1
|
Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, Kim E, Rompala A, Oram MK, Asselin C, Aronson J, Zhang C, Miller SJ, Lesinski A, Chen JW, Kim DY, van Praag H, Spiegelman BM, Gage FH, Tanzi RE. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science 2018; 361:eaan8821. [PMID: 30190379 PMCID: PMC6149542 DOI: 10.1126/science.aan8821] [Citation(s) in RCA: 553] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/04/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Adult hippocampal neurogenesis (AHN) is impaired before the onset of Alzheimer's disease (AD) pathology. We found that exercise provided cognitive benefit to 5×FAD mice, a mouse model of AD, by inducing AHN and elevating levels of brain-derived neurotrophic factor (BDNF). Neither stimulation of AHN alone, nor exercise, in the absence of increased AHN, ameliorated cognition. We successfully mimicked the beneficial effects of exercise on AD mice by genetically and pharmacologically inducing AHN in combination with elevating BDNF levels. Suppressing AHN later led to worsened cognitive performance and loss of preexisting dentate neurons. Thus, pharmacological mimetics of exercise, enhancing AHN and elevating BDNF levels, may improve cognition in AD. Furthermore, applied at early stages of AD, these mimetics may protect against subsequent neuronal cell death.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
553 |
2
|
Koo BK, van Es JH, van den Born M, Clevers H. Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. Proc Natl Acad Sci U S A 2015; 112:7548-50. [PMID: 26023187 PMCID: PMC4475934 DOI: 10.1073/pnas.1508113112] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rnf43 (RING finger protein 43) and Znrf3 (zinc/RING finger protein 3) (RZ) are two closely related transmembrane E3 ligases, encoded by Wnt target genes, that remove surface Wnt (wingless-int) receptors. The two genes are mutated in various human cancers. Such tumors are predicted to be hypersensitive to, yet still depend on, secreted Wnts. We previously showed that mutation of RZ in the intestine yields rapidly growing adenomas containing LGR5(+) (leucine-rich repeat-containing G-protein coupled receptor 5) stem cells and Wnt3-producing Paneth cells. We now show that removal of Paneth cells by Math1 mutation inhibits RZ(-/-) tumor formation. Similarly, deletion of Wnt3 inhibits tumorigenesis. Treatment of mice carrying RZ(-/-) intestinal neoplasia with a small molecule Wnt secretion inhibitor (porcupine inhibitor C59) strongly inhibited growth, whereas adjacent normal crypts remained intact. These results establish that paracrine Wnt secretion is an essential driver of RZ(-/-) tumor growth and imply that a therapeutic window exists for the use of porcupine inhibitors for RZ-mutant cancers.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
139 |
3
|
Choe Y, Siegenthaler JA, Pleasure SJ. A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation. Neuron 2012; 73:698-712. [PMID: 22365545 DOI: 10.1016/j.neuron.2011.11.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2011] [Indexed: 12/30/2022]
Abstract
The corpus callosum is the most prominent commissural connection between the cortical hemispheres, and numerous neurodevelopmental disorders are associated with callosal agenesis. By using mice either with meningeal overgrowth or selective loss of meninges, we have identified a cascade of morphogenic signals initiated by the meninges that regulates corpus callosum development. The meninges produce BMP7, an inhibitor of callosal axon outgrowth. This activity is overcome by the induction of expression of Wnt3 by the callosal pathfinding neurons, which antagonize the inhibitory effects of BMP7. Wnt3 expression in the cingulate callosal pathfinding axons is developmentally regulated by another BMP family member, GDF5, which is produced by the adjacent Cajal-Retzius neurons and turns on before outgrowth of the callosal axons. The effects of GDF5 are in turn under the control of a soluble GDF5 inhibitor, Dan, made by the meninges. Thus, the meninges and medial neocortex use a cascade of signals to regulate corpus callosum development.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
73 |
4
|
Wang YL, Ju B, Zhang YZ, Yin HL, Liu YJ, Wang SS, Zeng ZL, Yang XP, Wang HT, Li JF. Protective Effect of Curcumin Against Oxidative Stress-Induced Injury in Rats with Parkinson's Disease Through the Wnt/ β-Catenin Signaling Pathway. Cell Physiol Biochem 2017; 43:2226-2241. [PMID: 29069652 DOI: 10.1159/000484302] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/02/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The study aimed to investigate the protective effect of curcumin against oxidative stress-induced injury of Parkinson's disease (PD) through the Wnt/β-catenin signaling pathway in rats. METHODS The successfully established PD rat models and normal healthy rats were randomly assigned into the 6-hydroxydopamine (6-OHDA), the curcumin (Cur) and the control groups. Immunohistochemistry was used to detect the positive expression of tyrosine hydroxylase (TH), dopamine transporter (DAT) and glial fibrillary acidic protein (GFAP). Deutocerebrum primary cells were extracted and classified into the control, 6-OHDA, Cur (5, 10, 15 µmol/L), Dickkopf-1 (DKK-1) and Cur + DKK-1 groups. MTT assays, adhesion tests and TUNEL staining were used to assess cell viability, adhesion and apoptosis, respectively. Western blotting and qRT-PCR were used to examine the protein and mRNA expressions of Wnt3a and β-catenin and the c-myc and cyclinD1 mRNA expressions. RESULTS TH and DAT expressions in the Cur group were elevated and GFAP was reduced compared with the 6-OHDA group. Curcumin enhanced viability, survival and adhesion and attenuated apoptosis of deutocerebrum primary cells by activating the Wnt/β-catenin signaling pathway. Higher Wnt3a and β-catenin mRNA and protein expressions and c-myc and cyclinD1 mRNA expressions, enhanced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) contents, decreased malondialdehyde (MDA) content and elevated mitochondrial membrane potential (∆ψm) were found in the 10 and 15 µmol/L Cur groups compared with the 6-OHDA group. However, opposite tendencies were found in the Cur + DKK-1 group compared to the 10 µmol/L Cur group. CONCLUSION This study suggests that curcumin could protect against oxidative stress-induced injury in PD rats via the Wnt/β-catenin signaling pathway.
