1
|
Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 2010; 468:310-5. [PMID: 21068842 PMCID: PMC3058628 DOI: 10.1038/nature09493] [Citation(s) in RCA: 639] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/10/2010] [Indexed: 02/08/2023]
Abstract
During embryogenesis, endothelial cells induce organogenesis before the development of circulation. These findings suggest that endothelial cells not only form passive conduits to deliver nutrients and oxygen, but also establish an instructive vascular niche, which through elaboration of paracrine trophogens stimulates organ regeneration, in a manner similar to endothelial-cell-derived angiocrine factors that support haematopoiesis. However, the precise mechanism by which tissue-specific subsets of endothelial cells promote organogenesis in adults is unknown. Here we demonstrate that liver sinusoidal endothelial cells (LSECs) constitute a unique population of phenotypically and functionally defined VEGFR3(+)CD34(-)VEGFR2(+)VE-cadherin(+)FactorVIII(+)CD45(-) endothelial cells, which through the release of angiocrine trophogens initiate and sustain liver regeneration induced by 70% partial hepatectomy. After partial hepatectomy, residual liver vasculature remains intact without experiencing hypoxia or structural damage, which allows study of physiological liver regeneration. Using this model, we show that inducible genetic ablation of vascular endothelial growth factor (VEGF)-A receptor-2 (VEGFR2) in the LSECs impairs the initial burst of hepatocyte proliferation (days 1-3 after partial hepatectomy) and subsequent reconstitution of the hepatovascular mass (days 4-8 after partial hepatectomy) by inhibiting upregulation of the endothelial-cell-specific transcription factor Id1. Accordingly, Id1-deficient mice also manifest defects throughout liver regeneration, owing to diminished expression of LSEC-derived angiocrine factors, including hepatocyte growth factor (HGF) and Wnt2. Notably, in in vitro co-cultures, VEGFR2-Id1 activation in LSECs stimulates hepatocyte proliferation. Indeed, intrasplenic transplantation of Id1(+/+) or Id1(-/-) LSECs transduced with Wnt2 and HGF (Id1(-/-)Wnt2(+)HGF(+) LSECs) re-establishes an inductive vascular niche in the liver sinusoids of the Id1(-/-) mice, initiating and restoring hepatovascular regeneration. Therefore, in the early phases of physiological liver regeneration, VEGFR2-Id1-mediated inductive angiogenesis in LSECs through release of angiocrine factors Wnt2 and HGF provokes hepatic proliferation. Subsequently, VEGFR2-Id1-dependent proliferative angiogenesis reconstitutes liver mass. Therapeutic co-transplantation of inductive VEGFR2(+)Id1(+)Wnt2(+)HGF(+) LSECs with hepatocytes provides an effective strategy to achieve durable liver regeneration.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
639 |
2
|
Wayman GA, Impey S, Marks D, Saneyoshi T, Grant WF, Derkach V, Soderling TR. Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 2006; 50:897-909. [PMID: 16772171 DOI: 10.1016/j.neuron.2006.05.008] [Citation(s) in RCA: 371] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 04/11/2006] [Accepted: 05/02/2006] [Indexed: 01/22/2023]
Abstract
Members of the Wnt signaling family are important mediators of numerous developmental events, including activity-dependent dendrite development, but the pathways regulating expression and secretion of Wnt in response to neuronal activity are poorly defined. Here, we identify an NMDA receptor-mediated, Ca2+-dependent signaling pathway that couples neuronal activity to dendritic arborization through enhanced Wnt synthesis and secretion. Activity-dependent dendritic outgrowth and branching in cultured hippocampal neurons and slices is mediated through activation by CaM-dependent protein kinase kinase (CaMKK) of the membrane-associated gamma isoform of CaMKI. Downstream effectors of CaMKI include the MAP-kinase pathway of Ras/MEK/ERK and the transcription factor CREB. A serial analysis of chromatin occupancy screen identified Wnt-2 as an activity-dependent CREB-responsive gene. Neuronal activity enhances CREB-dependent transcription of Wnt-2, and expression of Wnt-2 stimulates dendritic arborization. This novel signaling pathway contributes to dynamic remodeling of the dendritic architecture in response to neuronal activity during development.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
371 |
3
|
Unterleuthner D, Neuhold P, Schwarz K, Janker L, Neuditschko B, Nivarthi H, Crncec I, Kramer N, Unger C, Hengstschläger M, Eferl R, Moriggl R, Sommergruber W, Gerner C, Dolznig H. Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis 2020; 23:159-177. [PMID: 31667643 PMCID: PMC7160098 DOI: 10.1007/s10456-019-09688-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
WNT2 acts as a pro-angiogenic factor in placental vascularization and increases angiogenesis in liver sinusoidal endothelial cells (ECs) and other ECs. Increased WNT2 expression is detectable in many carcinomas and participates in tumor progression. In human colorectal cancer (CRC), WNT2 is selectively elevated in cancer-associated fibroblasts (CAFs), leading to increased invasion and metastasis. However, if there is a role for WNT2 in colon cancer, angiogenesis was not addressed so far. We demonstrate that WNT2 enhances EC migration/invasion, while it induces canonical WNT signaling in a small subset of cells. Knockdown of WNT2 in CAFs significantly reduced angiogenesis in a physiologically relevant assay, which allows precise assessment of key angiogenic properties. In line with these results, expression of WNT2 in otherwise WNT2-devoid skin fibroblasts led to increased angiogenesis. In CRC xenografts, WNT2 overexpression resulted in enhanced vessel density and tumor volume. Moreover, WNT2 expression correlates with vessel markers in human CRC. Secretome profiling of CAFs by mass spectrometry and cytokine arrays revealed that proteins associated with pro-angiogenic functions are elevated by WNT2. These included extracellular matrix molecules, ANG-2, IL-6, G-CSF, and PGF. The latter three increased angiogenesis. Thus, stromal-derived WNT2 elevates angiogenesis in CRC by shifting the balance towards pro-angiogenic signals.
