1
|
Bruns RF, Fergus JH, Badger EW, Bristol JA, Santay LA, Hartman JD, Hays SJ, Huang CC. Binding of the A1-selective adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine to rat brain membranes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1987; 335:59-63. [PMID: 3574492 DOI: 10.1007/bf00165037] [Citation(s) in RCA: 291] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
8-Cyclopentyl-1,3-dipropylxanthine (PD 116,948) is a very potent, very A1-selective adenosine antagonist, with a Ki of 0.46 nM in 3H-CHA binding to A1 receptors in rat whole brain membranes and 340 nM in 3H-NECA binding to A2 receptors in rat striatal membranes. Its 740-fold A1-selectivity is the highest reported for an adenosine antagonist. 3H-PD 116,948 (117 Ci/mmol) was prepared by reduction of the diallyl analog. 3H-PD 116,948 bound to a single site in rat whole brain membranes, with a Bmax of 46 pmol/g wet weight and Kd of 0.42 nM. Nonspecific binding was extremely low, amounting to about 3% of total binding under standard conditions and less than 1% when higher tissue concentrations were used. Affinities of compounds for inhibition of 3H-PD 116,948 binding were highly consistent with an A1 adenosine receptor. Antagonists were equally potent in 3H-PD 116,948 binding and in 3H-CHA binding, while agonists were consistently about 12-fold more potent in 3H-CHA binding. Hill coefficients were 1.0 for antagonists and about 0.65 for agonists. 3H-PD 116,948 should be a useful antagonist ligand for adenosine A1 receptors.
Collapse
|
|
38 |
291 |
2
|
Kim YC, Ji XD, Melman N, Linden J, Jacobson KA. Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A(2B) adenosine receptors. J Med Chem 2000; 43:1165-72. [PMID: 10737749 PMCID: PMC9364909 DOI: 10.1021/jm990421v] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
No highly selective antagonists of the A(2B) adenosine receptor (AR) have been reported; however such antagonists have therapeutic potential as antiasthmatic agents. Here we report the synthesis of potent and selective A(2B) receptor antagonists. The structure-activity relationships (SAR) of 8-phenyl-1, 3-di-(n-propyl)xanthine derivatives in binding to recombinant human A(2B) ARs in HEK-293 cells (HEK-A(2B)) and at other AR subtypes were explored. Various amide derivatives of 8-[4-[[carboxymethyl]oxy]phenyl]-1,3-di-(n-propyl)xanthine, 4a, were synthesized. A comparison of aryl, alkyl, and aralkyl amides demonstrated that simple anilides, particularly those substituted in the para-position with electron-withdrawing groups, such as nitro, cyano, and acetyl, bind selectively to human A(2B) receptors in the range of 1-3 nM. The unsubstituted anilide 12 had a K(i) value at A(2B) receptors of 1.48 nM but was only moderately selective versus human A(1)/A(2A) receptors and nonselective versus rat A(1) receptors. Highly potent and selective A(2B) antagonists were a p-aminoacetophenone derivative 20 (K(i) value 1.39 nM) and ap-cyanoanilide 27 (K(i) value 1.97 nM). Compound 27 was 400-, 245-, and 123-fold selective for human A(2B) receptors versus human A(1)/A(2A)/A(3) receptors, respectively, and 8.5- and 310-fold selective versus rat A(1)/A(2A) receptors, respectively. Substitution of the 1,3-dipropyl groups with 1,3-diethyl offered no disadvantage for selectivity, and high affinities at A(2B) receptors were maintained. Substitution of the p-carboxymethyloxy group of 4a and its amides with acrylic acid decreased affinity at A(2B) receptors while increasing affinity at A(1) receptors. 1, 3-Di(cyclohexylmethyl) groups greatly reduced affinity at ARs, although the p-carboxymethyloxy derivative 9 was moderately selective for A(2B) receptors. Several selective A(2B) antagonists inhibited NECA-stimulated calcium mobilization in HEK-A(2B) cells.
