1
|
Fornace AJ, Alamo I, Hollander MC. DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A 1988; 85:8800-4. [PMID: 3194391 PMCID: PMC282594 DOI: 10.1073/pnas.85.23.8800] [Citation(s) in RCA: 470] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hybridization subtraction at low ratios of RNA to cDNA was used to enrich for the cDNA of transcripts increased in Chinese hamster cells after UV irradiation. Forty-nine different cDNA clones were isolated. Most coded for nonabundant transcripts rapidly induced 2- to 10-fold after UV irradiation. Only 2 of the 20 cDNA clones sequenced matched known sequences (metallothionein I and II). The predicted amino acid sequence of one cDNA had two localized areas of homology with the rat helix-destabilizing protein. These areas of homology were at the two DNA-binding sites of this nucleic acid single-strand-binding protein. The induced transcripts were separated into two general classes. Class I transcripts were induced by UV radiation and not by the alkylating agent methyl methanesulfonate. Class II transcripts were induced by UV radiation and by methyl methanesulfonate. Many class II transcripts were induced also by H2O2 and various alkylating agents but not by heat shock, phorbol 12-tetradecanoate 13-acetate, or DNA-damaging agents which do not produce high levels of base damage. Since many of the cDNA clones coded for transcripts which were induced rapidly and only by certain types of DNA-damaging agents, their induction is likely a specific response to such damage rather than a general response to cell injury.
Collapse
|
research-article |
37 |
470 |
2
|
Raderschall E, Golub EI, Haaf T. Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc Natl Acad Sci U S A 1999; 96:1921-6. [PMID: 10051570 PMCID: PMC26712 DOI: 10.1073/pnas.96.5.1921] [Citation(s) in RCA: 276] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1998] [Indexed: 11/18/2022] Open
Abstract
A sensitive and rapid in situ method was developed to visualize sites of single-stranded (ss) DNA in cultured cells and in experimental test animals. Anti-bromodeoxyuridine antibody recognizes the halogenated base analog incorporated into chromosomal DNA only when substituted DNA is in the single strand form. After treatment of cells with DNA-damaging agents or gamma irradiation, ssDNA molecules form nuclear foci in a dose-dependent manner within 60 min. The mammalian recombination protein Rad51 and the replication protein A then accumulate at sites of ssDNA and form foci, suggesting that these are sites of recombinational DNA repair.
Collapse
|
research-article |
26 |
276 |
3
|
Brooks PJ, Wise DS, Berry DA, Kosmoski JV, Smerdon MJ, Somers RL, Mackie H, Spoonde AY, Ackerman EJ, Coleman K, Tarone RE, Robbins JH. The oxidative DNA lesion 8,5'-(S)-cyclo-2'-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J Biol Chem 2000; 275:22355-62. [PMID: 10801836 DOI: 10.1074/jbc.m002259200] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Xeroderma pigmentosum (XP) patients with inherited defects in nucleotide excision repair (NER) are unable to excise from their DNA bulky photoproducts induced by UV radiation and therefore develop accelerated actinic damage, including cancer, on sun-exposed tissue. Some XP patients also develop a characteristic neurodegeneration believed to result from their inability to repair neuronal DNA damaged by endogenous metabolites since the harmful UV radiation in sunlight does not reach neurons. Free radicals, which are abundant in neurons, induce DNA lesions that, if unrepaired, might cause the XP neurodegeneration. Searching for such a lesion, we developed a synthesis for 8,5'-(S)-cyclo-2'-deoxyadenosine (cyclo-dA), a free radical-induced bulky lesion, and incorporated it into DNA to test its repair in mammalian cell extracts and living cells. Using extracts of normal and mutant Chinese hamster ovary (CHO) cells to test for NER and adult rat brain extracts to test for base excision repair, we found that cyclo-dA is repaired by NER and not by base excision repair. We measured host cell reactivation, which reflects a cell's capacity for NER, by transfecting CHO and XP cells with DNA constructs containing a single cyclo-dA or a cyclobutane thymine dimer at a specific site on the transcribed strand of a luciferase reporter gene. We found that, like the cyclobutane thymine dimer, cyclo-dA is a strong block to gene expression in CHO and human cells. Cyclo-dA was repaired extremely poorly in NER-deficient CHO cells and in cells from patients in XP complementation group A with neurodegeneration. Based on these findings, we propose that cyclo-dA is a candidate for an endogenous DNA lesion that might contribute to neurodegeneration in XP.