Collapse
|
Retracted Publication |
8 |
59 |
5
|
Anne SL, Govek EE, Ayrault O, Kim JH, Zhu X, Murphy DA, Van Aelst L, Roussel MF, Hatten ME. WNT3 inhibits cerebellar granule neuron progenitor proliferation and medulloblastoma formation via MAPK activation. PLoS One 2013; 8:e81769. [PMID: 24303070 PMCID: PMC3841149 DOI: 10.1371/journal.pone.0081769] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022] Open
Abstract
During normal cerebellar development, the remarkable expansion of granule cell progenitors (GCPs) generates a population of granule neurons that outnumbers the total neuronal population of the cerebral cortex, and provides a model for identifying signaling pathways that may be defective in medulloblastoma. While many studies focus on identifying pathways that promote growth of GCPs, a critical unanswered question concerns the identification of signaling pathways that block mitogenic stimulation and induce early steps in differentiation. Here we identify WNT3 as a novel suppressor of GCP proliferation during cerebellar development and an inhibitor of medulloblastoma growth in mice. WNT3, produced in early postnatal cerebellum, inhibits GCP proliferation by down-regulating pro-proliferative target genes of the mitogen Sonic Hedgehog (SHH) and the bHLH transcription factor Atoh1. WNT3 suppresses GCP growth through a non-canonical Wnt signaling pathway, activating prototypic mitogen-activated protein kinases (MAPKs), the Ras-dependent extracellular-signal-regulated kinases 1/2 (ERK1/2) and ERK5, instead of the classical β-catenin pathway. Inhibition of MAPK activity using a MAPK kinase (MEK) inhibitor reversed the inhibitory effect of WNT3 on GCP proliferation. Importantly, WNT3 inhibits proliferation of medulloblastoma tumor growth in mouse models by a similar mechanism. Thus, the present study suggests a novel role for WNT3 as a regulator of neurogenesis and repressor of neural tumors.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
59 |
6
|
Endo Y, Ishiwata-Endo H, Yamada KM. Extracellular matrix protein anosmin promotes neural crest formation and regulates FGF, BMP, and WNT activities. Dev Cell 2012; 23:305-16. [PMID: 22898776 PMCID: PMC3422507 DOI: 10.1016/j.devcel.2012.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 04/03/2012] [Accepted: 07/13/2012] [Indexed: 11/30/2022]
Abstract
Neural crest cells are a transient stem cell-like population appearing during vertebrate embryonic development. Generation of the cranial neural crest is known to require a balanced combination of FGF and BMP levels. However, it is poorly understood how the functions of such growth factors are controlled in the extracellular space. Anosmin is an extracellular matrix protein implicated in FGF signaling and mutated in Kallmann syndrome. Here, we demonstrate that anosmin is synthesized locally in the cranial neural crest of chicken embryos and is essential for cranial neural crest formation. Anosmin upregulates FGF8 and BMP5 gene expression; it also enhances FGF8 activity while inhibiting BMP5 and WNT3a signaling. Taken together, our data establish that the matrix protein anosmin is required for cranial neural crest formation, with functional modulation of FGF, BMP, and WNT.
Collapse
|
Research Support, N.I.H., Intramural |
13 |
58 |
7
|
Zhou WJ, Xu N, Kong L, Sun SC, Xu XF, Jia MZ, Wang Y, Chen ZY. The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors. Transl Psychiatry 2016; 6:e892. [PMID: 27622936 PMCID: PMC5048193 DOI: 10.1038/tp.2016.122] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/23/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022] Open
Abstract
Wnts-related signaling pathways have been reported to play roles in the pathogenesis of stress-induced depression-like behaviors. However, there is relatively few direct evidence to indicate the effect of Wnt ligands on this process. Here, we investigated the role of Wnts in mediating chronic restraint stress (CRS)-induced depression-like behaviors. We found that CRS induced a significant decrease in the expression of Wnt2 and Wnt3 in the ventral hippocampus (VH) but not in the dorsal hippocampus. Knocking down Wnt2 or Wnt3 in the VH led to impaired Wnt/β-catenin signaling, neurogenesis deficits and depression-like behaviors. In contrast, overexpression of Wnt2 or Wnt3 reversed CRS-induced depression-like behaviors. Moreover, Wnt2 and Wnt3 activated cAMP response element-binding protein (CREB) and there was CREB-dependent positive feedback between Wnt2 and Wnt3. Finally, fluoxetine treatment increased Wnt2 and Wnt3 levels in the VH and knocking down Wnt2 or Wnt3 abolished the antidepressant effect of fluoxetine. Taken together, our study indicates essential roles for Wnt2 and Wnt3 in CRS-induced depression-like behaviors and antidepressant.