Collapse
|
research-article |
25 |
151 |
3
|
Hockemeyer J, Burbiel JC, Müller CE. Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson's disease. J Org Chem 2004; 69:3308-18. [PMID: 15132536 DOI: 10.1021/jo0358574] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The improved multigram-scale syntheses of the important 8-styrylxanthine A(2A) adenosine receptor antagonist MSX-2 (8), its water-soluble prodrug MXS-3 (9), and KW-6002 (16) are described. N-Alkylation reactions at different positions of uracil derivatives were optimized. Two different methods for xanthine formation from 6-amino-5-cinnamoylaminouracil precursors were investigated, (a) the elimination of water by alkaline catalysis and (b) hexamethyldisilazane as a condensing agent; the latter was found to be superior. The photosensitivity of 8-styrylxanthines was studied. The (E)-configurated stryrylxanthine MSX-2 (8) isomerized in diluted solution, and the resulting (Z)-isomer (10a) was isolated and characterized. Furthermore, we describe for the first time that solid 8-styrylxanthines can dimerize upon exposition to daylight or irradiation with UV light. The resulting cyclobutane derivatives with head-to-tail (syn) configuration exhibited a considerably lower A(2A) adenosine receptor affinity than their parent compounds. The dimerization product of MSX-2 was a moderately potent nonselective A(1) and A(2A) antagonist (K(i)(A(1)) = 273 nM, K(i) (A(2A)) = 175 nM) while the dimer of the related compound KW-6002 was inactive at A(1) and only weakly active at A(2A) adenosine receptors (K(i) = 1.57 microM). The light sensitivity of 8-styrylxanthine derivatives, not only in solution, but also in the solid state, has to be considered when using those compounds as pharmacological tools or drugs.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
120 |
4
|
Wysocki LM, Grimm JB, Tkachuk AN, Brown TA, Betzig E, Lavis LD. Facile and general synthesis of photoactivatable xanthene dyes. Angew Chem Int Ed Engl 2011; 50:11206-9. [PMID: 21953685 PMCID: PMC3588110 DOI: 10.1002/anie.201104571] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/26/2011] [Indexed: 11/11/2022]
Abstract
Despite the apparent simplicity of the xanthene fluorophores, the preparation of caged derivatives with free carboxy groups remains a synthetic challenge. A straightforward and flexible strategy for preparing rhodamine and fluorescein derivatives was developed using reduced, “leuco” intermediates.
Collapse
|
research-article |
14 |
106 |
5
|
Jacobson KA, Gallo-Rodriguez C, Melman N, Fischer B, Maillard M, van Bergen A, van Galen PJ, Karton Y. Structure-activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists. J Med Chem 1993; 36:1333-42. [PMID: 8496902 PMCID: PMC5975975 DOI: 10.1021/jm00062a005] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A series of substituted 8-styryl derivatives of 1,3,7-alkylxanthines was synthesized as potential A2-selective adenosine receptor antagonists, and the potency at rat brain A1- and A2-receptors was studied in radioligand binding experiments. At the xanthine 7-position, only small hydrophobic substituents were tolerated in receptor binding. 7-Methyl analogues were roughly 1 order of magnitude more selective for A2 versus A1 receptors than the corresponding 7-H analogues. 1,3-Dimethylxanthine derivatives tended to be more selective for A2-receptors than the corresponding 1,3-diallyl, diethyl, or dipropyl derivatives. Substitutions of the phenyl ring at the 3-(monosubstituted) and 3,5-(disubstituted) positions were favored. 1,3, 7-Trimethyl-8-(3-chlorostyryl)xanthine was a moderately potent (Ki vs [3H]CGS 21680 was 54 nM) and highly A2-selective (520-fold) adenosine antagonist. 1,3,7-Trimethyl-8-[(3-carboxy-1-oxopropyl)amino] styryl]xanthine was highly A2-selective (250-fold) and of enhanced water solubility (max 19 mM). 1,3-Dipropyl-7-methyl-8-(3,5-dimethoxystyryl) xanthine was a potent (Ki = 24 nM) and very A2-selective (110-fold) adenosine antagonist.
Collapse
|
research-article |
32 |
105 |
6
|
Daly JW, Padgett WL, Shamim MT. Analogues of caffeine and theophylline: effect of structural alterations on affinity at adenosine receptors. J Med Chem 1986; 29:1305-8. [PMID: 3806581 DOI: 10.1021/jm00157a035] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A variety of analogues of caffeine and theophylline in which the 1-,3-, and 7-methyl substituents have been replaced with n-propyl, allyl, propargyl, and isobutyl and, in a few cases, with chloroethyl, hydroxyethyl, or benzyl were assessed for potency and selectivity as antagonists at A1- and A2-adenosine receptors in brain tissue. Caffeine and theophylline are nonselective for these receptors. Nearly all of the 22 analogues of caffeine are more potent than caffeine itself at adenosine receptors. Replacement of the 1-methyl moiety with n-propyl, allyl, or propargyl substituent has little effect on potency at the A1 receptor while enhancing potency about 7- to 10-fold at the A2 receptor. 3,7-Di-methyl-1-propylxanthine is only slightly (1.4-fold) more potent than caffeine at the A1 receptor while being 10-fold more potent at the A2 receptor. 1,3-Di-n-propyl-7-methylxanthine is also selective for the A2 receptor, being 8-fold more potent than caffeine at the A1 receptor and 40-fold more potent at the A2 receptor. A number of other caffeine analogues including 3,7-dimethyl-1-n-propylxanthine, 7-allyl-1,3-dimethylxanthine, and 1,3-dimethyl-7-propargylxanthine are also somewhat selective for the A2 receptor. The most potent caffeine analogue was 1,3-di-n-propyl-7-propargylxanthine, which was about 100-fold more potent than caffeine at both A1 and A2 receptors. The 10 theophylline analogues were relatively nonselective except for the 1-ethyl analogue and the 1,3-diallyl analogue, which were selective for the A2 receptor, and the 1,3-di-n-propyl, 1,3-diisobutyl, and 1,3-dibenzyl analogues, which were somewhat selective for the A1 receptor. 1,3-Di-n-propylxanthine was 20-fold more potent than theophylline at the A1 receptor and 5-fold more potent at the A2 receptor.