Collapse
|
|
25 |
222 |
4
|
Fujiwara Y, Tatsumi M. Cross-link repair in human cells and its possible defect in Fanconi's anemia cells. J Mol Biol 1977; 113:635-49. [PMID: 894713 DOI: 10.1016/0022-2836(77)90227-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
48 |
209 |
5
|
Paterson MC, Lohman PH, Sluyter ML. Use of UV endonuclease from Micrococcus luteus to monitor the progress of DNA repair in UV-irradiated human cells. Mutat Res 1973; 19:245-56. [PMID: 4748980 DOI: 10.1016/0027-5107(73)90083-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
|
52 |
160 |
6
|
Kannouche P, Fernández de Henestrosa AR, Coull B, Vidal AE, Gray C, Zicha D, Woodgate R, Lehmann AR. Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. EMBO J 2003; 22:1223-33. [PMID: 12606586 PMCID: PMC150329 DOI: 10.1093/emboj/cdf618] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Y-family DNA polymerases can replicate past a variety of damaged bases in vitro but, with the exception of DNA polymerase eta (poleta), which is defective in xeroderma pigmentosum variants, there is little information on the functions of these polymerases in vivo. Here, we show that DNA polymerase iota (poliota), like poleta, associates with the replication machinery and accumulates at stalled replication forks following DNA-damaging treatment. We show that poleta and poliota foci form with identical kinetics and spatial distributions, suggesting that localization of these two polymerases is tightly co-ordinated within the nucleus. Furthermore, localization of poliota in replication foci is largely dependent on the presence of poleta. Using several different approaches, we demonstrate that poleta and poliota interact with each other physically and that the C-terminal 224 amino acids of poliota are sufficient for both the interaction with poleta and accumulation in replication foci. Our results provide strong evidence that poleta targets poliota to the replication machinery, where it may play a general role in maintaining genome integrity as well as participating in translesion DNA synthesis.
Collapse
|
research-article |
22 |
111 |
7
|
Asahina H, Kuraoka I, Shirakawa M, Morita EH, Miura N, Miyamoto I, Ohtsuka E, Okada Y, Tanaka K. The XPA protein is a zinc metalloprotein with an ability to recognize various kinds of DNA damage. Mutat Res 1994; 315:229-37. [PMID: 7526200 DOI: 10.1016/0921-8777(94)90034-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The XPA (xeroderma pigmentosum group A) gene encodes a protein of 273 amino acids with a zinc finger motif. The human XPA cDNA was placed in an Escherichia coli expression vector for the synthesis of the recombinant XPA protein. The molecular weight of the wild-type protein was about 40 kDa in SDS-PAGE. Microinjection of the wild-type protein specifically restored the defect of UV-induced unscheduled DNA synthesis in XP-A cells. Thus, the bacterially expressed XPA protein retains biochemical properties identical to those of natural sources. The wild-type protein binds preferentially to UV-, cis-diamminedichloroplatinum(II) (cisplatin)- or osmium tetroxide (OsO4)-damaged DNA as assayed by retention on nitrocellulose filters. In addition, the data from atomic absorption and UV-CD spectra revealed that the wild-type protein is a zinc metalloprotein with secondary structure. Furthermore, the mutant protein, of which the cysteine-103 residue in the zinc finger motif was replaced with serine, has a vastly different protein conformation resulting in a loss of XP-A correcting and DNA-binding activities. These findings indicate that the XPA protein is a zinc-binding protein with affinity for various DNA damages, and a cysteine residue in the C4-type zinc finger motif is indispensable for normal protein conformation.