Collapse
|
research-article |
9 |
46 |
8
|
Jiang W, Zhang D, Bursac N, Zhang Y. WNT3 is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs. Stem Cell Reports 2013; 1:46-52. [PMID: 24052941 PMCID: PMC3757741 DOI: 10.1016/j.stemcr.2013.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/14/2022] Open
Abstract
Generation of functional cells from human pluripotent stem cells (PSCs) through in vitro differentiation is a promising approach for drug screening and cell therapy. However, the observed large and unavoidable variation in the differentiation potential of different human embryonic stem cell (hESC)/induced PSC (iPSC) lines makes the selection of an appropriate cell line for the differentiation of a particular cell lineage difficult. Here, we report identification of WNT3 as a biomarker capable of predicting definitive endoderm (DE) differentiation potential of hESCs. We show that the mRNA level of WNT3 in hESCs correlates with their DE differentiation efficiency. In addition, manipulations of hESCs through WNT3 knockdown or overexpression can respectively inhibit or promote DE differentiation in a WNT3 level-dependent manner. Finally, analysis of several hESC lines based on their WNT3 expression levels allowed accurate prediction of their DE differentiation potential. Collectively, our study supports the notion that WNT3 can serve as a biomarker for predicting DE differentiation potential of hESCs.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
43 |
9
|
Liu S, Piao F, Sun X, Bai L, Peng Y, Zhong Y, Ma N, Sun W. Arsenic-induced inhibition of hippocampal neurogenesis and its reversibility. Neurotoxicology 2012; 33:1033-9. [PMID: 22561869 DOI: 10.1016/j.neuro.2012.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/05/2012] [Accepted: 04/19/2012] [Indexed: 12/31/2022]
Abstract
Arsenic exposure can result in damages of the neurological system. The present study aimed at whether cell proliferation and neurogenesis in the adult mouse hippocampus were affected after arsenic exposure and whether they could recover after exposure cessation. Mice were randomly placed into 3 groups. The first group received distilled water alone for 4 months (control group); the second group received 4.0 mg/L As(2)O(3) through drinking water for 4 months (arsenic group); the third group received 4.0 mg/L As(2)O(3) for 2 months and then changed to distilled water for another 2 months (recovery group). Serum and cerebrum arsenic concentrations of the arsenic group were significantly elevated, and then decreased to normal after the change of arsenic to water in the diet. After a four-month administration, the hippocampal number of proliferative cells and the percentage of new mature neurons decreased in the arsenic group as compared with the control group, however, increased significantly in the recovery group when compared with the arsenic group, and restored to the control level. There were no significant differences for apoptosis in different groups. Obvious histopathological ameliorations were observed in the hippocampus of the recovery group. The inhibition of hippocampus cell proliferation and neurogenesis by arsenic is reversible after the arsenic administration was terminated.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
42 |
10
|
Siar CH, Nagatsuka H, Han PP, Buery RR, Tsujigiwa H, Nakano K, Ng KH, Kawakami T. Differential expression of canonical and non-canonical Wnt ligands in ameloblastoma. J Oral Pathol Med 2011; 41:332-9. [PMID: 22077561 DOI: 10.1111/j.1600-0714.2011.01104.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
14 |
35 |
11
|
Wu Y, Tran T, Dwabe S, Sarkissyan M, Kim J, Nava M, Clayton S, Pietras R, Farias-Eisner R, Vadgama JV. A83-01 inhibits TGF-β-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells. Breast Cancer Res Treat 2017; 163:449-460. [PMID: 28337662 PMCID: PMC5427117 DOI: 10.1007/s10549-017-4211-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 01/27/2023]
Abstract
PURPOSE The aim of this study is to investigate the mechanisms of interactions between TGF-β and Wnt/β-catenin pathways that induce and regulate EMT and promote breast cancer cells to become resistant to treatment. METHODS The effect of TGF-β on Wnt/β-catenin signaling pathway was examined by using a human Wnt/β-catenin-regulated cDNA plate array and western blot analysis. The interaction of Twist at promoter of Wnt3 was examined by chromatin immunoprecipitation (ChIP) assay. Secreted Wnt3 level was determined by ELISA assay. RESULTS HER2-overexpressing breast cancer cells treated with TGF-β have a reduced response to trastuzumab and exhibited EMT-like phenotype. The TGF-β-induced EMT in HER2-cells was concordant with upregulation of Wnt3 and β-catenin pathways. The TGF-β-induced induction of Wnt3 during EMT was found to be Smad3-dependent. ChIP analysis identified occupancy of Twist at promoter region of Wnt3. Knock-down of Twist by shRNA confirmed the significance of Twist in response to TGF-β regulating Wnt3 during EMT. Subsequently, TGF-β-induced matrix metalloproteinases, MMP1, MMP7, MMP9, MMP26, Vascular endothelial growth factors (VEGF), and activation of Wnt/β-catenin signaling were repressed by the shRNA treatment. TGF-βR1 ALK5 kinase inhibitor, A83-01 can effectively prevent the TGF-β-induced Twist and Wnt3. Co-treating A83-01 and trastuzumab inhibited TGF-β-induced cell invasion significantly in both trastuzumab responsive and resistant cells. CONCLUSIONS Our data demonstrated an important interdependence between TGF-β and Wnt/β-catenin pathways inducing EMT in HER2-overexpressing breast cancer cells. Twist served as a linkage between the two pathways during TGF-β-induced EMT. A83-01 could inhibit the TGF-β-initiated pathway interactions and enhance HER2-cells response to trastuzumab treatment.