Collapse
|
research-article |
5 |
209 |
4
|
Ye X, Zerlanko B, Kennedy A, Banumathy G, Zhang R, Adams PD. Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol Cell 2007; 27:183-196. [PMID: 17643369 PMCID: PMC2698096 DOI: 10.1016/j.molcel.2007.05.034] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 04/02/2007] [Accepted: 05/25/2007] [Indexed: 01/08/2023]
Abstract
Cellular senescence is an irreversible proliferation arrest of primary cells and an important tumor suppression process. Senescence is often characterized by domains of facultative heterochromatin, called senescence-associated heterochromatin foci (SAHF), which repress expression of proliferation-promoting genes. Formation of SAHF is driven by a complex of histone chaperones, HIRA and ASF1a, and depends upon prior localization of HIRA to PML nuclear bodies. However, how the SAHF assembly pathway is activated in senescent cells is not known. Here we show that expression of the canonical Wnt2 ligand and downstream canonical Wnt signals are repressed in senescent human cells. Repression of Wnt2 occurs early in senescence and independently of the pRB and p53 tumor suppressor proteins and drives relocalization of HIRA to PML bodies, formation of SAHF and senescence, likely through GSK3beta-mediated phosphorylation of HIRA. These results have major implications for our understanding of both Wnt signaling and senescence in tissue homeostasis and cancer progression.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
179 |
5
|
Cho SH, Cepko CL. Wnt2b/β-catenin-mediated canonical Wnt signaling determines the peripheral fates of the chick eye. Development 2006; 133:3167-77. [PMID: 16854977 DOI: 10.1242/dev.02474] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnt signaling orchestrates multiple aspects of central nervous system development, including cell proliferation and cell fate choices. In this study, we used gene transfer to activate or inhibit canonical Wnt signaling in vivo in the developing eye. We found that the expression of Wnt2b or constitutively active (CA) β-catenin inhibited retinal progenitor gene(RPG) expression and the differentiation of retinal neurons. In addition, Wnt signal activation in the central retina was sufficient to induce the expression of markers of the ciliary body and iris, two tissues derived from the peripheral optic cup (OC). The expression of a dominant-negative (DN)allele of Lef1, or of a Lef1-engrailed fusion protein, led to the inhibition of expression of peripheral genes and iris hypoplasia, suggesting that canonical Wnt signaling is required for peripheral eye development. We propose that canonical Wnt signaling in the developing optic vesicle (OV) and OC plays a crucial role in determining the identity of the ciliary body and iris. Because wingless (wg) plays a similar role in the induction of peripheral eye tissues of Drosophila, these findings indicate a possible conservation of the process that patterns the photoreceptive and support structures of the eye.
Collapse
|
|
19 |
131 |
6
|
Kramer N, Schmöllerl J, Unger C, Nivarthi H, Rudisch A, Unterleuthner D, Scherzer M, Riedl A, Artaker M, Crncec I, Lenhardt D, Schwarz T, Prieler B, Han X, Hengstschläger M, Schüler J, Eferl R, Moriggl R, Sommergruber W, Dolznig H. Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene 2017; 36:5460-5472. [PMID: 28553956 DOI: 10.1038/onc.2017.144] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 02/15/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
The canonical WNT signaling pathway is crucial for intestinal stem cell renewal and aberrant WNT signaling is an early event in colorectal cancer (CRC) development. Here, we show for the first time that WNT2 is one of the most significantly induced genes in CRC stroma as compared to normal stroma. The impact of stromal WNT2 on carcinoma formation or progression was not addressed so far. Canonical WNT/β-catenin signaling was assessed using a 7TGP-reporter construct. Furthermore, effects of WNT2 on fibroblast migration and invasion were determined using siRNA-mediated gene silencing. Tumor cell invasion was studied using organotypic raft cultures and in vivo significance was assessed via a xenograft mouse model. We identified cancer-associated fibroblasts (CAFs) as the main source of WNT2. CAF-derived WNT2 activated canonical signaling in adenomatous polyposis coli/β-catenin wild-type colon cancer cells in a paracrine fashion, whereas no hyperactivation was detectable in cell lines harboring mutations in the adenomatous polyposis coli/β-catenin pathway. Furthermore, WNT2 activated autocrine canonical WNT signaling in primary fibroblasts, which was associated with a pro-migratory and pro-invasive phenotype. We identified FZD8 as the putative WNT2 receptor in CAFs. Three-dimensional organotypic co-culture assays revealed that WNT2-mediated fibroblast motility and extracellular matrix remodeling enhanced cancer cell invasion of cell lines even harboring mutations in the adenomatous polyposis coli/β-catenin pathway. Thus, suggesting a tumor-promoting influence on a broad range of CRC. In line, WNT2 also promotes tumor growth, invasion and metastasis in vivo. Moreover, high WNT2 expression is associated with poor prognosis in human CRC. The identification of the pro-malignant function of stromal derived WNT2 in CRC classifies WNT2 and its receptor as promising stromal targets to confine cancer progression in combination with conventional or targeted therapies.