Collapse
|
|
31 |
110 |
8
|
Ikegami T, Kuraoka I, Saijo M, Kodo N, Kyogoku Y, Morikawa K, Tanaka K, Shirakawa M. Solution structure of the DNA- and RPA-binding domain of the human repair factor XPA. NATURE STRUCTURAL BIOLOGY 1998; 5:701-6. [PMID: 9699634 DOI: 10.1038/1400] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The solution structure of the central domain of the human nucleotide excision repair protein XPA, which binds to damaged DNA and replication protein A (RPA), was determined by nuclear magnetic resonance (NMR) spectroscopy. The central domain consists of a zinc-containing subdomain and a C-terminal subdomain. The zinc-containing subdomain has a compact globular structure and is distinct from the zinc-fingers found in transcription factors. The C-terminal subdomain folds into a novel alpha/beta structure with a positively charged superficial cleft. From the NMR spectra of the complexes, DNA and RPA binding surfaces are suggested.
Collapse
|
|
27 |
106 |
9
|
Stich HF, San RH, Kawazoe Y. Increased sensitivity of xeroderma pigmentosum cells to some chemical carcinogens and mutagens. Mutat Res 1973; 17:127-37. [PMID: 4682598 DOI: 10.1016/0027-5107(73)90261-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
|
52 |
91 |
10
|
Hansson J, Wood RD. Repair synthesis by human cell extracts in DNA damaged by cis- and trans-diamminedichloroplatinum(II). Nucleic Acids Res 1989; 17:8073-91. [PMID: 2554251 PMCID: PMC334948 DOI: 10.1093/nar/17.20.8073] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA damage was induced in closed circular plasmid DNA by treatment with cis- or trans-diamminedichloroplatinum(II). These plasmids were used as substrates in reactions to give quantitative measurements of DNA repair synthesis mediated by cell free extracts from human lymphoid cell lines. Adducts induced by both drugs stimulated repair synthesis in a dose dependent manner by an ATP-requiring process. Measurements by an isopycnic gradient sedimentation method gave an upper limit for the average patch sizes in this in vitro system of around 140 nucleotides. It was estimated that up to 3% of the drug adducts induce the synthesis of a repair patch. The repair synthesis is due to repair of a small fraction of frequent drug adducts, rather than extensive repair of a rare subclass of lesions. Nonspecific DNA synthesis in undamaged plasmids, caused by exonucleolytic degradation and resynthesis, was reduced by repeated purification of intact circular forms. An extract made from cells belonging to xeroderma pigmentosum complementation group A was deficient in repair synthesis in response to the presence of cis- or trans-diamminedichloroplatinum(II) adducts in DNA.
Collapse
|
research-article |
36 |
89 |
11
|
Szymkowski DE, Yarema K, Essigmann JM, Lippard SJ, Wood RD. An intrastrand d(GpG) platinum crosslink in duplex M13 DNA is refractory to repair by human cell extracts. Proc Natl Acad Sci U S A 1992; 89:10772-6. [PMID: 1438274 PMCID: PMC50424 DOI: 10.1073/pnas.89.22.10772] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have examined the ability of human cell extracts to repair the most frequent DNA adduct caused by the cancer chemotherapeutic agent cis-diamminedichloroplatinum(II). A circular DNA duplex with an intrastrand d(GpG) crosslink positioned at a specific site was synthesized. Human cell extracts were unable to induce repair synthesis in a 29-base-pair region encompassing the adduct or in adjacent regions. The same extracts could repair a single defined 2-acetylaminofluorene lesion in a similar location. When molecules containing the platinum adduct were cleaved by Escherichia coli UvrABC enzyme, human cell extracts could perform repair synthesis at the damaged site, suggesting that human enzymes fail to make incisions near the d(GpG) crosslink but can complete repair once incisions are made. This result indicates that most repair synthesis in DNA damaged with multiple cis-diamminedichloroplatinum(II) adducts takes place at lesions other than the predominant d(GpG) crosslink. These data support the idea that the clinical effectiveness of cis-diamminedichloroplatinum(II) may be explained by the inefficient repair of the major DNA adduct caused by this drug.