Collapse
|
Retracted Publication |
8 |
35 |
12
|
Little RB, Norris DP. Right, left and cilia: How asymmetry is established. Semin Cell Dev Biol 2021; 110:11-18. [PMID: 32571625 DOI: 10.1016/j.semcdb.2020.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
The initial breaking of left-right (L-R) symmetry in the embryo is controlled by a motile-cilia-driven leftward fluid flow in the left-right organiser (LRO), resulting in L-R asymmetric gene expression flanking the LRO. Ultimately this results in left- but not right-sided activation of the Nodal-Pitx2 pathway in more lateral tissues. While aspects of the initial breaking event clearly vary between vertebrates, events in the Lateral Plate Mesoderm (LPM) are conserved through the vertebrate lineage. Evidence from model systems and humans highlights the role of cilia both in the initial symmetry breaking and in the ability of more lateral tissues to exhibit asymmetric gene expression. In this review we concentrate on the process of L-R determination in mouse and humans.
Collapse
|
Review |
4 |
31 |
13
|
Fang M, Wang C, Zheng C, Luo J, Hou S, Liu K, Li X. Mir-29b promotes human aortic valve interstitial cell calcification via inhibiting TGF-β3 through activation of wnt3/β-catenin/Smad3 signaling. J Cell Biochem 2018; 119:5175-5185. [PMID: 29227539 PMCID: PMC6001435 DOI: 10.1002/jcb.26545] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023]
Abstract
Herein, we hypothesized that pro-osteogenic MicroRNAs (miRs) could play functional roles in the calcification of the aortic valve and aimed to explore the functional role of miR-29b in the osteoblastic differentiation of human aortic valve interstitial cells (hAVICs) and the underlying molecular mechanism. Osteoblastic differentiation of hAVICs isolated from human calcific aortic valve leaflets obtained intraoperatively was induced with an osteogenic medium. Alizarin red S staining was used to evaluate calcium deposition. The protein levels of osteogenic markers and other proteins were evaluated using western blotting and/or immunofluorescence while qRT-PCR was applied for miR and mRNA determination. Bioinformatics and luciferase reporter assay were used to identify the possible interaction between miR-29b and TGF-β3. Calcium deposition and the number of calcification nodules were pointedly and progressively increased in hAVICs during osteogenic differentiation. The levels of osteogenic and calcification markers were equally increased, thus confirming the mineralization of hAVICs. The expression of miR-29b was significantly increased during osteoblastic differentiation. Furthermore, the osteoblastic differentiation of hAVICs was significantly inhibited by the miR-29b inhibition. TGF-β3 was markedly downregulated while Smad3, Runx2, wnt3, and β-catenin were significantly upregulated during osteogenic induction at both the mRNA and protein levels. These effects were systematically induced by miR-29b overexpression while the inhibition of miR-29b showed the inverse trends. Moreover, TGF-β3 was a direct target of miR-29b. Inhibition of miR-29b hinders valvular calcification through the upregulation of the TGF-β3 via inhibition of wnt/β-catenin and RUNX2/Smad3 signaling pathways.
Collapse
|
research-article |
7 |
29 |
14
|
Guo H, Yang K, Deng F, Ye J, Xing Y, Li Y, Lian X, Yang T. Wnt3a promotes melanin synthesis of mouse hair follicle melanocytes. Biochem Biophys Res Commun 2012; 420:799-804. [PMID: 22465131 DOI: 10.1016/j.bbrc.2012.03.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
Although the importance of Wnt3a in melanocyte development has been well recognized, the effect of Wnt3a in normal HF melanocytes has not been clearly elucidated yet. Thus, we sought to examine the presence and location of Wnt3a in HF during hair cycle. By using melanocyte-targeted Dct-LacZ transgenic mice, we found that Wnt3a signaling is activated in mouse HF melanocytes during anagen of hair cycle. To further explore the potential functions of Wnt3a in mouse melanocytes, we infected melan-a cells with AdWnt3a to serve as the production source of Wnt3a protein. We demonstrated that Wnt3a promoted melanogenesis through upregulation of MITF and its downstream genes, tyrosinase and TRP1, in melanocytes. In vivo, AdWnt3a rescued the effects of AdsimMITF on HF melanocytes and promoted melanin synthesis. Our results suggest that Wnt3a plays an important role in mouse HF melanocytes homeostasis.