Collapse
|
Comparative Study |
39 |
93 |
7
|
Sauer R, Maurinsh J, Reith U, Fülle F, Klotz KN, Müller CE. Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists. J Med Chem 2000; 43:440-8. [PMID: 10669571 DOI: 10.1021/jm9911480] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water-soluble prodrugs of potent, A(2A)-selective adenosine receptor (AR) antagonists were prepared. 8-(m-Bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX, 11) and the analogous 8-(m-methoxystyryl)xanthine derivative (MS-DMPX, 5b) were used as starting points. It was found that polar functional groups suitable for the attachment of a prodrug moiety were tolerated on the styryl ring and even better on the 3-substituent. 8-(m-Hydroxystyryl)-DMPX (7) and 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-1-propargylxanthine (5e, MSX-2) were the most potent and A(2A)-selective compounds and were selected for prodrug formation. For the preparation of 5e a new ring-closure method was applied. Treatment of 6-amino-1-(3-hydroxypropyl)-5-(m-methoxycinnamoylamino)-3-propa rgylur acil with hexamethyldisilazane at high temperature resulted in higher yields of the target xanthine than the standard ring-closure procedure using sodium hydroxide. Phosphate prodrugs were prepared by classical phosphorylation using phosphorus oxychloride and alternatively by using a phosphoramidite method. Phosphates of the aliphatic alcohol 5e could be obtained by both methods in similar yields. The phenolic compound 7, however, could be phosphorylated only by using the phosphoramidite method. The disodium salts of the phosphate prodrugs exhibited high water solubility (8-(m-methoxystyryl)-7-methyl-3-[3-O-phosphatylpropyl]-1- propargylxan thine disodium salt, 9b: 17 mM, 9 mg/mL). Prodrug 9b was found to be stable in aqueous solution (pH 7) but readily cleaved by phosphatases to liberate 5e (MSX-2). Compound 5e showed high affinity for rat A(2A) AR (K(i) = 8 nM), human recombinant A(2A) AR (K(i) = 5 nM), and human native A(2A) AR (K(i) = 15 nM) and was highly selective versus rat A(1) AR (110-fold), human recombinant A(2A) AR (500-fold), human A(2B) AR (>2000-fold), and human A(3) AR (>2000-fold).
Collapse
|
|
25 |
93 |
8
|
Baraldi PG, Tabrizi MA, Preti D, Bovero A, Romagnoli R, Fruttarolo F, Zaid NA, Moorman AR, Varani K, Gessi S, Merighi S, Borea PA. Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists. J Med Chem 2004; 47:1434-47. [PMID: 14998332 DOI: 10.1021/jm0309654] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report the synthesis of 8-heterocycle-substituted xanthines as potent and selective A(2B) adenosine receptor antagonists. The structure-activity relationships (SAR) of the xanthines synthesized in binding to recombinant human A(2B) adenosine receptors (ARs) in HEK-293 cells (HEK-A(2B)) and at other AR subtypes were explored. The synthesized compounds showed A(2B) adenosine receptor affinity in the nanomolar range and good levels of selectivity evaluated in radioligand binding assays at human (h) A(1), A(2A), A(2B), and A(3) ARs. We introduced several heterocycles, such as pyrazole, isoxazole, pyridine, and pyridazine, at the 8-position of the xanthine nucleus and we have also investigated different spacers (substituted acetamide, oxyacetamide, and urea moieties) on the heterocycle introduced. Various groups at the 3- and 4-positions of phenylacetamide moiety were studied. This study allowed us to identify the derivatives 2-(3,4-dimethoxyphenyl)-N-[5-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yl]acetamide (29b, MRE2028F20) [K(i)(hA(2B)) = 38 nM, K(i)(hA(1),hA(2A),hA(3)) >1000 nM], N-benzo[1,3]dioxol-5-yl-2-[5-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]acetamide (62b, MRE2029F20) [K(i)(hA(2B)) = 5.5 nM, K(i)(hA(1),hA(2A),hA(3)) > 1000 nM], and N-(3,4-dimethoxyphenyl)-2-[5-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]acetamide (72b, MRE2030F20) [K(i)(hA(2B) = 12 nM, K(i)(hA(1),hA(2A), hA(3)) > 1000 nM], which showed high affinity at the A(2B) receptor subtype and very good selectivity vs the other ARs. Substitution of the acetamide with an urea moiety afforded bioisosteric xanthines with good affinity and selectivity comparable to the acetamide derivatives. Substitution at the para-position of a 4-benzyloxy group of the phenylacetamido chain enhanced affinity at the A(2B) receptor [compound 30b (K(i)(hA(2B)) = 13 nM) vs compound 21b (K(i)(hA(2B) = 56 nM)] but did not favor selectivity. The derivatives with higher affinity at human A(2B) AR proved to be antagonists, in the cyclic AMP assay, capable of inhibiting the stimulatory effect of NECA (100 nM) with IC(50) values in the nanomolar range, a trend similar to that observed in the binding assay (62b, IC(50) = 38 nM; 72b, IC(50) = 46 nM). In conclusion, the 8-pyrazolo-1,3-dipropyl-1H-purine-2,6-dione derivatives described herein represent a new family of selective antagonists for the adenosine A(2B) receptor.