Collapse
|
research-article |
33 |
81 |
12
|
Takebe H, Furuyama JI, Miki Y, Kondo S. High sensitivity of Xeroderma pigmentosum cells to the carcinogen 4-nitroguinoline-1-oxide. Mutat Res 1972; 15:98-100. [PMID: 5025205 DOI: 10.1016/0027-5107(72)90099-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
|
53 |
77 |
13
|
Lovejoy CA, Lock K, Yenamandra A, Cortez D. DDB1 maintains genome integrity through regulation of Cdt1. Mol Cell Biol 2006; 26:7977-90. [PMID: 16940174 PMCID: PMC1636754 DOI: 10.1128/mcb.00819-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DDB1, a component of a Cul4A ubiquitin ligase complex, promotes nucleotide excision repair (NER) and regulates DNA replication. We have investigated the role of human DDB1 in maintaining genome stability. DDB1-depleted cells accumulate DNA double-strand breaks in widely dispersed regions throughout the genome and have activated ATM and ATR cell cycle checkpoints. Depletion of Cul4A yields similar phenotypes, indicating that an E3 ligase function of DDB1 is important for genome maintenance. In contrast, depletion of DDB2, XPA, or XPC does not cause activation of DNA damage checkpoints, indicating that defects in NER are not involved. One substrate of DDB1-Cul4A that is crucial for preventing genome instability is Cdt1. DDB1-depleted cells exhibit increased levels of Cdt1 protein and rereplication, despite containing other Cdt1 regulatory mechanisms. The rereplication, accumulation of DNA damage, and activation of checkpoint responses in DDB1-depleted cells require entry into S phase and are partially, but not completely, suppressed by codepletion of Cdt1. Therefore, DDB1 prevents DNA lesions from accumulating in replicating human cells, in part by regulating Cdt1 degradation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
76 |
14
|
Bodell WJ, Singer B, Thomas GH, Cleaver JE. Evidence for removal at different rates of O-ethyl pyrimidines and ethylphosphotriesters in two human fibroblast cell lines. Nucleic Acids Res 1979; 6:2819-29. [PMID: 223129 PMCID: PMC327895 DOI: 10.1093/nar/6.8.2819] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The potent carcinogen, ethylnitrosourea, has been shown to ethylate oxygens, in preference to nitrogens, in the DNA of cultured cells. We have now studied the removal of seven ethyl derivatives in replicating cells. The following findings are reported. 1) The absolute amounts of 02-EtT, 04-EtT and 02-EtC are decreased in cellular DNA after correction for cell growth. However the rate of decrease diminishes after approximately 20 hr and after more than two cell doublings 20--40% of each derivative persists. This decrease is presumed to be due to enzymes since these derivatives are stable in isolated DNA. 2) The amount of ethyl phosphotriesters remains almost unchanged during 72 hr of cell culture. 3) The unstable purine derivatives, 7-EtG and 3-EtA, are both removed from cellular DNA with a rate faster than can be accounted for by the lability of the glycosyl bond. 4) Both GM 637 fibroblasts and Xeroderma pigmentosum fibroblasts (12-RO) (XP-12) have similar ability to remove ethyl products, except for O6-ethyl G which persists to a greater extent in XP12 cells. 5) The implications of the in vivo persistence of ethylated bases is discussed in regard to recent demonstrations that O2-EtT, O4-ET, O2-EtC and O6-EtG are all mutagenic.
Collapse
|
research-article |
46 |
75 |
15
|
Itoh T, Ono T, Yamaizumi M. A new UV-sensitive syndrome not belonging to any complementation groups of xeroderma pigmentosum or Cockayne syndrome: siblings showing biochemical characteristics of Cockayne syndrome without typical clinical manifestations. Mutat Res 1994; 314:233-48. [PMID: 7513056 DOI: 10.1016/0921-8777(94)90068-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report here on two siblings who show no clinical manifestations except for slight cutaneous photosensitivity and cutaneous pigmentation but have biochemical characteristics of Cockayne syndrome (CS). Fibroblasts derived from the patients (Kps2 and Kps3) were 3-4 times more sensitive to UV than normal cells. Although unscheduled DNA synthesis (UDS) in these cells was at a normal level, recovery of RNA synthesis (RRS) after UV irradiation was severely depressed. Microinjection of bacteriophage T4 endonuclease V into the cells corrected RRS after UV irradiation to a level near normal. These results indicate that DNA repair of cyclobutane-type pyrimidine dimers is impaired in the cells and the biochemical characteristics are similar to those of CS cells. However, cell fusion complementation tests with CS group A and B cells resulted in correction of RRS after UV irradiation. Cell fusion with XP group A, B, D, F and G cells also corrected RRS after UV irradiation, and microinjection of cell extracts prepared from Kps3 cells corrected UDS in XP group C and E cells, indicating that the patients do not belong to any complementation group of XP or CS. These results suggest that the patients have a new UV-sensitive syndrome with a biochemical phenotype of CS.