Collapse
|
|
8 |
104 |
7
|
Cheng SL, Behrmann A, Shao JS, Ramachandran B, Krchma K, Bello Arredondo Y, Kovacs A, Mead M, Maxson R, Towler DA. Targeted reduction of vascular Msx1 and Msx2 mitigates arteriosclerotic calcification and aortic stiffness in LDLR-deficient mice fed diabetogenic diets. Diabetes 2014; 63:4326-37. [PMID: 25056439 PMCID: PMC4237989 DOI: 10.2337/db14-0326] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/09/2014] [Indexed: 02/06/2023]
Abstract
When fed high-fat diets, male LDLR(-/-) mice develop obesity, hyperlipidemia, hyperglycemia, and arteriosclerotic calcification. An osteogenic Msx-Wnt regulatory program is concomitantly upregulated in the vasculature. To better understand the mechanisms of diabetic arteriosclerosis, we generated SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice, assessing the impact of Msx1+Msx2 gene deletion in vascular myofibroblast and smooth muscle cells. Aortic Msx2 and Msx1 were decreased by 95% and 34% in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) animals versus Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) controls, respectively. Aortic calcium was reduced by 31%, and pulse wave velocity, an index of stiffness, was decreased in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice vs. controls. Fasting blood glucose and lipids did not differ, yet SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) siblings became more obese. Aortic adventitial myofibroblasts from SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice exhibited reduced osteogenic gene expression and mineralizing potential with concomitant reduction in multiple Wnt genes. Sonic hedgehog (Shh) and Sca1, markers of aortic osteogenic progenitors, were also reduced, paralleling a 78% reduction in alkaline phosphatase (TNAP)-positive adventitial myofibroblasts. RNA interference revealed that although Msx1+Msx2 supports TNAP and Wnt7b expression, Msx1 selectively maintains Shh and Msx2 sustains Wnt2, Wnt5a, and Sca1 expression in aortic adventitial myofibroblast cultures. Thus, Msx1 and Msx2 support vascular mineralization by directing the osteogenic programming of aortic progenitors in diabetic arteriosclerosis.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
68 |
8
|
Grocott T, Johnson S, Bailey AP, Streit A. Neural crest cells organize the eye via TGF-β and canonical Wnt signalling. Nat Commun 2011; 2:265. [PMID: 21468017 PMCID: PMC3104559 DOI: 10.1038/ncomms1269] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 03/09/2011] [Indexed: 01/12/2023] Open
Abstract
In vertebrates, the lens and retina arise from different embryonic tissues raising the question of how they are aligned to form a functional eye. Neural crest cells are crucial for this process: in their absence, ectopic lenses develop far from the retina. Here we show, using the chick as a model system, that neural crest-derived transforming growth factor-βs activate both Smad3 and canonical Wnt signalling in the adjacent ectoderm to position the lens next to the retina. They do so by controlling Pax6 activity: although Smad3 may inhibit Pax6 protein function, its sustained downregulation requires transcriptional repression by Wnt-initiated β-catenin. We propose that the same neural crest-dependent signalling mechanism is used repeatedly to integrate different components of the eye and suggest a general role for the neural crest in coordinating central and peripheral parts of the sensory nervous system.
Collapse
|
research-article |
14 |
59 |
9
|
Goodwin AM, Kitajewski J, D'Amore PA. Wnt1 and Wnt5a affect endothelial proliferation and capillary length; Wnt2 does not. Growth Factors 2007; 25:25-32. [PMID: 17454147 DOI: 10.1080/08977190701272933] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Blood vessel growth is critical for embryonic development and contributes to pathologies including cancer and diabetic retinopathy. A growing body of evidence suggests that signaling via the Wnt/beta-catenin pathway contributes to angiogenesis, and that paracrine Wnt signaling might alter endothelial cell function. To test the hypothesis that Wnt signaling promotes endothelial cell proliferation and vessel growth, we treated bovine aortic endothelial cells with Wnt1, Wnt2 and Wnt5a derived from coculture with Wnt-expressing fibroblasts. Endothelial cells cultured in the presence of Wnt1 displayed increased Wnt/beta-catenin signaling, proliferation and capillary stability in vitro. Wnt5a, which primarily signals via an alternate Wnt pathway, the Wnt/Ca(++) pathway, decreased both cell number and capillary length. Wnt2, which in other cell types activates the Wnt/beta-catenin pathway, did not activate signaling, affect cell number or increase capillary length. These results suggest that Wnt/beta-catenin and Wnt/Ca(++) signals might have opposing effects on angiogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
57 |
10
|
Cao J, Zhang X, Xu P, Wang H, Wang S, Zhang L, Li Z, Xie L, Sun G, Xia Y, Lv J, Yang J, Xu Z. Circular RNA circLMO7 acts as a microRNA-30a-3p sponge to promote gastric cancer progression via the WNT2/β-catenin pathway. J Exp Clin Cancer Res 2021; 40:6. [PMID: 33397440 PMCID: PMC7784001 DOI: 10.1186/s13046-020-01791-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant tumors worldwide. Currently, the overall survival rate of GC is still unsatisfactory despite progress in diagnosis and treatment. Therefore, studying the molecular mechanisms involved in GC is vital for diagnosis and treatment. CircRNAs, a type of noncoding RNA, have been proven to act as miRNA sponges that can widely regulate various cancers. By this mechanism, circRNA can regulate tumors at the genetic level by releasing miRNA from inhibiting its target genes. The WNT2/β-Catenin regulatory pathway is one of the canonical signaling pathways in tumors. It can not only promote the development of tumors but also provide energy for tumor growth through cell metabolism (such as glutamine metabolism). METHODS Through RNA sequencing, we found that hsa_circ_0008259 (circLMO7) was highly expressed in GC tissues. After verifying the circular characteristics of circLMO7, we determined the downstream miRNA (miR-30a-3p) of circLMO7 by RNA pull-down and luciferase reporter assays. We verified the effect of circLMO7 and miR-30a-3p on GC cells through a series of functional experiments, including colony formation, 5-ethynyl-2'-deoxyuridine and Transwell assays. Through Western blot and immunofluorescence analyses, we found that WNT2 was the downstream target gene of miR-30a-3p and further confirmed that the circLMO7-miR-30a-3p-WNT2 axis could promote the development of GC. In addition, measurement of related metabolites confirmed that this axis could also provide energy for the growth of GC cells through glutamine metabolism. We found that circLMO7 could promote the growth and metastasis of GC in vivo by the establishment of nude mouse models. Finally, we also demonstrated that HNRNPL could bind to the flanking introns of the circLMO7 exons to promote circLMO7 cyclization. RESULTS CircLMO7 acted as a miR-30a-3p sponge affecting the WNT2/β-Catenin pathway to promote the proliferation, migration and invasion of GC cells. Moreover, animal results also showed that circLMO7 could promote GC growth and metastasis in vivo. CircLMO7 could also affect the glutamine metabolism of GC cells through the WNT2/β-Catenin pathway to promote its malignant biological function. In addition, we proved that HNRNPL could promote the self-cyclization of circLMO7. CONCLUSIONS CircLMO7 promotes the development of GC by releasing the inhibitory effect of miR-30a-3p on its target gene WNT2.
