the two thin cerebellar remnants have also been detected. There were no visible alterations in the main supratentorial tracts in either side. Neuropsychiatric evaluation showed moderate cognitive-motor impairment with discrete adaptive compensation. Probabilistic CSD tractography is a promising technique that overcome reconstruction biases of other diffusion tensor-based approaches and allowed us to recognize, in a patient with cerebellar agenesis, abnormal tracts and aberrant trajectories of normally existing tracts.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
10 |
11
|
Clocksin HE, Hawks ZW, White DA, Christ SE. Inter- and intra-tract analysis of white matter abnormalities in individuals with early-treated phenylketonuria (PKU). Mol Genet Metab 2021; 132:11-18. [PMID: 33334682 DOI: 10.1016/j.ymgme.2020.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022]
Abstract
Even with early and continuous treatment, individuals with phenylketonuria (PKU) may exhibit abnormalities of cortical white matter (WM). The present study utilizes a new analysis approach called Automated Fiber-Tract Quantification (AFQ) to advance our understanding of the tract-specific patterns of change in WM abnormalities in individuals with early-treated PKU (ETPKU). Diffusion Tensor Imaging (DTI) data from a sample of 22 individuals with ETPKU and a demographically-matched sample of 21 healthy individuals without PKU was analyzed using AFQ. In addition, a subsample of 8 individuals with ETPKU was reevaluated six months later after demonstrating a significant reduction in blood phe levels following initiation of sapropterin treatment. Within-tract AFQ analyses revealed significant location-by-group interactions for several WM tracts throughout the brain. In most cases, ETPKU-related disruptions in mean diffusivity (MD) were more apparent in posterior (as compared to anterior) aspects of a given tract. Reduction in blood phe levels with the aforementioned ETPKU subsample was associated with a similar pattern of improvement (posterior-to-anterior) within most tracts. Taken together, these findings suggest that there is a systematic pattern of change in WM abnormalities in individuals with ETPKU in a posterior-to-anterior manner along individual WM tracts.
Collapse
|
|
4 |
5 |
12
|
Abstract
PURPOSE OF REVIEW This review describes the literature evaluating the potential adverse effects of youth-onset type 2 diabetes on the developing brain. A summary of recently published articles and the current state of knowledge are covered succinctly in this manuscript. RECENT FINDINGS Current literature suggests both cognitive and brain structural differences are found in youth with type 2 diabetes. Studies have shown poorer scores in a number of neurocognitive domains, particularly in areas of executive functioning and memory. Additionally, imaging studies have found differences in brain gray matter volume, white matter volume, and microstructural integrity. These findings are largely consistent with the adult literature. Youth with type 2 diabetes demonstrate lower cognitive scores and structural brain differences. Although causality has not yet been established, these findings are important because these individuals are still undergoing neurodevelopmental maturation.
Collapse
|
Review |
6 |
2 |
13
|
ATA KORKMAZ HA. Relationship between the earlobe crease and brain white matter abnormalities in
apparently healthy subjects. Turk J Med Sci 2019; 49:604-609. [PMID: 30889943 PMCID: PMC7018362 DOI: 10.3906/sag-1812-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background/aim In the present study we aimed to investigate whether the earlobe crease (ELC) might provide predictive information about white matter intensities (WMIs) in the brain that reflect brain aging. Materials and methods A total of 350 individuals examined from January 2016 to July 2016 were screened. Patients with known demyelinating white matter disease, neurodegenerative disorders, cerebrovascular event history, or brain tumors were excluded from the study. Finally, 285 cases were included in the study. The four-point cerebral intensity classification system of Fazekas was used in the evaluation of the brain. The ELC was evaluated by inspection. Results A total of 285 patients were enrolled consecutively. The incidence of WMI was significantly higher in patients with ELC than the others. Age (95% CI: 1.105–1.213, P < 0.001) and ELC (95% CI: 0.098–0.783, P = 0.015) were found as an independent determinants of abnormal WMI. ELC predicted abnormal WMIs with 89% specificity and 62% sensitivity. Conclusion The presence of an ELC may provide predictive information in terms of detecting abnormal WMIs with prognostic impact in apparently healthy subjects.
Collapse
|
|
6 |
|
14
|
Wang S, Wang Y, Li Y, Wei Y, Han F, Ren H, Xu Y, Cui Y. Cochlear implantation in children with white matter lesions: Prediction of hearing outcomes by multiple regression analysis. Medicine (Baltimore) 2021; 100:e23355. [PMID: 33429729 PMCID: PMC7793319 DOI: 10.1097/md.0000000000023355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Brain magnetic resonance imaging (MRI) white matter lesions have been reported in some preoperative cochlear implant children. However, the role of white matter lesions in predicting the hearing outcome is yet unclear. The present study investigated the outcomes of cochlear implantation (CI) in 40 children with white matter lesions.The data from children with white matter lesions were reviewed in this retrospective study. Based on brain MRI, the patients were divided into 3 groups: mild, moderate, and severe. The children were treated with unilateral CI and monitored for a follow-up period of at least 3 years. The main outcome measures were category of auditory performance (CAP) and speech intelligibility rating (SIR). MRI white matter lesions, age at implant, gender, physical impairment, and cognitive impairment were obtained from a research database to assess the correlation with long-term CAP and SIR outcome by multiple regression analysis.The data of children with white matter lesions were reviewed (18 females and 23 males). The mean age at implantation was 31.6 months. Strikingly, all children obtained better CAP and SIR scores. The age at implantation, brain white matters lesions on MRI, and cognitive and physical disabilities were associated with CAP and SIR scores. Multiple regression established a weak correlation between the degree of white matter lesions on brain MRI and long-term CAP and SIR, while cognitive impairment strongly accounted for long-term CAP and SIR outcome.The majority of the children with brain white matter lesions obtained a satisfactory postoperative effect. The cognitive impairment before CI is a major factor, and such factor should be considered.
Collapse
|
research-article |
4 |
|