Collapse
|
|
13 |
25 |
15
|
Gaillard D, Bowles SG, Salcedo E, Xu M, Millar SE, Barlow LA. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice. PLoS Genet 2017; 13:e1006990. [PMID: 28846687 PMCID: PMC5591015 DOI: 10.1371/journal.pgen.1006990] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/08/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023] Open
Abstract
Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. By remaining relatively constant throughout adult life, the sense of taste helps keep the body healthy. However, taste perception can be disrupted by various environmental factors, including cancer therapies. Here, we show that Wnt/β-catenin signaling, a pathway known to control normal tissue maintenance and associated with the development of cancers, is required for taste cell renewal and behavioral taste sensitivity in mice. Our findings are significant as they suggest that chemotherapies targeting the Wnt pathway in cancerous tissues may cause taste dysfunction and further diminish the quality of life of patients.
Collapse
|
Journal Article |
8 |
23 |
16
|
Reutter H, Draaken M, Pennimpede T, Wittler L, Brockschmidt FF, Ebert AK, Bartels E, Rösch W, Boemers TM, Hirsch K, Schmiedeke E, Meesters C, Becker T, Stein R, Utsch B, Mangold E, Nordenskjöld A, Barker G, Kockum CC, Zwink N, Holmdahl G, Läckgren G, Jenetzky E, Feitz WFJ, Marcelis C, Wijers CHW, Van Rooij IALM, Gearhart JP, Herrmann BG, Ludwig M, Boyadjiev SA, Nöthen MM, Mattheisen M. Genome-wide association study and mouse expression data identify a highly conserved 32 kb intergenic region between WNT3 and WNT9b as possible susceptibility locus for isolated classic exstrophy of the bladder. Hum Mol Genet 2014; 23:5536-44. [PMID: 24852367 PMCID: PMC4168827 DOI: 10.1093/hmg/ddu259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/02/2014] [Accepted: 05/20/2014] [Indexed: 11/12/2022] Open
Abstract
Bladder exstrophy-epispadias complex (BEEC), the severe end of the urorectal malformation spectrum, has a profound impact on continence as well as sexual and renal functions. It is widely accepted that for the majority of cases the genetic basis appears to be multifactorial. Here, we report the first study which utilizes genome-wide association methods to analyze a cohort comprising patients presenting the most common BEEC form, classic bladder exstrophy (CBE), to identify common variation associated with risk for isolated CBE. We employed discovery and follow-up samples comprising 218 cases/865 controls and 78 trios in total, all of European descent. Our discovery sample identified a marker near SALL1, showing genome-wide significant association with CBE. However, analyses performed on follow-up samples did not add further support to these findings. We were also able to identify an association with CBE across our study samples (discovery: P = 8.88 × 10(-5); follow-up: P = 0.0025; combined: 1.09 × 10(-6)) in a highly conserved 32 kb intergenic region containing regulatory elements between WNT3 and WNT9B. Subsequent analyses in mice revealed expression for both genes in the genital region during stages relevant to the development of CBE in humans. Unfortunately, we were not able to replicate the suggestive signal for WNT3 and WNT9B in a sample that was enriched for non-CBE BEEC cases (P = 0.51). Our suggestive findings support the hypothesis that larger samples are warranted to identify association of common variation with CBE.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
17 |
17
|
Veerapathiran S, Teh C, Zhu S, Kartigayen I, Korzh V, Matsudaira PT, Wohland T. Wnt3 distribution in the zebrafish brain is determined by expression, diffusion and multiple molecular interactions. eLife 2020; 9:e59489. [PMID: 33236989 PMCID: PMC7725503 DOI: 10.7554/elife.59489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt3 proteins are lipidated and glycosylated signaling molecules that play an important role in zebrafish neural patterning and brain development. However, the transport mechanism of lipid-modified Wnts through the hydrophilic extracellular environment for long-range action remains unresolved. Here we determine how Wnt3 accomplishes long-range distribution in the zebrafish brain. First, we characterize the Wnt3-producing source and Wnt3-receiving target regions. Subsequently, we analyze Wnt3 mobility at different length scales by fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. We demonstrate that Wnt3 spreads extracellularly and interacts with heparan sulfate proteoglycans (HSPG). We then determine the binding affinity of Wnt3 to its receptor, Frizzled1 (Fzd1), using fluorescence cross-correlation spectroscopy and show that the co-receptor, low-density lipoprotein receptor-related protein 5 (Lrp5), is required for Wnt3-Fzd1 interaction. Our results are consistent with the extracellular distribution of Wnt3 by a diffusive mechanism that is modified by tissue morphology, interactions with HSPG, and Lrp5-mediated receptor binding, to regulate zebrafish brain development.