Collapse
|
Journal Article |
21 |
84 |
9
|
Yan L, Müller CE. Preparation, properties, reactions, and adenosine receptor affinities of sulfophenylxanthine nitrophenyl esters: toward the development of sulfonic acid prodrugs with peroral bioavailability. J Med Chem 2004; 47:1031-43. [PMID: 14761205 DOI: 10.1021/jm0310030] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many currently known antagonists for P2 purinergic receptors are anionic molecules bearing one or several phenylsulfonate groups. Among the P1 (adenosine) receptor antagonists, the xanthine phenylsulfonates are a potent class of compounds. Due to their high acidity, phenylsulfonates are negatively charged at physiologic pH values and do not easily penetrate cell membranes. The present study was aimed at developing lipophilic, perorally bioavailable prodrugs of sulfonates by converting them into chemically stable nitrophenyl esters. Initial stability tests at different pH values using nitrophenyl tosylates as model compounds showed that m-nitrophenyl esters were stable over a wide pH range, while the ortho and para isomers were less stable under strongly acidic or basic conditions. A series of m- and p-nitrophenyl esters of p-sulfophenylxanthine derivatives were synthesized as model compounds. The target xanthine derivatives were obtained in high yields by condensation of the appropriate 5,6-diaminouracils with 4-(nitrophenoxysulfonyl)benzoic acids in the presence of a carbodiimide, followed by ring closure with polyphosphoric acid trimethylsilyl ester. The chemical and enzymatic stability of the m-nitrophenyl esters was investigated in vitro by means of capillary electrophoresis. High stability in aqueous solution, in artificial gastric acid, and in serum was observed. However, compound 5d, used as a prototypic xanthine m-nitrophenylsulfonate, was hydrolyzed by rat liver homogenate indicating an enzymatic pathway of hydrolysis. Thus, nitrophenyl esters of sulfonic acids have a potential as peroral prodrugs of drugs bearing a sulfonate group. The nitrophenyl esters of sulfophenylxanthines were additionally investigated for their adenosine receptor affinities. They showed high affinity at A(1), A(2A), and A(2B), but not at A(3) ARs. One of the most potent compounds was 1-propyl-8-[4-[[p-nitrophenoxy]sulfonyl]phenyl]xanthine (9d), a mixed A(1)/A(2B) antagonist (K(i)A(1) 3.6 nM, K(i)A(2B) 5.4 nM) selective versus the other subtypes. As a further result of this study, the m-nitrophenoxy group was found to be a suitable protecting group for sulfonates in organic synthesis due to its high lipophilicity and stability; it can be split off under strongly basic conditions. This new protection strategy allowed for the upscaling of the synthesis of 1-propyl-8-p-sulfophenylxanthine (PSB-1115), a selective A(2B) antagonist.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
84 |
10
|
Petzer JP, Steyn S, Castagnoli KP, Chen JF, Schwarzschild MA, Van der Schyf CJ, Castagnoli N. Inhibition of monoamine oxidase B by selective adenosine A2A receptor antagonists. Bioorg Med Chem 2003; 11:1299-310. [PMID: 12628657 DOI: 10.1016/s0968-0896(02)00648-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adenosine receptor antagonists that are selective for the A(2A) receptor subtype (A(2A) antagonists) are under investigation as possible therapeutic agents for the symptomatic treatment of the motor deficits associated with Parkinson's disease (PD). Results of recent studies in the MPTP mouse model of PD suggest that A(2A) antagonists may possess neuroprotective properties. Since monoamine oxidase B (MAO-B) inhibitors also enhance motor function and reduce MPTP neurotoxicity, we have examined the MAO-B inhibiting properties of several A(2A) antagonists and structurally related compounds in an effort to determine if inhibition of MAO-B may contribute to the observed neuroprotection. The results of these studies have established that all of the (E)-8-styrylxanthinyl derived A(2A) antagonists examined display significant MAO-B inhibitory properties in vitro with K(i) values in the low micro M to nM range. Included in this series is (E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methylxanthine (KW-6002), a potent A(2A) antagonist and neuroprotective agent that is in clinical trials. The results of these studies suggest that MAO-B inhibition may contribute to the neuroprotective potential of A(2A) receptor antagonists such as KW-6002 and open the possibility of designing dual targeting drugs that may have enhanced therapeutic potential in the treatment of PD.