Collapse
|
research-article |
4 |
51 |
11
|
Shi Y, He B, Kuchenbecker KM, You L, Xu Z, Mikami I, Yagui-Beltran A, Clement G, Lin YC, Okamoto J, Bravo DT, Jablons DM. Inhibition of Wnt-2 and galectin-3 synergistically destabilizes beta-catenin and induces apoptosis in human colorectal cancer cells. Int J Cancer 2007; 121:1175-81. [PMID: 17534895 DOI: 10.1002/ijc.22848] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Constitutive activation of the Wnt pathway as a result of APC, AXIN1 or CTNNB1 mutations has been found in most colorectal cancers. For a long time, this aberrant Wnt activation has been thought to be independent of upstream signals. However, recent studies indicate that upstream signals retain their ability to regulate the Wnt pathway even in the presence of downstream mutations. Wnt-2 is well known for its overexpression in colorectal cancer. Galectin-3 (Gal-3), a multifunctional carbohydrate binding protein implicated in a variety of biological functions, has recently been reported to interact with beta-catenin. In this study, we investigated roles of Wnt-2 and Gal-3 in the regulation of canonical Wnt/beta-catenin signaling. We found that siRNA silencing of either Wnt-2 or Gal-3 expression inhibited TCF-reporter activity, decreased cytosolic beta-catenin level and induced apoptosis in human colorectal cancer cells containing downstream mutations. More interestingly, we showed that inhibition of both Wnt-2 and Gal-3 had synergistic effects on suppressing canonical Wnt signaling and inducing apoptosis, suggesting that aberrant canonical Wnt/beta-catenin signaling in colorectal cancer can be regulated at multiple levels. The combined inhibition of Wnt-2 and Gal-3 may be of superior therapeutic advantage to inhibition by either one of them, giving rise to a potential development of novel drugs for the targeted treatment of colorectal cancer.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
48 |
12
|
Qi B, Wang Y, Chen ZJ, Li XN, Qi Y, Yang Y, Cui GH, Guo HZ, Li WH, Zhao S. Down-regulation of miR-30a-3p/5p promotes esophageal squamous cell carcinoma cell proliferation by activating the Wnt signaling pathway. World J Gastroenterol 2017; 23:7965-7977. [PMID: 29259372 PMCID: PMC5725291 DOI: 10.3748/wjg.v23.i45.7965] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/26/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the potential role of microRNA-30a (miR-30a) in esophageal squamous cell carcinoma (ESCC).
METHODS Expression of miR-30a-3p/5p was analyzed using microarray data and fresh ESCC tissue samples. Both in vitro and in vivo assays were used to investigate the effects of miR-30a-3p/5p on ESCC cell proliferation. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis was performed to explore underlying mechanisms involved in ESCC, and then, assays were carried out to verify the potential molecular mechanism of miR-30a in ESCC.
RESULTS Low expression of miR-30a-3p/5p was closely associated with advanced ESCC progression and poor prognosis of patients with ESCC. Knock-down of miR-30a-3p/5p promoted ESCC cell proliferation. Increased miR-30a-3p/5p expression inhibited the Wnt signaling pathway by targeting Wnt2 and Fzd2.
CONCLUSION Down-regulation of miR-30a-3p/5p promotes ESCC cell proliferation by activating the Wnt signaling pathway through inhibition of Wnt2 and Fzd2.
Collapse
|
Basic Study |
8 |
47 |
13
|
Zhou WJ, Xu N, Kong L, Sun SC, Xu XF, Jia MZ, Wang Y, Chen ZY. The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors. Transl Psychiatry 2016; 6:e892. [PMID: 27622936 PMCID: PMC5048193 DOI: 10.1038/tp.2016.122] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/23/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022] Open
Abstract
Wnts-related signaling pathways have been reported to play roles in the pathogenesis of stress-induced depression-like behaviors. However, there is relatively few direct evidence to indicate the effect of Wnt ligands on this process. Here, we investigated the role of Wnts in mediating chronic restraint stress (CRS)-induced depression-like behaviors. We found that CRS induced a significant decrease in the expression of Wnt2 and Wnt3 in the ventral hippocampus (VH) but not in the dorsal hippocampus. Knocking down Wnt2 or Wnt3 in the VH led to impaired Wnt/β-catenin signaling, neurogenesis deficits and depression-like behaviors. In contrast, overexpression of Wnt2 or Wnt3 reversed CRS-induced depression-like behaviors. Moreover, Wnt2 and Wnt3 activated cAMP response element-binding protein (CREB) and there was CREB-dependent positive feedback between Wnt2 and Wnt3. Finally, fluoxetine treatment increased Wnt2 and Wnt3 levels in the VH and knocking down Wnt2 or Wnt3 abolished the antidepressant effect of fluoxetine. Taken together, our study indicates essential roles for Wnt2 and Wnt3 in CRS-induced depression-like behaviors and antidepressant.
