1
|
Meehan S, Berry Y, Luisi B, Dobson CM, Carver JA, MacPhee CE. Amyloid Fibril Formation by Lens Crystallin Proteins and Its Implications for Cataract Formation. J Biol Chem 2004; 279:3413-9. [PMID: 14615485 DOI: 10.1074/jbc.m308203200] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-, beta-, and gamma-crystallins are the major structural proteins within the eye lens and are responsible for its exceptional stability and transparency. Under mildly denaturing conditions, all three types of bovine crystallin assemble into fibrillar structures in vitro. Characterization by transmission electron microscopy, dye binding assays, and x-ray fiber diffraction shows that these species have all of the characteristics of fibrils associated with the family of amyloid diseases. Moreover, the full-length proteins are incorporated into the fibrils, (i.e. no protein cleavage is required for these species to form), although for the gamma-crystallins some fragmentation occurs under the conditions employed in this study. Our findings indicate that the inherent stability of the beta-sheet supramolecular structure adopted by the crystallins in the eye lens and the chaperone ability of alpha-crystallin must be crucial for preventing fibril formation in vivo. The crystallins are very stable proteins but undergo extensive post-translational modification with age that leads to their destabilization. The ability of the crystallins to convert into fibrils under destabilizing conditions suggests that this process could contribute to the development of cataract with aging.
Collapse
|
|
21 |
151 |
2
|
Shimeld SM, Purkiss AG, Dirks RPH, Bateman OA, Slingsby C, Lubsen NH. Urochordate betagamma-crystallin and the evolutionary origin of the vertebrate eye lens. Curr Biol 2006; 15:1684-9. [PMID: 16169492 DOI: 10.1016/j.cub.2005.08.046] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 08/05/2005] [Accepted: 08/09/2005] [Indexed: 11/22/2022]
Abstract
A refracting lens is a key component of our image-forming camera eye; however, its evolutionary origin is unknown because precursor structures appear absent in nonvertebrates. The vertebrate betagamma-crystallin genes encode abundant structural proteins critical for the function of the lens. We show that the urochordate Ciona intestinalis, which split from the vertebrate lineage before the evolution of the lens, has a single gene coding for a single domain monomeric betagamma-crystallin. The crystal structure of Ciona betagamma-crystallin is very similar to that of a vertebrate betagamma-crystallin domain, except for paired, occupied calcium binding sites. The Ciona betagamma-crystallin is only expressed in the palps and in the otolith, the pigmented sister cell of the light-sensing ocellus. The Ciona betagamma-crystallin promoter region targeted expression to the visual system, including lens, in transgenic Xenopus tadpoles. We conclude that the vertebrate betagamma-crystallins evolved from a single domain protein already expressed in the neuroectoderm of the prevertebrate ancestor. The conservation of the regulatory hierarchy controlling betagamma-crystallin expression between organisms with and without a lens shows that the evolutionary origin of the lens was based on co-option of pre-existing regulatory circuits controlling the expression of a key structural gene in a primitive light-sensing system.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
101 |
3
|
Ghosh JG, Estrada MR, Clark JI. Interactive Domains for Chaperone Activity in the Small Heat Shock Protein, Human αB Crystallin. Biochemistry 2005; 44:14854-69. [PMID: 16274233 DOI: 10.1021/bi0503910] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein pin arrays identified seven interactive sequences for chaperone activity in human alphaB crystallin using natural lens proteins, beta(H) crystallin and gammaD crystallin, and in vitro chaperone target proteins, alcohol dehydrogenase and citrate synthase. The N-terminal domain contained two interactive sequences, (9)WIRRPFFPFHSP(20) and (43)SLSPFYLRPPSFLRAP(58). The alpha crystallin core domain contained four interactive sequences, (75)FSVNLDVK(82) (beta3), (113)FISREFHR(120), (131)LTITSSLS(138) (beta8), and (141)GVLTVNGP(148) (beta9). The C-terminal domain contained one interactive sequence, (157)RTIPITRE(164), that included the highly conserved I-X-I/V motif. Two interactive sequences, (73)DRFSVNLDVKHFS(85) and (131)LTITSSLSDGV(141), belonging to the alpha crystallin core domain were synthesized as peptides and assayed for chaperone activity in vitro. Both synthesized peptides inhibited the thermal aggregation of beta(H) crystallin, alcohol dehydrogenase, and citrate synthase in vitro. Five of the seven chaperone sequences identified by the pin arrays overlapped with sequences identified previously as sequences for subunit-subunit interactions in human alphaB crystallin. The results suggested that interactive sequences in human alphaB crystallin have dual roles in subunit-subunit assembly and chaperone activity.