Collapse
|
Case Reports |
31 |
75 |
16
|
Mattern MR, Scudiero DA. Dependence of mammalian DNA synthesis on DNA supercoiling. III. Characterization of the inhibition of replicative and repair-type DNA synthesis by novobiocin and nalidixic acid. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 653:248-58. [PMID: 6261824 DOI: 10.1016/0005-2787(81)90160-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Novobiocin and nalidixic acid, inhibitors of the bacterial enzyme DNA gyrase, inhibit DNA, RNA and protein synthesis in several human and rodent cell lines. The sensitivity of DNA synthesis (both replicative and repair) to inhibition by novobiocin and nalidixic acid is greater than that of protein synthesis. Novobiocin inhibits RNA synthesis about half as effectively as it does DNA synthesis, whereas nalidixic acid inhibits both equally well. Replicative DNA synthesis, as measured by incorporation of [3H]thymidine, is blocked by novobiocin in a number of cell strains; the inhibition is reversible with respect to both DNA synthesis and cell killing, and continues for as long as 20--30 h if the cells are kept in novobiocin-containing growth medium. Both novobiocin and nalidixic acid inhibit repair DNA synthesis (measured by BND-cellulose chromatography) induced by ultraviolet light or N-methyl-N'-nitro-N-nitrosoguanidine (but not that induced by methyl methanesulfonate) at lower concentration (as low as 5 micrograms/ml) than those required to inhibit replicative DNA synthesis (50 micrograms/ml or greater). Neither novobiocin nor nalidixic acid alone induces DNA repair synthesis. Incubation of ultraviolet-irradiated cells with 10--100 micrograms/ml novobiocin results in little, if any, further reduction of colony-forming ability (beyond that caused by the ultraviolet irradiation). Novobiocin at sufficiently low concentrations (200 micrograms/ml) apparently generates a quiescent state (in terms of cellular DNA metabolism) from which recovery is possible. Under more drastic conditions of time in contact with cells and concentration, however, novobiocin itself induces mammalian cell killing.
Collapse
|
|
44 |
74 |
17
|
Matsuda T, Kawanishi M, Yagi T, Matsui S, Takebe H. Specific tandem GG to TT base substitutions induced by acetaldehyde are due to intra-strand crosslinks between adjacent guanine bases. Nucleic Acids Res 1998; 26:1769-74. [PMID: 9512551 PMCID: PMC147446 DOI: 10.1093/nar/26.7.1769] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acetaldehyde is present in tobacco smoke and automotive exhaust gases, is produced by the oxidation of ethanol, and causes respiratory organ cancers in animals. We show both the types and spectra of acetaldehyde-induced mutations in supF genes in double- and single-stranded shuttle vector plasmids replicated in human cells. Of the 101 mutants obtained from the double-stranded plasmids, 63% had tandem base substitutions, of which the predominant type is GG to TT transversions. Of the 44 mutants obtained from the single-stranded plasmids, 39% had tandem mutations that are of a different type than the double-stranded ones. The GG to TT tandem substitutions could arise from intra-strand crosslinks. Our data indicate that acetaldehyde forms intra- as well as inter-strand crosslinks between adjacent two-guanine bases. Based upon the following observations: XP-A protein binds to acetaldehyde-treated DNA, DNA excision repair-deficient xeroderma pigmentosum (XP) cells were more sensitive to acetaldehyde than the repair-proficient normal cells, and a higher frequency of acetaldehyde-induced mutations of the shuttle vectors was found in XP cells than in normal cells, we propose that the DNA damage caused by acetaldehyde is removed by the nucleotide excision repair pathway. Since treatment with acetaldehyde yields very specific GG to TT tandem base substitutions in DNA, such changes can be used as a probe to identify acetaldehyde as the causal agent in human tumors.