Collapse
|
research-article |
9 |
46 |
14
|
Liu X, Lu R, Wu S, Zhang YG, Xia Y, Sartor RB, Sun J. Wnt2 inhibits enteric bacterial-induced inflammation in intestinal epithelial cells. Inflamm Bowel Dis 2012; 18:418-29. [PMID: 21674728 PMCID: PMC3294455 DOI: 10.1002/ibd.21788] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 05/09/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Wnt signaling plays an essential role in gastrointestinal epithelial proliferation. Most investigations have focused on developmental and immune responses. Bacterial infection can be chronic and increases the risk of inflammatory bowel disease and colitis-associated cancer. However, we lack studies on how bacteria regulate Wnt proteins and how Wnts modulate the host responses to enteric bacteria. This study investigated the effects of Salmonella and Escherichia coli on Wnt2, one of the Wnt family members, in intestinal epithelia cells. METHODS Using cultured epithelial cells, a Salmonella-colitis mouse model, and a gnotobiotic mouse model, we found that Wnt2 mRNA and protein expression levels were elevated after bacterial infection. Enteric bacteria regulate Wnt2 location in the intestine. Furthermore, we found that elevation of Wnt2 was a strategy for host defense by inhibiting cell apoptosis and inflammatory responses to infection. RESULTS Using Wnt2 siRNA analysis, we show enhanced inflammatory cytokine IL-8 in epithelial cells. Cells overexpressed Wnt2 had less bacterial-induced IL-8 secretion. AvrA is a bacterial protein that inhibits inflammation by stabilizing β-catenin, the downstream target of Wnt. We found that the stabilization of Wnt2 was regulated through ubiquitination. Moreover, the bacterial protein AvrA from Salmonella and E. coli stabilized Wnt2 protein expression in vivo. In an ex-germ-free system, E. coli F18 expressing AvrA increased Wnt2 expression and changed Wnt2 distribution in intestine. CONCLUSIONS Wnt2 contributes to host protection in response to enteric bacteria. Our findings thus reveal a previously undefined role of Wnt for host-pathogen interaction and inflammation.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
41 |
15
|
Abstract
Hedgehog, Notch and Wnt signalling are all essential for axial patterning and progenitor cell fates in signalling pathways conserved from flies to humans. Aberrant activation of these pathways is observed in a wide variety of cancers, suggesting that these embryonic signalling pathways contribute in a fundamental way to the evolution and maintenance of a malignant phenotype. Because all three of these pathways participate in lung development, recent studies have begun to explore the connection between lung development, airway epithelial repair and lung cancer. Development, repair and malignant transformation of the neuroendocrine lineage are all accompanied by aberrant Hedgehog pathway activation, whereas Notch and Wnt signalling may be important in other airway cell types. Small molecule targeting of these pathways may provide therapeutic opportunities in lung cancer. The plant-derived alkaloid cyclopamine is a naturally occurring Hedgehog pathway inhibitor that shows therapeutic promise in small cell lung cancer, a highly aggressive neuroendocrine tumour. A more detailed understanding of how embryonic signalling pathways participate in airway epithelial repair and tumourigenesis may reveal more novel therapeutic vulnerabilities in lung cancer.
Collapse
|
Review |
19 |
41 |
16
|
Caprioli A, Villasenor A, Wylie LA, Braitsch C, Marty-Santos L, Barry D, Karner CM, Fu S, Meadows SM, Carroll TJ, Cleaver O. Wnt4 is essential to normal mammalian lung development. Dev Biol 2015; 406:222-34. [PMID: 26321050 DOI: 10.1016/j.ydbio.2015.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 07/31/2015] [Accepted: 08/26/2015] [Indexed: 11/20/2022]
Abstract
Wnt signaling is essential to many events during organogenesis, including the development of the mammalian lung. The Wnt family member Wnt4 has been shown to be required for the development of kidney, gonads, thymus, mammary and pituitary glands. Here, we show that Wnt4 is critical for proper morphogenesis and growth of the respiratory system. Using in situ hybridization in mouse embryos, we identify a previously uncharacterized site of Wnt4 expression in the anterior trunk mesoderm. This expression domain initiates as early as E8.25 in the mesoderm abutting the tracheoesophageal endoderm, between the fusing dorsal aortae and the heart. Analysis of Wnt4(-/-) embryos reveals severe lung hypoplasia and tracheal abnormalities; however, aortic fusion and esophageal development are unaffected. We find decreased cell proliferation in Wnt4(-/-) lung buds, particularly in tip domains. In addition, we observe reduction of the important lung growth factors Fgf9, Fgf10, Sox9 and Wnt2 in the lung bud during early stages of organogenesis, as well as decreased tracheal expression of the progenitor factor Sox9. Together, these data reveal a previously unknown role for the secreted protein Wnt4 in respiratory system development.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
41 |
17
|
Wang Q, Liu H, Wang Q, Zhou F, Liu Y, Zhang Y, Ding H, Yuan M, Li F, Chen Y. Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9. PLoS One 2017; 12:e0180558. [PMID: 28665975 PMCID: PMC5493424 DOI: 10.1371/journal.pone.0180558] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/16/2017] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma (OS) is an aggressive bone tumor, and proto-oncogene c-Fos is involved in this lethal disease. However, the role and molecular mechanism of c-Fos in the development and progression of OS remain enigmatic. As one of the Wnt family members, Wnt2 is closely associated with the development of several malignant tumors. In the present study, the expression of c-Fos, Wnt2, and its receptor Fzd9 in human OS tissues, MG63 OS cell line, and human osteoblast hFOB 1.19 cell line was detected by Western blot analysis, immunohistochemical staining, or reverse transcription-polymerase chain reaction. The role of c-Fos in the OS was clarified by treating MG63 cells with small interfering RNA to knockdown c-Fos. Then, cell migration and invasion were assayed by transwell assays and wound healing assay; cell proliferation was assayed by MTS method and 5-ethynyl-2'-deoxyuridine DNA proliferation in vitro detection; cell apoptosis was assayed by flow cytometric method. Co-immunoprecipitation kit was used to confirm the relationship between c-Fos and Wnt2/Fzd9. We found that the expression of c-Fos, Wnt2, and Fzd9 protein was distinctly higher in human OS tissues than that in the adjacent non-cancerous tissues, and their expression in the MG63 OS cell line was markedly increased compared with that in the human osteoblast hFOB 1.19 cell line. Knockdown of c-Fos inhibited the proliferation, migration, and invasion of MG63 cells, and promoted the apoptosis of MG63 cells. Moreover, knockdown of c-Fos inhibited the expression of Wnt2 and Fzd9 mRNA and protein. Our data enforced the evidence that knockdown of c-Fos inhibited cell proliferation, migration, and invasion, and promoted the apoptosis of OS cells accompanied by altered expression of Wnt2 and Fzd9. These findings offer new clues for OS development and progression, and c-Fos may be a potential therapeutic target for OS.