Collapse
|
|
22 |
78 |
11
|
Andersen OA, Dixon MJ, Eggleston IM, van Aalten DMF. Natural product family 18 chitinase inhibitors. Nat Prod Rep 2005; 22:563-79. [PMID: 16193156 DOI: 10.1039/b416660b] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
Review |
20 |
72 |
12
|
Müller CE, Shi D, Manning M, Daly JW. Synthesis of paraxanthine analogs (1,7-disubstituted xanthines) and other xanthines unsubstituted at the 3-position: structure-activity relationships at adenosine receptors. J Med Chem 1993; 36:3341-9. [PMID: 8230124 DOI: 10.1021/jm00074a015] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Synthetic procedures for the preparation of various 3-unsubstituted xanthines, including paraxanthine analogs (1,7-disubstituted xanthines) and 1,8-disubstituted xanthines, were developed. Silylation of 1-substituted xanthines followed by alkylation at the 7-position provides a facile route to paraxanthine analogs. Regioselective alkylation of tris(trimethylsilyl)-6-aminouracil provides 3-substituted 6-aminouracils, which are converted to 1,8-disubstituted xanthines by standard procedures. The ring closure of 3-substituted 5-cyclopentanecarboxamido- and 5-(benzoylamino)-6-aminouracils requires drastic reaction conditions. Affinity for brain A1 and A2 adenosine receptors was determined in binding assays for these and other xanthines with substituents in 1-, 3-, 7-, 8-, and 9-positions. Substitution at the 1-position was necessary for high affinity at adenosine receptors. 1,3-Disubstituted xanthines generally had higher affinity than 1,7-disubstituted xanthines. 1,8-Disubstituted xanthines had high affinity for adenosine receptors; some were highly selective for A1 receptors.
Collapse
|
Comparative Study |
32 |
66 |
13
|
Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schüller M, Palm B, Coenen HH. Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[(18)F]fluoropropyl)-1-propylxanthine ([(18)F]CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem 2002; 45:5150-6. [PMID: 12408725 DOI: 10.1021/jm020905i] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This report describes the precursor synthesis and the no-carrier-added (nca) radiosynthesis of the new A(1) adenosine receptor (A(1)AR) antagonist [(18)F]8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine (CPFPX), 3, with fluorine-18 (half-life = 109.6 min). Nucleophilic radiofluorination of the precursor tosylate 8-cyclopentyl-3-(3-tosyloxypropyl)-7-pivaloyloxymethyl-1-propylxanthine, 2, with nca [(18)F]KF under aminopolyether-mediated conditions (Kryptofix 2.2.2/K(2)CO(3)) followed by deprotection was straightforward and, after formulation, gave the radioligand ready for injection with a radiochemical yield of 45 +/- 7%, a radiochemical purity of >98% and a specific radioactivity of >270 GBq/micromol (>7.2 Ci/micromol). Preparation time averaged 55 min. The synthesis proved reliable for high batch yields ( approximately 7.5 GBq) in routine production (n = 120 runs). The radiotracer was pharmacologically evaluated in vitro and in vivo and its pharmacokinetics in rodents determined in detail. After iv injection a high accumulation of radioactivity occurred in several regions of mouse brain including thalamus, striatum, cortex, and cerebellum. Antagonism by the specific A(1)AR antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and N(6)-cyclopentyl-9-methyladenine (N-0840), but not with the A(2)AR antagonist 3,7-dimethyl-1-propargylxanthine (DMPX), indicated specific and reversible binding of the radioligand to A(1)AR in cortical and subcortical regions of interest. In mouse blood at least two polar metabolites formed rapidly (50% at 5 min after tracer application). However, chromatographic analyses of brain homogenate extracts taken 60 min pi showed that >98% of radioactivity was unchanged radioligand. Chromatographic isolation and reinjection of peripherally formed radioactive metabolites revealed no accumulation of radioactivity in mouse brain, probably due to the polarity of the metabolites. These preliminary results suggest that nca [(18)F]CPFPX is a useful radioligand for the noninvasive imaging of the brain A(1)AR.
Collapse
|
|
23 |
62 |
14
|
Suzuki F, Shimada J, Shiozaki S, Ichikawa S, Ishii A, Nakamura J, Nonaka H, Kobayashi H, Fuse E. Adenosine A1 antagonists. 3. Structure-activity relationships on amelioration against scopolamine- or N6-((R)-phenylisopropyl)adenosine-induced cognitive disturbance. J Med Chem 1993; 36:2508-18. [PMID: 8355252 DOI: 10.1021/jm00069a009] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of a variety of adenosine A1 and A2 antagonists on N6-((R)-phenylisopropyl)adenosine (R-PIA)- and scopolamine-induced amnesias were investigated in rodents in order to clarify the role of adenosine receptors in learning and memory. Some of the selective adenosine A1 antagonists exhibited antiamnesic activities at several doses where they did not induce an increase of spontaneous locomotion. These results suggest that the blockade of A1 receptors is more important than that of A2 receptors in learning and memory. Detailed studies of structure-activity relationships of adenosine A1 antagonists in two amnesia models demonstrated that there were three types of adenosine A1 antagonists: (A) Compounds 3-5 (8-substituted 1,3-dipropylxanthines) ameliorated the shortened latency in both models. (B) Compounds 7-11 (8-substituted 1,3-dialkylxanthines) and 19-21 (imidazo[2,1-i]purin-5(4H)-one derivatives) ameliorated the shortened latency in the (R)-PIA-induced amnesia model but not in the scopolamine-induced amnesia model. (C) Compounds 14-16 ameliorated the shortened latency in the scopolamine model but not in the (R)-PIA model. Aminophenethyl-substituted compounds C did not exhibit adenosine A1 antagonism in vivo presumably due to rapid metabolism. The dramatic change in the activities of A and B could not be explained by their simple pharmacokinetic differences because both types of compounds showed clear blockade of central adenosine A1 receptors in the (R)-PIA model. 8-(3-Dicyclopropylmethyl)-1,3-dipropylxanthine (5) (KF15372) was chosen for further studies and is currently under preclinical development as a cognition enhancer.