Collapse
|
research-article |
27 |
74 |
18
|
Tumey LN, Bom D, Huck B, Gleason E, Wang J, Silver D, Brunden K, Boozer S, Rundlett S, Sherf B, Murphy S, Dent T, Leventhal C, Bailey A, Harrington J, Bennani YL. The identification and optimization of a N-hydroxy urea series of flap endonuclease 1 inhibitors. Bioorg Med Chem Lett 2005; 15:277-81. [PMID: 15603939 DOI: 10.1016/j.bmcl.2004.10.086] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/28/2004] [Accepted: 10/30/2004] [Indexed: 10/26/2022]
Abstract
Flap endonuclease-1 (FEN1) is a key enzyme involved in base excision repair (BER), a primary pathway utilized by mammalian cells to repair DNA damage. Sensitization to DNA damaging agents is a potential method for the improvement of the therapeutic window of traditional chemotherapeutics. In this paper, we describe the identification and SAR of a series of low nanomolar FEN1 inhibitors. Over 1000-fold specificity was achieved against a related endonuclease, xeroderma pigmentosum G (XPG). Two compounds from this series significantly potentiate the action of methyl methanesulfonate (MMS) and temozolamide in a bladder cancer cell line (T24). To our knowledge, these are the most potent endonuclease inhibitors reported to date.
Collapse
|
Journal Article |
20 |
71 |
19
|
Lytle CD, Day RS, Hellman KB, Bockstahler LE. Infection of UV-irradiated xeroderma pigmentosum fibroblasts by herpes simplex virus: study of capacity and Weigle reactivation. Mutat Res 1976; 36:257-64. [PMID: 183109 DOI: 10.1016/0027-5107(76)90235-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The capacity of monolayers of both normal human and xeroderma pigmentosum (XP) filbroblasts to support plaque formation by herpes simplex virus was decreased when the monolayers were ultraviolet (UV) irradiated and infected with virus. Fibroblasts of XP complementation groups A, B, and D were sensitive to UV, being 4-6 fold more sensitive than either fibroblasts of XP complementation group C or fibroblasts from a normal individual. When the monolayers were irradiated 4 days prior to infection, the capacity of normal fibroblasts to support herpes virus growth recovered, whereas the capacity of the XP strains decreased further compared to that measured when infection immediately followed irradiation. Concurrent experiments with UV-irradiated herpes virus showed that the survival of this virus did not increase when infection by irradiated virus immediately followed irradiation of the monolayers. However, if the monolayers were irradiated 4 days prior to infection, the survival of this virus increased by a factor of nearly 2. Such Weigle reactivation (WR) occurred at lower fluences to the XP fibroblasts than to normal fibroblasts, suggesting that WR results from residual cellular DNA damage left after excision repair.
Collapse
|
|
49 |
66 |
20
|
Hoeijmakers JH, Odijk H, Westerveld A. Differences between rodent and human cell lines in the amount of integrated DNA after transfection. Exp Cell Res 1987; 169:111-9. [PMID: 3028842 DOI: 10.1016/0014-4827(87)90230-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The suitability of Chinese hamster and human cell lines for DNA-mediated gene transformation was investigated with respect to two parameters: the average quantity of and the integrity of integrated exogenous DNA fragments. No large differences were observed between most cell lines concerning the extent of fragmentation of the transferred DNA molecules. By contrast, the average number of sequences stably incorporated by the human cells (four lines tested) was 20- to 100-fold lower than the average amount inserted in the five Chinese hamster lines investigated. The very low uptake exhibited by the human cells, ranging from less than 100 up to 500 kb, renders these cells less suitable for transfection with genomic DNA to isolate specific genes.