Collapse
|
Journal Article |
8 |
38 |
18
|
Shi C, Huang P, Kang H, Hu B, Qi J, Jiang M, Zhou H, Guo L, Deng L. Glucocorticoid inhibits cell proliferation in differentiating osteoblasts by microRNA-199a targeting of WNT signaling. J Mol Endocrinol 2015; 54:325-37. [PMID: 25878056 DOI: 10.1530/jme-14-0314] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 11/08/2022]
Abstract
The inhibition of osteoblast proliferation by glucocorticoids (GCs) is very important in the etiology of GC-induced osteoporosis. The mechanisms of this process are still not fully understood. The results of recent studies have indicated an important role for microRNAs in GC-mediated responses in various cellular processes, including cell proliferation and apoptosis. Therefore, we developed the hypothesis that these regulatory molecules might be involved in GC-decreased osteoblast proliferation. Western blotting, quantitative real-time PCR, cell proliferation assays, and luciferase assays were employed to investigate the role of miRNAs in GC-inhibited osteoblast proliferation. microRNA-199a-5p was significantly increased in osteoblasts treated with dexamethasone (Dex). To delineate the role of microRNA-199a-5p, we silenced and overexpressed microRNA-199a-5p in osteoblasts. We found that overexpressing microRNA-199a-5p remarkably increased the inhibition effect of Dex on osteoblast proliferation, and depleting microRNA-199a-5p significantly attenuated Dex-inhibited osteoblast proliferation. Results of mechanistic studies indicated that microRNA-199a-5p inhibited FZD4 and WNT2 expression through a microRNA-199a-5p binding site within the 3'-UTR of FZD4 and WNT2. The post-transcriptional repression of FZD4 and WNT2 were further confirmed by luciferase reporter assay. These results indicated that microRNA-199a-5p may play a significant role in GC-inhibited osteoblast proliferation by regulating the WNT signaling pathway.
Collapse
|
|
10 |
36 |
19
|
Alexandrovich A, Arno M, Patient RK, Shah AM, Pizzey JA, Brewer AC. Wnt2 is a direct downstream target of GATA6 during early cardiogenesis. Mech Dev 2006; 123:297-311. [PMID: 16621466 DOI: 10.1016/j.mod.2006.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 02/22/2006] [Accepted: 02/23/2006] [Indexed: 01/12/2023]
Abstract
The GATA4, 5 and 6 subfamily of transcription factors are potent transactivators of transcription expressed within the precardiac mesoderm. However, little is known of the immediate downstream targets of GATA-factor regulation during the earliest stages of cardiogenesis. Using the P19-CL6 embryonal carcinoma (EC) cell line as an in vitro model of cardiogenesis, we show that GATA6 is the most abundantly expressed of the GATA factors in presumptive cardiac cells. Consequently, we performed a microarray screen comparing mRNA from control EC cells, early in the cardiac differentiation pathway, with those in which GATA6 had been overexpressed. These studies identified 103 genes whose expression changed significantly and this was verified in a representative array of these genes by real-time RT-PCR. We show that early cardiac expression of one of these genes, Wnt2, mirrors that of GATA6 in vitro and in vivo. In addition, its upregulation by GATA6 in differentiating EC cells is mediated by the direct binding of GATA-factor(s) to the cognate Wnt2 promoter, suggesting Wnt2 is an immediate downstream target of GATA-factor regulation during early cardiogenesis.