Collapse
|
research-article |
5 |
14 |
18
|
Bitencourt Reis CL, Nakane Matsumoto MA, Baratto-Filho F, Scariot R, Sasso Stuani MB, Lourenço Romano F, Della Coletta R, Silva Barroso de Oliveira D, Proff P, Kirschneck C, Calvano Küchler E. Impact of genetic variations in the WNT family members and RUNX2 on dental and skeletal maturation: a cross-sectional study. Head Face Med 2023; 19:26. [PMID: 37400934 PMCID: PMC10316614 DOI: 10.1186/s13005-023-00372-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND This study evaluated if genetic variations in the WNT family members and RUNX2 are associated with craniofacial maturation, investigating dental and skeletal maturity in children and teenagers. METHODS Radiographs from pre-orthodontic treatment of Brazilian patients (7 to 17 years-old) were used to assess dental (panoramic radiographs) and skeletal maturity (cephalometric radiographs). The chronological age (CA) was calculated based on the date of birth and the time the radiographs were performed. For the dental maturity analysis, the Demirjian (1973) method was used and a delta [dental age - chronological age (DA-CA)] was calculated. For the skeletal maturity analysis, the Baccetti et al. (2005) method was used and the patients were classified as "delayed skeletal maturation", "advanced skeletal maturation" or "normal skeletal maturation". DNA isolated from buccal cells was used for genotyping of two genetic variations in WNT family genes: rs708111 (G > A) in WNT3A and rs1533767 (G > A) in WNT11; and two genetic variations in RUNX2: rs1200425 (G > A) and rs59983488 (G > T). A statistical analysis was performed and values of p < 0.05 indicated a significant difference. RESULTS There were no associations between dental maturity and genotypes (p > 0.05). In the skeletal maturity analysis, the allele A in the rs708111 (WNT3A) was statistically more frequent in patients with delayed skeletal maturation (Prevalence Ratio = 1.6; 95% Confidence Interval = 1.00 to 2.54; p-value = 0.042). CONCLUSIONS The rs708111 in the WNT3A gene impacts on skeletal maturation.
Collapse
|
research-article |
2 |
3 |
19
|
Pinto C, Pérez V, Mella J, Albistur M, Caprile T, Bronfman FC, Henríquez JP. Transport and Secretion of the Wnt3 Ligand by Motor Neuron-like Cells and Developing Motor Neurons. Biomolecules 2021; 11:biom11121898. [PMID: 34944540 PMCID: PMC8699186 DOI: 10.3390/biom11121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
The vertebrate neuromuscular junction (NMJ) is formed by a presynaptic motor nerve terminal and a postsynaptic muscle specialization. Cumulative evidence reveals that Wnt ligands secreted by the nerve terminal control crucial steps of NMJ synaptogenesis. For instance, the Wnt3 ligand is expressed by motor neurons at the time of NMJ formation and induces postsynaptic differentiation in recently formed muscle fibers. However, the behavior of presynaptic-derived Wnt ligands at the vertebrate NMJ has not been deeply analyzed. Here, we conducted overexpression experiments to study the expression, distribution, secretion, and function of Wnt3 by transfection of the motor neuron-like NSC-34 cell line and by in ovo electroporation of chick motor neurons. Our findings reveal that Wnt3 is transported along motor axons in vivo following a vesicular-like pattern and reaches the NMJ area. In vitro, we found that endogenous Wnt3 expression increases as the differentiation of NSC-34 cells proceeds. Although NSC-34 cells overexpressing Wnt3 do not modify their morphological differentiation towards a neuronal phenotype, they effectively induce acetylcholine receptor clustering on co-cultured myotubes. These findings support the notion that presynaptic Wnt3 is transported and secreted by motor neurons to induce postsynaptic differentiation in nascent NMJs.
Collapse
|
|
4 |
|
20
|
Zhang X, Sun K, Gan R, Yan Y, Zhang C, Zheng D, Lu Y. WNT3 promotes chemoresistance to 5-Fluorouracil in oral squamous cell carcinoma via activating the canonical β-catenin pathway. BMC Cancer 2024; 24:564. [PMID: 38711026 PMCID: PMC11071218 DOI: 10.1186/s12885-024-12318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND 5-Fluorouracil (5FU) is a primary chemotherapeutic agent used to treat oral squamous cell carcinoma (OSCC). However, the development of drug resistance has significantly limited its clinical application. Therefore, there is an urgent need to determine the mechanisms underlying drug resistance and identify effective targets. In recent years, the Wingless and Int-1 (WNT) signaling pathway has been increasingly studied in cancer drug resistance; however, the role of WNT3, a ligand of the canonical WNT signaling pathway, in OSCC 5FU-resistance is not clear. This study delved into this potential connection. METHODS 5FU-resistant cell lines were established by gradually elevating the drug concentration in the culture medium. Differential gene expressions between parental and resistant cells underwent RNA sequencing analysis, which was then substantiated via Real-time quantitative PCR (RT-qPCR) and western blot tests. The influence of the WNT signaling on OSCC chemoresistance was ascertained through WNT3 knockdown or overexpression. The WNT inhibitor methyl 3-benzoate (MSAB) was probed for its capacity to boost 5FU efficacy. RESULTS In this study, the WNT/β-catenin signaling pathway was notably activated in 5FU-resistant OSCC cell lines, which was confirmed through transcriptome sequencing analysis, RT-qPCR, and western blot verification. Additionally, the key ligand responsible for pathway activation, WNT3, was identified. By knocking down WNT3 in resistant cells or overexpressing WNT3 in parental cells, we found that WNT3 promoted 5FU-resistance in OSCC. In addition, the WNT inhibitor MSAB reversed 5FU-resistance in OSCC cells. CONCLUSIONS These data underscored the activation of the WNT/β-catenin signaling pathway in resistant cells and identified the promoting effect of WNT3 upregulation on 5FU-resistance in oral squamous carcinoma. This may provide a new therapeutic strategy for reversing 5FU-resistance in OSCC cells.