Collapse
|
|
32 |
58 |
15
|
Liu Y, Ma L, Chen WH, Wang B, Xu ZL. Synthesis of xanthone derivatives with extended π-systems as α-glucosidase inhibitors: Insight into the probable binding mode. Bioorg Med Chem 2007; 15:2810-4. [PMID: 17331734 DOI: 10.1016/j.bmc.2007.02.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/22/2022]
Abstract
A series of novel xanthone derivatives with extended pi-systems, that is, benzoxanthones 2-4, and their structurally perturbed analogs 5-9 have been designed and synthesized as alpha-glucosidase inhibitors. Their inhibitory activities toward yeast's alpha-glucosidase were evaluated with the aim to enrich the structure-activity relationship. The results indicated that benzoxanthones 2-4 were capable of inhibiting in vitro yeast's alpha-glucosidase 17- to 28-fold more strongly than xanthone derivative 1 that has smaller conjugated pi-system. Benzoxanthone 8, bearing angularly fused aromatic rings, and reduced benzoxanthone 5 showed decreased activities, strongly suggesting that linearly conjugated pi-systems play a crucial role in the inhibition process. O-Methylation of 3-OH of benzoxanthone 2 and nitration at C4 position led to a large decrease in the activity. This indicates that 3-OH of benzoxanthone was crucial to the inhibitory activity, primarily as an H-bonding donor. The present results suggest that pi-pi stacking effect and H-bonding make substantial contributions to elicit the inhibitory activities of this general class of inhibitors.
Collapse
|
|
18 |
57 |
16
|
Grahner B, Winiwarter S, Lanzner W, Müller CE. Synthesis and structure-activity relationships of deazaxanthines: analogs of potent A1- and A2-adenosine receptor antagonists. J Med Chem 1994; 37:1526-34. [PMID: 8182711 DOI: 10.1021/jm00036a019] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A set of 22 9-deazaxanthines (pyrrolo[3,2-d]pyrimidine-2,4-diones) and three 7-deazaxanthines (pyrrolo[2,3-d]pyrimidine-2,4-diones) with various substituents in the 1-, 3-, 7- or 9-, and 8-positions was synthesized and investigated in A1 and A2a adenosine receptor binding assays at rat brain cortical membranes and rat brain striatal membranes, respectively. 9-Deazaxanthines showed structure-activity relationships that were similar to those of xanthines. They were about equipotent to the corresponding xanthines at A2a adenosine receptors. 9-Deazaxanthines were generally at least 2-3-fold more potent than xanthines at A1 receptors and therefore exhibited higher A1 selectivities compared to the xanthines. 1,3-Dimethyl-8-(2-naphthyl)-9- deazaxanthine (19e) showed high affinity (Ki = 26 nM) and selectivity for A1 adenosine receptors. A hydroxyl function at N7 of 9-deazaxanthines was unfavorable for A1 and A2a receptor binding. 7-Deazaxanthines were considerably less potent compared to xanthines and to 9-deazaxanthines at both receptor subtypes.
Collapse
|
|
31 |
55 |
17
|
Shimada J, Suzuki F, Nonaka H, Ishii A. 8-Polycycloalkyl-1,3-dipropylxanthines as potent and selective antagonists for A1-adenosine receptors. J Med Chem 1992; 35:924-30. [PMID: 1548682 DOI: 10.1021/jm00083a018] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
With the aim of characterizing the hydrophobic interactions between xanthines and the A1 receptor site, 1,3-dipropyl-8-substituted xanthines were synthesized. Introduction of a quaternary carbon and the conformationally restricted cyclopentyl moiety into the 8-position of xanthines enhanced the adenosine A1 antagonism. 1,3-Dipropyl-8-(3-noradamantyl)xanthine was identified to be a selective and the most potent A1 receptor antagonist reported to date. Under our structure-activity relationship, the 8-substituent of xanthine antagonists and the N6-substituent of adenosine agonists appears to bind to the same region of the A1 receptor.