Collapse
|
|
20 |
83 |
4
|
Khanova HA, Markossian KA, Kurganov BI, Samoilov AM, Kleimenov SY, Levitsky DI, Yudin IK, Timofeeva AC, Muranov KO, Ostrovsky MA. Mechanism of chaperone-like activity. Suppression of thermal aggregation of betaL-crystallin by alpha-crystallin. Biochemistry 2006; 44:15480-7. [PMID: 16300396 DOI: 10.1021/bi051175u] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermal denaturation and aggregation of beta(L)-crystallin from bovine lens have been studied using differential scanning calorimetry (DSC) and dynamic light scattering (DLS). According to the DLS data, the distribution of the beta(L)-crystallin aggregates by their hydrodynamic radius (R(h)) remains monomodal to the point of precipitating aggregates (sodium phosphate, pH 6.8; 100 mM NaCl; 60 degrees C). The size of the start aggregates (R(h,0)) and duration of the latent stage (t(0)) leading to the formation of the start aggregates have been determined from the light scattering intensity versus the hydrodynamic radius plots and the dependences of R(h) on time. The R(h,0) value remains constant at variation of the beta(L)-crystallin concentration, whereas the t(0) value increases with diminishing beta(L)-crystallin concentration. The suppression of beta(L)-crystallin aggregation by alpha-crystallin is connected with the decrease in the R(h,0) value and increase in the t(0) value. In the presence of alpha-crystallin the aggregate population is split into two components. The first component is represented by stable aggregates whose size remains constant in time. The aggregates of the other kind grow until they reach the size characteristic of aggregates prone to precipitation. The DSC data show that alpha-crystallin has no appreciable influence on thermal denaturation of beta(L)-crystallin.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
67 |
5
|
Putilina T, Skouri-Panet F, Prat K, Lubsen NH, Tardieu A. Subunit exchange demonstrates a differential chaperone activity of calf alpha-crystallin toward beta LOW- and individual gamma-crystallins. J Biol Chem 2003; 278:13747-56. [PMID: 12562766 DOI: 10.1074/jbc.m208157200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chaperone activity of native alpha-crystallins toward beta(LOW)- and various gamma-crystallins at the onset of their denaturation, 60 and 66 degrees C, respectively, was studied at high and low crystallin concentrations using small angle x-ray scattering (SAXS) and fluorescence energy transfer (FRET). The crystallins were from calf lenses except for one recombinant human gamma S. SAXS data demonstrated an irreversible doubling in molecular weight and a corresponding increase in size of alpha-crystallins at temperatures above 60 degrees C. Further increase is observed at 66 degrees C. More subtle conformational changes accompanied the increase in size as shown by changes in environments around tryptophan and cysteine residues. These alpha-crystallin temperature-induced modifications were found necessary to allow for the association with beta(LOW)- and gamma-crystallins to occur. FRET experiments using IAEDANS (iodoacetylaminoethylaminonaphthalene sulfonic acid)- and IAF (iodoacetamidofluorescein)-labeled subunits showed that the heat-modified alpha-crystallins retained their ability to exchange subunits and that, at 37 degrees C, the rate of exchange was increased depending upon the temperature of incubation, 60 or 66 degrees C. Association with beta(LOW)- (60 degrees C) or various gamma-crystallins (66 degrees C) resulted at 37 degrees C in decreased subunit exchange in proportion to bound ligands. Therefore, beta(LOW)- and gamma-crystallins were compared for their capacity to associate with alpha-crystallins and inhibit subunit exchange. Quite unexpectedly for a highly conserved protein family, differences were observed between the individual gamma-crystallin family members. The strongest effect was observed for gamma S, followed by h gamma Srec, gamma E, gamma A-F, gamma D, gamma B. Moreover, fluorescence properties of alpha-crystallins in the presence of bound beta(LOW)-and gamma-crystallins indicated that the formation of beta(LOW)/alpha- or gamma/alpha-crystallin complexes involved various binding sites. The changes in subunit exchange associated with the chaperone properties of alpha-crystallins toward the other lens crystallins demonstrate the dynamic character of the heat-activated alpha-crystallin structure.