Collapse
|
|
19 |
34 |
20
|
Zhou Y, Huang Y, Cao X, Xu J, Zhang L, Wang J, Huang L, Huang S, Yuan L, Jia W, Yu X, Luo R, Zheng M. WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition. PLoS One 2016; 11:e0160414. [PMID: 27513465 PMCID: PMC4981407 DOI: 10.1371/journal.pone.0160414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/19/2016] [Indexed: 01/13/2023] Open
Abstract
Background Previously, we found an 11-gene signature could predict pelvic lymph node metastasis (PLNM), and WNT2 is one of the key genes in the signature. This study explored the expression and underlying mechanism of WNT2 in PLNM of cervical cancer. Methods WNT2 expression level in cervical cancer was detected using western blotting, quantitative PCR, and immunohistochemistry. Two WNT2-specific small interfering RNAs (siRNAs) were used to explore the effects of WNT2 on invasive and metastatic ability of cancer cells, and to reveal the possible mechanism of WNT2 affecting epithelial—mesenchymal transition (EMT). The correlation between WNT2 expression and PLNM was further investigated in clinical cervical specimens. Results Both WNT2 mRNA and protein expression was upregulated in cervical cancer. High WNT2 expression was significantly associated with tumor size, lymphovascular space involvement, positive parametrium, and most importantly, PLNM. PLNM and WNT2 expression were independent prognostic factors for overall survival and disease-free survival. WNT2 knockdown inhibited SiHa cell motility and invasion and reversed EMT by inhibiting the WNT2/β-catenin pathway. WNT2 overexpression in cervical cancer was associated with β-catenin activation and induction of EMT, which further contributed to metastasis in cervical cancer. Conclusion WNT2 might be a novel predictor of PLNM and a promising prognostic indicator in cervical cancer.
Collapse
|
Journal Article |
9 |
26 |
21
|
Huang Y, Zhang S, Fang X, Qin L, Fan Y, Ding D, Liu X, Xie M. Plasma miR-199a-5p is increased in neutrophilic phenotype asthma patients and negatively correlated with pulmonary function. PLoS One 2018; 13:e0193502. [PMID: 29505605 PMCID: PMC5837185 DOI: 10.1371/journal.pone.0193502] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/12/2018] [Indexed: 12/26/2022] Open
Abstract
Objective We investigated the relationship between plasma miRNAs levels and inflammatory characteristics in asthmatic patients. Methods Eligible adults with untreated asthma (n = 35) underwent a clinical assessment, sputum induction, and assessment of pulmonary function test and Asthma Control Test (ACT) scores. Asthma phenotypes were defined using the sputum cell count. miR-199a-5p expression was measured using quantitative real-time polymerase chain reaction (qPCR). Lipopolysaccharide (LPS) stimulation was used to detect miR-199a-5p secretion from peripheral blood-derived neutrophil, lymphocyte, macrophage and BEAS-2B cells. The correlation of miR-199a-5p expression with clinical parameters was analyzed using multiple linear regression analysis. In silico analysis predicted the target genes and signaling pathway of miR-199a-5p. Transfection of miR-199a-5p mimics in human airway smooth muscle cells (HASMCs) was performed in vitro. Results The miRNA-199a-5p levels in plasma and sputum increased significantly in patients with neutrophilic asthma compared to healthy subjects (ps = 0.014 and 0.006, respectively). Expression of miR-199a-5p in the plasma of asthmatic patients positively correlated with sputum miR-199a-5p expression (r = 0.511, p = 0.021). The miR-199a-5p level was only elevated with LPS stimulation in neutrophils but not macrophages, lymphocytes, or epithelial cells from healthy controls (p < 0.01). miR-199a-5p expression increased in response to LPS (p = 0.005) and LPS combined with IL-4 (p = 0.003), but not IL-4 alone. However, peripheral neutrophils from eosinophilic asthma patients did not respond to LPS with increased miR-199a-5p expression (n = 5, p > 0.05) in contrast to the significant response from neutrophilic patients (n = 4, p < 0.0001). miR-199a-5p negatively correlated with FEV1, FVC and PEF (r = -0.377, p = 0.026; r = -0.419, p = 0.012; and r = -0.392, p = 0.024, respectively). Multivariate correlation analysis confirmed that the plasma miR-199a-5p levels negatively correlated with FEV1 in patients with asthma (Adjusted R2 = 0.164, p = 0.015). In silico analysis suggested that the WNT signaling pathway participates in miR-199a-5p mediation of smooth muscle cell hypertrophy. In vitro experiment, miR-199a-5p mimics inhibited the protein expressions of WNT2 and WNT4, decreased the c-myc expression and dramatically increased the Sm-MHC expression in HASMCs. Conclusion Plasma miR-199a-5p was increased in neutrophilic asthma and negatively correlated with pulmonary function, which suggests that miR-199a-5p actively contributes to disease pathogenesis by modulating the inflammatory process and transferring the signal from inflammatory cells to structure cells.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
24 |
22
|
Wang L, He M, Fu L, Jin Y. Exosomal release of microRNA-454 by breast cancer cells sustains biological properties of cancer stem cells via the PRRT2/Wnt axis in ovarian cancer. Life Sci 2020; 257:118024. [PMID: 32598931 DOI: 10.1016/j.lfs.2020.118024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
AIMS Cancer-derived exosomes carrying tumor-derived molecules such as miRNAs and proteins related to various phenotypes have been detected in both the bloodstream and other biofluids of patients with different cancers. Thus, our main purpose here was to determine the role of the exosomal microRNA-454 (miR-454) derived by MDA-MB-231 in self-renewal of cancer stem cells (CSCs) in ovarian cancer (OC). MATERIALS AND METHODS Extraction of MDA-MB-231 cells-derived exosomes (231-derived exosomes) was conducted to treat CD44+/CD133+ SKOV3 and CoC1 cells to observe cell growth and stemness. Next, the differentially expressed miRNAs in SKOV3 cells after exosome treatment were filtered using microarray analysis. Subsequently, the cell viability was detected after reducing the exosomal miR-454 and the addition of a Wnt pathway inhibitor C59. Finally, the pro-tumorigenic function of exosomes on OC cells in vivo was investigated. KEY FINDINGS After co-culture with 231-derived exosomes, the stemness of CSCs were promoted. Subsequently, the reduction of exosomal miR-454 weakened the roles of exosomes on cell stemness. Proline-rich transmembrane protein 2 (PRRT2) was substantiated as a target gene of miR-454 in SKOV3 and CoC1 cells. C59 reversed the repressive role of exosomes in stemness of CSCs. When being evaluated in a mouse model, exosomal miR-454 led to an efficacious effect in suppressing the tumor weight and volume in vivo. SIGNIFICANCE Altogether, 231-derived exosomes carrying miR-454 disrupted the Wnt pathway by targeting PRRT2, thereby promoting CSC stemness in vitro and OC cell growth in vivo.