Collapse
|
|
33 |
55 |
18
|
Kim SA, Marshall MA, Melman N, Kim HS, Müller CE, Linden J, Jacobson KA. Structure-activity relationships at human and rat A2B adenosine receptors of xanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions. J Med Chem 2002; 45:2131-8. [PMID: 12014951 PMCID: PMC6927247 DOI: 10.1021/jm0104318] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the search for improved selective antagonist ligands of the A2B adenosine receptor, which have the potential as antiasthmatic or antidiabetic drugs, we have synthesized and screened a variety of alkylxanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions. Competition for 125I-ABOPX (125I-3-(4-amino-3-iodobenzyl)-8-(phenyl-4-oxyacetate)-1-propylxanthine) binding in membranes of stably transfected HEK-293 cells revealed uniformly higher affinity (<10-fold) of these xanthines for human than for rat A2B adenosine receptors. Binding to rat brain membranes expressing A1 and A2A adenosine receptors revealed greater A2B selectivity over A2A than A1 receptors. Substitution at the 1-position with 2-phenylethyl (or alkyl/olefinic groups) and at N-3 with hydrogen or methyl favored A2B selectivity. Relative to enprofylline 2b, pentoxifylline 35 was equipotent and 1-propylxanthine 3 was >13-fold more potent at human A2B receptors. Most N-7 substituents did not enhance affinity over hydrogen, except for 7-(2-chloroethyl), which enhanced the affinity of theophylline by 6.5-fold to 800 nM. The A2B receptor affinity-enhancing effects of 7-(2-chloroethyl) vs 7-methyl were comparable to the known enhancement produced by an 8-aryl substitution. Among 8-phenyl analogues, a larger alkyl group at the 1-position than at the 3-position favored affinity at the human A2B receptor, as indicated by 1-allyl-3-methyl-8-phenylxanthine, with a K(i) value of 37 nM. Substitution on the 8-phenyl ring indicated that an electron-rich ring was preferred for A2B receptor binding. In conclusion, new leads for the design of xanthines substituted in the 1-, 3-, 7-, and 8-positions as A2B receptor-selective antagonists have been identified.
Collapse
|
research-article |
23 |
53 |
19
|
|
|
37 |
53 |
20
|
Marzilli LG, Epps LA, Sorrell T, Kistenmacher TJ. Reaction of coordinated purines. A facile, high yield synthetic route to N(7)-alkylated xanthines and hypoxanthines. The structure of [bis(dimethylglyoximato)(xanthinato)-(tri-n-butylphosphine)cobalt(III)] and the trans influence in cobalt(III) chemistry. J Am Chem Soc 1975; 97:3351-8. [PMID: 1141574 DOI: 10.1021/ja00845a013] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
50 |
52 |
21
|
Friebolin W, Schilling G, Zöller M, Amtmann E. Antitumoral Activity of Non-Platinum Xanthate Complexes. J Med Chem 2005; 48:7925-31. [PMID: 16335917 DOI: 10.1021/jm040899l] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To establish structure-activity relationships, derivatives of bis(O-alkyldithiocarbonato)platinum(II) complexes were analyzed. Eighteen bis(O-alkyldithiocarbonato) metal complexes were synthesized, and their cytotoxic activity on two human cancer cell lines was compared with the corresponding platinum bis(O-alkyldithiocarbonato) complexes and cisplatin. Complexes were synthesized with palladium, gold, nickel, copper, rhodium, and bismuth. Palladium and bismuth complexes were found to display significant cytotoxic activity. Palladium complexes were most active with up to 10-fold lower IC50 values as compared with the corresponding platinum complexes. The other complexes were only poorly active. Palladium, bismuth, and nickel complexes were more active at pH 6.8 than at pH 7.4. This difference in activity was most pronounced with palladium complexes. A pH of 6.8 and lower has been frequently found in solid tumors. Drugs with such pH dependent activity are supposed to have an improved therapeutic index as compared to drugs that are active irrespective of pH.
Collapse
|
|
20 |
52 |
22
|
Kalla RV, Elzein E, Perry T, Li X, Palle V, Varkhedkar V, Gimbel A, Maa T, Zeng D, Zablocki J. Novel 1,3-disubstituted 8-(1-benzyl-1H-pyrazol-4-yl) xanthines: high affinity and selective A2B adenosine receptor antagonists. J Med Chem 2006; 49:3682-92. [PMID: 16759111 DOI: 10.1021/jm051268+] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adenosine has been suggested to induce bronchial hyperresponsiveness in asthmatics, which is believed to be an A(2B) adenosine receptor (AdoR) mediated pathway. We hypothesize that a selective, high-affinity A(2B) AdoR antagonist may provide therapeutic benefit in the treatment of asthma. In an attempt to identify a high-affinity, selective antagonist for the A(2B) AdoR, we synthesized 8-(C-4-pyrazolyl) xanthines. Compound 22, 8-(1H-pyrazol-4-yl)-1,3-dipropyl xanthine, is a N-1 unsubstituted pyrazole derivative that has favorable binding affinity (K(i) = 9 nM) for the A(2B) AdoR, but it is only 2-fold selective versus the A(1) AdoR. Introduction of a benzyl group at the N-1-pyrazole position of 22 resulted in 19, which had moderate selectivity. The initial focus of the SAR study was on the preparation of substituted benzyl derivatives of 19 because the corresponding phenyl, phenethyl, and phenpropyl derivatives showed a decrease in A(2B) AdoR affinity and selectivity relative to 19. The preferred substitution on the phenyl ring of 19 contains an electron-withdrawing group, specifically F or CF(3) at the m-position, as in 33 and 36 respectively, increases the selectivity while retaining the affinity for the A(2B) AdoR. Exploring disubstitutions on the phenyl ring of derivatives 33 and36 led to the 2-chloro-5-trifluoromethylphenyl derivative 50, which retained the A(2B) AdoR affinity but enhanced the selectivity relative to 36. After optimization of the substitution on the 8-pyrazole xanthine, 1,3-disubstitution of the xanthine core was explored with methyl, ethyl, butyl, and isobutyl groups. In comparison to the corresponding dipropyl analogues, the smaller 1,3-dialkyl groups (methyl and ethyl) increased the A(2B) AdoR binding selectivity of the xanthine derivatives while retaining the affinity. However, the larger 1,3-dialkyl groups (isobutyl and butyl) resulted in a decrease in both A(2B) AdoR affinity and selectivity. This final SAR optimization led to the discovery of 1,3-dimethyl derivative 60, 8-(1-(3-(trifluoromethyl) benzyl)-1H-pyrazol-4-yl)-1,3-dimethyl xanthine, a high-affinity (K(i) = 1 nM) A(2B) AdoR antagonist with high selectivity (990-, 690-, and 1,000-) for the human A(1), A(2A,) and A(3) AdoRs.