Collapse
|
|
22 |
58 |
6
|
Jobby MK, Sharma Y. Calcium-binding to lens βB2- and βA3-crystallins suggests that all β-crystallins are calcium-binding proteins. FEBS J 2007; 274:4135-47. [PMID: 17651443 DOI: 10.1111/j.1742-4658.2007.05941.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Crystallins are the major proteins of a mammalian eye lens. The topologically similar eye lens proteins, beta- and gamma-crystallins, are the prototype and founding members of the betagamma-crystallin superfamily. Betagamma-crystallins have until recently been regarded as structural proteins. However, the calcium-binding properties of a few members and the potential role of betagamma-crystallins in fertility are being investigated. Because the calcium-binding elements of other member proteins, such as spherulin 3a, are not present in betaB2-crystallin and other betagamma-crystallins from fish and mammalian genomes, it was argued that lens betagamma-crystallins should not bind calcium. In order to probe whether beta-crystallins can bind calcium, we selected one basic (betaB2) and one acidic (betaA3) beta-crystallin for calcium-binding studies. Using calcium-binding assays such as 45Ca overlay, terbium binding, Stains-All and isothermal titration calorimetry, we established that both betaB2- and betaA3-crystallin bind calcium with moderate affinity. There was no significant change in their conformation upon binding calcium as monitored by fluorescence and circular dichroism spectroscopy. However, 15N-1H heteronuclear single quantum correlation NMR spectroscopy revealed that amide environment of several residues underwent changes indicating calcium ligation. With the corroboration of calcium-binding to betaB2- and betaA3-crystallins, we suggest that all beta-crystallins bind calcium. Our results have important implications for understanding the calcium-related cataractogenesis and maintenance of ionic homeostasis in the lens.
Collapse
|
|
18 |
44 |
7
|
Fujii N, Shimmyo Y, Sakai M, Sadakane Y, Nakamura T, Morimoto Y, Kinouchi T, Goto Y, Lampi K. Age-related changes of alpha-crystallin aggregate in human lens. Amino Acids 2007; 32:87-94. [PMID: 16699822 DOI: 10.1007/s00726-006-0303-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 02/16/2006] [Indexed: 11/25/2022]
Abstract
Lens alpha-crystallin, composed of two subunits alpha A- and alpha B-crystallin, forms large aggregates in the lens of the eye. The present study investigated the aggregate of human lens alpha-crystallin from elderly and young donors. Recombinant alpha A- and alpha B-crystallins in molar ratios of alpha A to alpha B at 1:1, corresponding to the aged sample, were also studied in detail. We found by ultra-centrifugation analysis that the alpha-crystallin aggregate from elderly donors was large and heterogeneous with an average sedimentation coefficient of 30 S and a range of 20-60 S at 37 degrees C. This was higher compared to the young samples that had an average sedimentation coefficient of 17 S. The sedimentation coefficients of recombinant alpha A- and alpha B-crystallins were approximately 12 S and 15 S, respectively. Even when recombinant alpha-crystallins were mixed in molar ratios equivalent to those found in vivo, similar S values as the native aged alpha-crystallin aggregates were not obtained. Changes in the self-association of alpha-crystallin aggregate were correlated to changes in chaperone activity. Alpha-crystallin from young donors, and recombinant alpha A- and alpha B-crystallin and their mixtures showed chaperone activity, which was markedly lost in samples from the aged alpha-crystallin aggregates.
Collapse
|
|
18 |
37 |
8
|
Muranov KO, Maloletkina OI, Poliansky NB, Markossian KA, Kleymenov SY, Rozhkov SP, Goryunov AS, Ostrovsky MA, Kurganov BI. Mechanism of aggregation of UV-irradiated β(L)-crystallin. Exp Eye Res 2010; 92:76-86. [PMID: 21093434 DOI: 10.1016/j.exer.2010.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 11/19/2022]
Abstract
Thermal denaturation and aggregation of UV-irradiated β(L)-crystallin from eye lenses of steers have been studied. The data on size-exclusion chromatography and SDS-PAGE indicated that UV irradiation of β(L)-crystallin at 10 °С resulted in fragmentation of the protein molecule and formation of cross-linked aggregates. Fluorescence data showed that tryptophan fluorescence in the irradiated protein decreased exponentially with the UV dose. Decrease in tryptophan fluorescence is a result of photochemical destruction, but not of conformational changes of protein, because there is no red shift in the fluorescence maximum. The differential scanning calorimetry (DSC) profiles of the samples of UV-irradiated and wild type β(L)-crystallin were registered. The area under curves, which is proportional to the amount of the native protein, decreased exponentially with increasing the irradiation dose. The shape of the DSC profiles for the samples of UV-irradiated β(L)-crystallin was identical to that for wild type β(L)-crystallin. The DSC