Collapse
|
Journal Article |
5 |
21 |
23
|
Zhang H, Xue J, Li M, Zhao X, Wei D, Li C. Metformin regulates stromal-epithelial cells communication via Wnt2/β-catenin signaling in endometriosis. Mol Cell Endocrinol 2015; 413:61-5. [PMID: 26116230 DOI: 10.1016/j.mce.2015.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/30/2015] [Accepted: 06/10/2015] [Indexed: 11/25/2022]
Abstract
In previous studies, we found that endometriotic stromal cells lose the ability to regulate cell survival signaling in endometriotic epithelial cells. Here, we invested the effect of Metformin on the stromal-epithelial cells crosstalk in endometriosis and explored the pathway that might be involved. We found that ectopic endometriotic stromal cells (ESC) expressed and secreted higher Wnt2 protein compared with normal endometrial stromal cells (NSC). Conditioned medium (CM) from ESC supplemented with Wnt2 antibody significantly inhibited the growth of normal endometrial epithelial cells (NEC), while CM from ESC per se showed no significant effect on the growth of NEC. Metformin decreased the expression and secretion of Wnt2 in ESC. CM from Metformin-pretreated ESC significantly inhibited the growth of NEC. In conclusion, Wnt2/β-catenin signaling was involved in stromal-epithelial cells interaction in endometriosis. Metformin might regulate the stroma-epithelium communication via Wnt2-mediated signaling in endometriosis.
Collapse
|
|
10 |
19 |
24
|
Wang B, Wang X, Tseng Y, Huang M, Luo F, Zhang J, Liu J. Distinguishing colorectal adenoma from hyperplastic polyp by WNT2 expression. J Clin Lab Anal 2021; 35:e23961. [PMID: 34477243 PMCID: PMC8529141 DOI: 10.1002/jcla.23961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Colorectal adenoma (CRA) is a classical premalignant lesion, with high incidence and mainly coexisting with hyperplastic polyp (HPP). Hence, this study aimed to distinguish CRA from HPP by molecular expression profiling and advance the prevention of CRA and its malignance. METHODS CRA and paired HPP biopsies were collected by endoscopy. Through RNA-sequencing (RNA-seq), the differentially expressed genes (DEGs) were obtained. Functional enrichment analysis was performed based on the DEGs. The STRING database and Cytoscape were used to construct the protein-protein interaction (PPI) network and perform module analysis. Hub genes were validated by real-time quantitative PCR (RT-qPCR) and immunohistochemistry. The ROC curve was drawn to establish the specificity of the hub genes. RESULTS 485 significant DEGs were identified including 133 up-regulated and 352 down-regulated. The top 10 up-regulated genes were DLX5, MMP10, TAC1, ACAN, TAS2R38, WNT2, PHYHIPL, DKK4, DUSP27, and ABCA12. The top 10 down-regulated genes were SFRP2, CHRDL1, KBTBD12, RERGL, DPP10, CLCA4, GREM2, TMIGD1, FEV, and OTOP3. Wnt signaling pathway and extracellular matrix (ECM) were up-regulated in CRA. Three hub genes including WNT2, WNT5A, and SFRP1 were filtered out via Cytoscape. Further RT-qPCR and immunohistochemistry confirmed that WNT2 was highly expressed in CRA. The area under the ROC curve (AUC) at 0.98 indicated the expression level of WNT2 as a candidate to differ CRA from HPP. CONCLUSION Our study suggests Wnt signaling pathway and ECM are enriched in CRA, and WNT2 may be used as a novel biomarker for distinguishing CRA from HPP and preventing the malignance of CRA.
Collapse
|
research-article |
4 |
11 |
25
|
Ruan GT, Zhu LC, Gong YZ, Liao XW, Wang XK, Liao C, Wang S, Yan L, Xie HL, Zhou X, Li YZ, Gao F. The diagnosis and prognosis values of WNT mRNA expression in colon adenocarcinoma. J Cell Biochem 2019; 121:3145-3161. [PMID: 31886580 DOI: 10.1002/jcb.29582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
WNT family genes have participated in the progression and development of many cancers, however, the association between colon adenocarcinoma (COAD) and WNTs have been rarely reported. This study investigated the significance of WNT genes expression in COAD from the standpoint of diagnosis and prognosis. The RNA-sequencing dataset of COAD was downloaded from The Cancer Genome Atlas and University of California, Santa Cruz Xena browser. The biology functions of WNT genes were investigated by biological analysis. Biological analysis of WNT family genes indicated that WNT genes were noticeably enriched in the complex process of WNT signaling pathway. The Pearson correlation analysis suggested WNT1 and WNT9B had a strong correlation. And receiver operating characteristic curves suggested that most of the genes could serve as a significant diagnostic makers in COAD (P < .05), especially WNT2 and WNT7B had high diagnostic values that the area under curve were 0.997 (95% confidence interval [0.994-1.000]) and 0.961 (95%CI [0.939-0.983]), respectively. And our multivariate survival analysis suggested the downregulated of WNT10B (P < .05) showed a favor prognosis in COAD overall survival. And the risk score model predicted that the upregulated expression of WNT10B might increase the risk of death. The very study we had conducted suggested that WNT genes had a certain connection with the diagnosis and prognosis of COAD. The messenger RNA expression of WNT2 and WNT7B might become potentially diagnostic biomarkers, and WNT10B might serve as an independent prognosis indicator for COAD.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
11 |