Collapse
|
research-article |
1 |
|
21
|
Li Y, Yu Y, Li D, Li L. Exosomal encapsulation of miR-3198 promotes proliferation and migration of trophoblasts in preeclampsia. J Assist Reprod Genet 2024; 41:1403-1416. [PMID: 38536597 PMCID: PMC11143149 DOI: 10.1007/s10815-024-03104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/19/2024] [Indexed: 06/01/2024] Open
Abstract
PURPOSE Preeclampsia (PE) is a vascular remodeling disorder cloesly linked to trophoblast dysfunction, involving defects in their proliferation, migration, and apoptosis. Maternal exosomal microRNAs (miRNAs) have been reported to play pivotal roles in the development of PE. However, the mechanism underlying the role of maternal exosomes in trophoblast dysfunction regarding the development of PE is poorly understood. METHODS Plasma exosomes from maternal peripheral blood were collected from pregnant women with PE and from those with normal pregnancy. Bioinformatics analysis was used to identify significantly differentially expressed miRNAs under these two conditions. The expression of the miR-3198 gene in plasma exosomes was detected using quantitative real-time polymerase chain reaction. Dual luciferase reporter assay was used to confirm binding of miR-3198 and 3'UTR region of WNT3. Cell proliferation was examined using the Cell Count Kit-8 and EdU assays, and flow cytometry was performed to detect apoptosis and cell cycle. Changes in cell migration were examined using transwell and scratch assays. RESULTS Patients with PE showed decreased expression of plasma-derived exosomal miR-3198. The proliferation and migration abilities of HTR-8/SVneo and primary human trophoblast cells were both improved when cocultured with miR-3198-rich exosomes. Exposure to miR-3198-enriched exosomes facilitated cell cycle progression but reduced apoptosis in HTR-8/SVneo cells. Notably, overexpression of miR-3198 partially prevented the inhibitory effects of WNT3 on proliferation and migration in HTR-8/SVneo cells. CONCLUSION Exosomal miR-3198 in the maternal peripheral blood may regulate the biological functions of trophoblasts by targeting WNT3 and influence the development of diseases of placental origin.
Collapse
|
research-article |
1 |
|
22
|
Rigual MDM, Angulo-Aguado M, Zagorac S, Álvarez-Díaz R, Benítez-Mondéjar M, Yi F, Martínez-Garay C, Santos-de-Frutos K, Kim E, Campos-Olivas R, Djouder N. Macrophages harness hepatocyte glutamate to boost liver regeneration. Nature 2025; 641:1005-1016. [PMID: 40140584 DOI: 10.1038/s41586-025-08778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2025] [Indexed: 03/28/2025]
Abstract
Liver regeneration after hepatectomy follows accurate coordination with the body's specific requirements1-3. However, the molecular mechanisms, factors and particular hepatocyte population influencing its efficiency remain unclear. Here we report on a unique regeneration mechanism involving unconventional RPB5 prefoldin interactor 1 (URI1), which exclusively colocalizes with, binds to and activates glutamine synthase (GS) in pericentral hepatocytes. Genetic GS or URI1 depletion in mouse pericentral hepatocytes increases circulating glutamate levels, accelerating liver regeneration after two-third hepatectomy. Conversely, mouse hepatocytic URI1 overexpression hinders liver restoration, which can be reversed by elevating glutamate through supplementation or genetic GS depletion. Glutamate metabolically reprograms bone-marrow-derived macrophages, stabilizing HIF1α, which transcriptionally activates WNT3 to promote YAP1-dependent hepatocyte proliferation, boosting liver regeneration. GS regulation by URI1 is a mechanism that maintains optimal glutamate levels, probably to spatiotemporally fine-tune liver growth in accordance with the body's homeostasis and nutrient supply. Accordingly, in acute and chronic injury models, including in cirrhotic mice with low glutamate levels and in early mortality after liver resection, as well as in mice undergoing 90% hepatectomy, glutamate addition enhances hepatocyte proliferation and survival. Furthermore, URI1 and GS expression co-localize in human hepatocytes and correlate with WNT3 in immune cells across liver disease stages. Glutamate supplementation may therefore support liver regeneration, benefiting patients awaiting transplants or recovering from hepatectomy.