data allowed estimating the portion of UV-denatured β(L)-crystallin, which is not registered by DSC, and the portion of the combined fraction consisting of native and UV-damaged molecules retaining the native structure. A conclusion has been made that UV-induced denaturation of β(L)-crystallin follows the one-hit model. The study of the kinetics of thermal aggregation of UV-irradiated β(L)-crystallin at 37 °С using dynamic light scattering showed that the initial stage of aggregation was that of formation of the start aggregates with the hydrodynamic radius of 20 nm. Further sticking of the start aggregates proceeded in the regime of reaction-limited cluster-cluster aggregation. Splitting of the aggregate population into two components occurred above a definite point in time.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
36 |
9
|
Raman R, Rajanikanth V, Palaniappan RUM, Lin YP, He H, McDonough SP, Sharma Y, Chang YF. Big domains are novel Ca²+-binding modules: evidences from big domains of Leptospira immunoglobulin-like (Lig) proteins. PLoS One 2010; 5:e14377. [PMID: 21206924 PMCID: PMC3012076 DOI: 10.1371/journal.pone.0014377] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 11/24/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Many bacterial surface exposed proteins mediate the host-pathogen interaction more effectively in the presence of Ca²+. Leptospiral immunoglobulin-like (Lig) proteins, LigA and LigB, are surface exposed proteins containing Bacterial immunoglobulin like (Big) domains. The function of proteins which contain Big fold is not known. Based on the possible similarities of immunoglobulin and βγ-crystallin folds, we here explore the important question whether Ca²+ binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold. PRINCIPAL FINDINGS We selected six individual Big domains for this study (three from the conserved part of LigA and LigB, denoted as Lig A3, Lig A4, and LigBCon5; two from the variable region of LigA, i.e., 9(th) (Lig A9) and 10(th) repeats (Lig A10); and one from the variable region of LigB, i.e., LigBCen2. We have also studied the conserved region covering the three and six repeats (LigBCon1-3 and LigCon). All these proteins bind the calcium-mimic dye Stains-all. All the selected four domains bind Ca²+ with dissociation constants of 2-4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold. CONCLUSIONS We demonstrate that the Lig are Ca²+-binding proteins, with Big domains harbouring the binding motif. We conclude that despite differences in sequence, a Big motif binds Ca²+. This work thus sets up a strong possibility for classifying the proteins containing Big domains as a novel family of Ca²+-binding proteins. Since Big domain is a part of many proteins in bacterial kingdom, we suggest a possible function these proteins via Ca²+ binding.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
31 |
10
|
Suman SK, Mishra A, Ravindra D, Yeramala L, Sharma Y. Evolutionary remodeling of βγ-crystallins for domain stability at cost of Ca2+ binding. J Biol Chem 2011; 286:43891-43901. [PMID: 21949186 PMCID: PMC3243557 DOI: 10.1074/jbc.m111.247890] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/01/2011] [Indexed: 11/06/2022] Open
Abstract
The topologically similar βγ-crystallins that are prevalent in all kingdoms of life have evolved for high innate domain stability to perform their specialized functions. The evolution of stability and its control in βγ-crystallins that possess either a canonical (mostly from microorganisms) or degenerate (principally found in vertebrate homologues) Ca2+-binding motif is not known. Using equilibrium unfolding of βγ-crystallin domains (26 wild-type domains and their mutants) in apo- and holo-forms, we demonstrate the presence of a stability gradient across these members, which is attained by the choice of residues in the (N/D)(N/D)XX(S/T)S Ca2+-binding motif. The occurrence of a polar, hydrophobic, or Ser residue at the 1st, 3rd, or 5th position of the motif is likely linked to a higher domain stability. Partial conversion of a microbe-type domain (with a canonical Ca2+-binding motif) to a vertebrate-type domain (with a degenerate Ca2+-binding motif) by mutating serine to arginine/lysine disables the Ca2+-binding but significantly augments its stability. Conversely, stability is compromised when arginine (in a vertebrate-type disabled domain) is replaced by serine (as a microbe type). Our results suggest that such conversions were acquired as a strategy for desired stability in vertebrate members at the cost of Ca2+-binding. In a physiological context, we demonstrate that a mutation such as an arginine to serine (R77S) mutation in this motif of γ-crystallin (partial conversion to microbe-type), implicated in cataracts, decreases the domain stability. Thus, this motif acts as a "central tuning knob" for innate as well as Ca2+-induced gain in stability, incorporating a stability gradient across βγ-crystallin members critical for their specialized functions.