Collapse
|
Comparative Study |
38 |
64 |
21
|
Mitchell DL, Brash DE, Nairn RS. Rapid repair kinetics of pyrimidine(6-4)pyrimidone photoproducts in human cells are due to excision rather than conformational change. Nucleic Acids Res 1990; 18:963-71. [PMID: 2315046 PMCID: PMC330351 DOI: 10.1093/nar/18.4.963] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UV-induced pyrimidine(6-4)pyrimidone photoproducts in DNA of mammalian cells are apparently repaired much more rapidly than cyclobutane dimers. Since only immunological assays for (6-4) photoproducts have been sensitive enough for repair measurements, it was possible that these apparently rapid repair kinetics reflected a change in physical conformation of antibody-binding sites, resulting in epitope loss rather than excision. To discriminate between these possibilities, we developed a procedure to photochemically convert (6-4) photoproducts to single-strand breaks in UV-irradiated DNA with a background low enough to permit repair measurements. Analysis of a specific DNA sequence indicated that photoinduced alkali-labile sites (PALS) were induced with the same site-specificity as (6-4) photoproducts. Normal human and xeroderma pigmentosum (XP) variant cells rapidly excised (6-4) photoproducts measured as PALS, but little repair was seen in cells from XP complementation group A. These repair kinetics corresponded to those determined in the same samples by radioimmunoassay of (6-4) photoproducts. Thus we conclude that the rapid repair of (6-4) photoproducts observed in UV-irradiated human cells is not the result of a conformational change resulting in epitope loss, but reflects excision of this photoproduct from DNA.
Collapse
|
research-article |
35 |
63 |
22
|
Ikenaga M, Takebe H, Ishii Y. Excision repair of DNA base damage in human cells treated with the chemical carcinogen 4-nitroquinoline 1-oxide. Mutat Res 1977; 43:415-27. [PMID: 408672 DOI: 10.1016/0027-5107(77)90062-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
Comparative Study |
48 |
62 |
23
|
Tantin D. RNA polymerase II elongation complexes containing the Cockayne syndrome group B protein interact with a molecular complex containing the transcription factor IIH components xeroderma pigmentosum B and p62. J Biol Chem 1998; 273:27794-9. [PMID: 9774388 DOI: 10.1074/jbc.273.43.27794] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor IIH (TFIIH) is involved both in transcription initiation by RNA polymerase II and in nucleotide excision-repair. Nucleotide excision-repair occurs at higher rates in transcriptionally active regions of the genome. Genetic studies indicate that this transcription-coupled repair is dependent on the Cockayne syndrome group A and B proteins, as well as TFIIH subunits. Previous work indicated that Cockayne syndrome group B interacts with RNA polymerase II molecules engaged in ternary complexes containing DNA and RNA. Evidence presented here indicates that this complex can interact with a factor containing the TFIIH core subunits p62 and xeroderma pigmentosum subunit B/excision repair cross-complementing 3. The targeting of TFIIH or a TFIIH-like repair factor to transcriptionally active DNA indicates a potential mechanism for transcription-coupled repair in human cells.
Collapse
|
|
27 |
61 |
24
|
Day RS. Cellular reactivation of ultraviolet-irradiated human adenovirus 2 in normal and xeroderma pigmentosum fibroblasts. Photochem Photobiol 1974; 19:9-13. [PMID: 4811564 DOI: 10.1111/j.1751-1097.1974.tb06467.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
|
51 |
59 |
25
|
Itoh T, O'Shea C, Linn S. Impaired regulation of tumor suppressor p53 caused by mutations in the xeroderma pigmentosum DDB2 gene: mutual regulatory interactions between p48(DDB2) and p53. Mol Cell Biol 2003; 23:7540-53. [PMID: 14560002 PMCID: PMC207631 DOI: 10.1128/mcb.23.21.7540-7553.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tumor suppressor p53 controls cell cycle progression and apoptosis following DNA damage, thus minimizing carcinogenesis. Mutations in the human DDB2 gene generate the E subgroup of xeroderma pigmentosum (XP-E). We report here that XP-E strains are defective in UV irradiation-induced apoptosis due to severely reduced basal and UV-induced p53 levels. These defects are restored by infection with a p53 cDNA expression construct or with a DDB2 expression construct if and only if it contains intron 4, which includes a nonmutated p53 consensus-binding site. We propose that both before and after UV irradiation, DDB2 directly regulates p53 levels, while DDB2 expression is itself regulated by p53.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
59 |