Collapse
|
|
1 |
|
23
|
Yin L, Lu C, Zeng S, Jiang D, Zeng G, Wang H. Asperuloside Suppresses the Development of Depression through Wnt3α/GSK-3β Signal Pathway in Rats. Biol Pharm Bull 2024; 47:1637-1643. [PMID: 39370268 DOI: 10.1248/bpb.b24-00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Depressive disorder is the most common mental disorder with significant economic burden and limited treatments. Traditional Chinese medicine monomer has emerged as a promising non-pharmacological treatment for reducing depressive symptoms. The aim of this study was to investigate the antidepressant-like effects of asperuloside (ASP) and its mechanism. The depression-like behaviors of chronic unpredictable mild stress (CUMS)-exposed rats were evaluated by behavioral tests. At the same time, the behaviors of rats treated with different concentrations of ASP (10, 20, 40 mg/kg) were also evaluated. RNA sequencing was performed to screen for dysregulated genes following ASP treatment. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to state the enriched pathways. Protein expression was detected by Western blotting. With the increase of ASP concentration (over 20 mg/kg), the depression-like behaviors of the rats were alleviated, which was manifested as the increase of the number of entries in the central zone, decrease of immobility time, and the increase of swimming time, sucrose preference, and body weight. ASP activated the Wnt3α/glycogen synthase kinase 3β (GSK-3β)/β-catenin signaling pathway in vivo. Knockdown of β-catenin reversed the effects of ASP on regulating depression-like behaviors. ASP alleviates depression-like behaviors by activating the Wnt3α/GSK-3β/β-catenin signaling pathway, indicating that ASP may be a potential therapeutic drug for treatment of depression.
Collapse
|
|
1 |
|
24
|
Fei Q, Wu ZH, Wang YP, Zhou X, Wang H, Wang NG, Li X, Qiu GX. [Association study of WNT3A gene polymorphisms with the susceptibility to congenital scoliosis in a Chinese Han population]. ZHONGHUA YI XUE ZA ZHI 2011; 91:746-751. [PMID: 21600099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
OBJECTIVE To investigate whether the polymorphisms of WNT3A gene are associated with congenital scoliosis (CS) and its various clinical phenotypes in a Chinese Han population. METHODS A total of 127 CS patients admitted into PUMC were enrolled into this case-control study between October 2005 and September 2007. There were 55 boys and 72 girls with a mean age of 12.90 years old. Another 127 scoliosis-free control subjects at the same hospital during the same study period were frequency-matched with regards to age (± 3 years) and gender. Genomic DNA was extracted by QIAamp DNA Blood Mini Kit from peripheral blood leukocytes of each subject who had signed informed consent. Based on the genotypic data from the International HapMap project, the main functional single nucleotide polymorphisms (SNPs) were initially selected. The patients in the case group were classified into different clinical phenotypes according to vertebral defect type, location of deformity, extent of developmental disruption, combined rib malformations and neural canal deformity. The genotying of all selected SNPs was performed by SNPstream technology (Beckman Coulter SNPstream). All data of SNPs with polymorphism were processed by the association analysis based on a single SNP and between phenotypes and SNPs. And the pairwise linkage disequilibrium was calculated in the control population by Haploview 4.1 software. RESULTS The SNP1 (rs964941) and SNP2 (rs752107) of WNT3A were genotyped. There was no linkage disequilibrium between two SNPs. No association was observed between SNP1 and SNP2 genotypes or allele polymorphisms and risk of CS and various clinical phenotypes (P > 0.05). CONCLUSIONS The genetic variants of WNT3A gene may not be associated with the susceptibility to CS and various clinical phenotypes of CS in Chinese Han population.
Collapse
|
|
14 |
|
25
|
He G, Huang X, Dong Y, Chen K, He X, Pan M, Zeng W, Yu X, Xia J. Preliminary investigation on the mechanism of baicalein regulating the effects of Nischarin on invasion and apoptosis of human breast cancer cells MCF-7 through Wnt3α/β-catenin pathway. Int Immunopharmacol 2024; 143:113262. [PMID: 39353394 DOI: 10.1016/j.intimp.2024.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Breast cancer (BC) remains the leading cause of cancer-related mortality in women. Here, we investigate the anti-tumor effects of baicalein on human BC cells (MCF-7 cells) and explore if it regulates the Nischarin protein via Wnt3α/β-catenin signaling pathway. METHODS We employed Wnt3α and DKK-1 to activate and inhibit the Wnt/β-catenin signaling pathway, respectively. We used CCK-8 cell viability, flow cytometry apoptosis, wound-healing and transwell migration/invasion assays. Further, using western blotting and real-time quantitative PCR (q-PCR) we analyzed expression levels of Nischarin, MMP-9, Wnt/β-catenin pathway (β-catenin, Axin 1), and apoptotic pathway (Bax, Bcl-2) proteins and their mRNAs. RESULTS We found that baicalein inhibits MCF-7 cell viability and promotes apoptosis (evidenced by increased Bax and decreased Bcl-2 expressions) in a concentration-dependent manner. It also inhibits TPA-induced migration and invasion, and downregulates MMP-9 expression. Baicalein reverses the increase in cell viability caused by Wnt3α-induced Wnt/β-catenin pathway activation. Conversely, baicalein counteracts the increase in apoptosis caused by DKK-1 mediated inhibition of the Wnt/β-catenin pathway. Additionally, baicalein upregulates Nischarin expression via modulating the Wnt/β-catenin pathway as indicated by the antagonistic effects of Wnt3α and DKK-1 on this effect of baicalein. CONCLUSION Baicalein exerts anti-tumor effects on MCF-7 cells through the Wnt3α/β-catenin signaling pathway, and promotes apoptosis and inhibits migration and invasion. The upregulation of Nischarin by baicalein further suggests a potential therapeutic target for BC treatment.
Collapse
|
|
1 |
|