Collapse
|
Journal Article |
19 |
51 |
23
|
Zablocki J, Kalla R, Perry T, Palle V, Varkhedkar V, Xiao D, Piscopio A, Maa T, Gimbel A, Hao J, Chu N, Leung K, Zeng D. The discovery of a selective, high affinity A(2B) adenosine receptor antagonist for the potential treatment of asthma. Bioorg Med Chem Lett 2005; 15:609-12. [PMID: 15664822 DOI: 10.1016/j.bmcl.2004.11.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 11/14/2004] [Accepted: 11/17/2004] [Indexed: 11/16/2022]
Abstract
Adenosine has been suggested to play a role in asthma, possibly via activation of A(2B) adenosine receptors on mast cells and other pulmonary cells. We describe our initial efforts to discover a xanthine based selective A(2B) AdoR antagonist that resulted in the discovery of CVT-5440, a high affinity A(2B) AdoR antagonist with good selectivity (A(2B) AdoR K(i)=50 nM, selectivity A(1)>200: A(2A)>200: A(3)>167).
Collapse
|
Journal Article |
20 |
51 |
24
|
Pfister JR, Belardinelli L, Lee G, Lum RT, Milner P, Stanley WC, Linden J, Baker SP, Schreiner G. Synthesis and biological evaluation of the enantiomers of the potent and selective A1-adenosine antagonist 1,3-dipropyl-8-[2-(5,6-epoxynorbonyl)]-xanthine. J Med Chem 1997; 40:1773-8. [PMID: 9191953 DOI: 10.1021/jm970013w] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The individual enantiomers 8 and 12 of the potent and highly selective racemic A1-adenosine antagonist 1,3-dipropyl-8-[2-(5,6-epoxynorbornyl)]xanthine (ENX, 4) were synthesized utilizing asymmetric Diels-Alder cycloadditions for the construction of the norbornane moieties. The absolute configuration of 12 was determined by X-ray crystallography of the 4-bromobenzoate 14, which was derived from the bridged secondary alcohol 13. The latter was obtained from 12 by an acid-catalyzed intramolecular rearrangement. The binding affinities of the enantiomers 8 and 12 and the racemate 4 at guinea pig, rat, and cloned human A1- and A2a-adenosine receptor subtypes were determined. The S-enantiomer 12 (CVT-124) appears to be one of the more potent and clearly the most A1-selective antagonist reported to date, with K1 values of 0.67 and 0.45 nM, respectively, at the rat and cloned human A1-receptors and with 1800-fold (rat) and 2400-fold (human) subtype selectivity. Both enantiomers, administered intravenously to saline-loaded rats, induced diuresis via antagonism of renal A1-adenosine receptors.
Collapse
|
|
28 |
50 |
25
|
Kocsis L, Brummond KM. Intramolecular dehydro-Diels-Alder reaction affords selective entry to arylnaphthalene or aryldihydronaphthalene lignans. Org Lett 2014; 16:4158-61. [PMID: 25061845 PMCID: PMC4136723 DOI: 10.1021/ol501853y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Indexed: 01/20/2023]
Abstract
Intramolecular dehydro-Diels-Alder (DDA) reactions are performed affording arylnaphthalene or aryldihydronaphthalene lactones selectively as determined by choice of reaction solvent. This constitutes the first report of an entirely selective formation of arylnaphthalene lactones utilizing DDA reactions of styrene-ynes. The synthetic utility of the DDA reaction is demonstrated by the synthesis of taiwanin C, retrohelioxanthin, justicidin B, isojusticidin B, and their dihydronaphthalene derivatives. Computational methods for chemical shift assignment are presented that allow for regioisomeric lignans to be distinguished.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
49 |