Collapse
|
research-article |
14 |
30 |
11
|
Emerson RO, Sage EH, Ghosh JG, Clark JI. Chaperone-like activity revealed in the matricellular protein SPARC. J Cell Biochem 2006; 98:701-5. [PMID: 16598771 DOI: 10.1002/jcb.20867] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein that modulates cell proliferation, adhesion, migration, and extracellular matrix (ECM) production. In this report chaperone-like activity of SPARC was identified in a thermal aggregation assay in vitro. Ultraviolet circular dichroism (UVCD) spectroscopy determined that SPARC was stable at temperatures up to 50 degrees C. Unfolding and aggregation of the chaperone target protein, alcohol dehydrogenase (ADH), were initiated at 50 degrees C. SPARC inhibited the thermal aggregation of ADH in a concentration-dependent manner, with maximal inhibition at a 1:4 molar ratio of SPARC:ADH. Synergy between the chaperone-like activities of SPARC and alphaB-crystallin, a small heat shock protein and molecular chaperone in the lens, was observed in SPARC-alphaB-crystallin double -/- mice.
Collapse
|
|
19 |
27 |
12
|
Bowman GR, Smith DGS, Michael Siu KW, Pearlman RE, Turkewitz AP. Genomic and Proteomic Evidence for a Second Family of Dense Core Granule Cargo Proteins in Tetrahymena thermophila. J Eukaryot Microbiol 2005; 52:291-7. [PMID: 16014006 DOI: 10.1111/j.1550-7408.2005.00045.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to a family of structurally related proteins encoded by the Granule lattice (GRL) genes, the dense core granules in Tetrahymena thermophila contain a second, more heterogeneous family of proteins that can be defined by the presence of a domain homologous to beta/gamma-crystallins. The founding members of the family, Induced during Granule Regeneration 1 (IGR1) and Granule Tip 1 (GRT1), were identified in previous screens for granule components. Analysis of the recently sequenced T. thermophila macronuclear genome has now uncovered 11 additional related genes. All family members have a single beta/gamma-crystallin domain, but the overall predicted organization of family members is highly variable, and includes three other motifs that are conserved between subsets of family members. To demonstrate that these proteins are present within granules, polypeptides from a subcellular fraction enriched in granules were analyzed by mass spectrometry. This positively identified four of the predicted novel beta/gamma-crystallin domain proteins. Both the functional evidence for IGR1 and GRT1 and the variability in the overall structure of this new protein family suggest that its members play roles that are distinct from those of the GRL family.
Collapse
|
|
20 |
27 |
13
|
Lapko VN, Cerny RL, Smith DL, Smith JB. Modifications of human betaA1/betaA3-crystallins include S-methylation, glutathiolation, and truncation. Protein Sci 2004; 14:45-54. [PMID: 15576560 PMCID: PMC2253330 DOI: 10.1110/ps.04738505] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Disulfide bonding of lens crystallins contributes to the aggregation and insolubilization of these proteins that leads to cataract. A high concentration of reduced glutathione is believed to be key in preventing oxidation of crystallin sulfhydryls to form disulfide bonds. This protective role is decreased in aged lenses because of lower glutathione levels, especially in the nucleus. We recently found that human gamma-crystallins undergo S-methylation at exposed cysteine residues, a reaction that may prevent disulfide bonding. We report here that betaA1/A3-crystallins are also methylated at specific cysteine residues and are the most heavily methylated of the human lens crystallins. Among the methylated sites, Cys 64, Cys 99, and Cys 167 of betaA1-crystallin, methylation at Cys 99 is highest. Cys 64 and Cys 99 are also glutathiolated, even in a newborn lens. These post-translational modifications of the exposed cysteines may be important for maintaining the crystallin structure required for lens transparency. Previously unreported N-terminal truncations were also found.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
27 |
14
|
Sergeev YV, Hejtmancik JF, Wingfield PT. Energetics of domain-domain interactions and entropy driven association of beta-crystallins. Biochemistry 2004; 43:415-24. [PMID: 14717595 DOI: 10.1021/bi034617f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beta-crystallins are major protein constituents of the mammalian lens, where their stability and association into higher order complexes are critical for lens clarity and refraction. They undergo modification as the lens ages, including cleavage of their terminal extensions. The energetics of betaA3- and betaB2-crystallin association was studied using site-directed mutagenesis and analytical ultracentrifugation. Recombinant (r) murine wild type betaA3- and betaB2-crystallins were modified by removal of either the N-terminal extension of betaA3 (rbetaA3Ntr) or betaB2 (rbetaB2Ntr), or both the N- and C-terminal extensions of betaB2 (rbetaB2NCtr). The proteins were expressed in Sf9 insect cells or Escherichia coli and purified by gel-filtration and ion-exchange chromatography. All beta-crystallins studied demonstrated fast reversible monomer-dimer equilibria over the temperature range studied (5-35 degrees C) with a tendency to form tighter dimers at higher temperatures. The N-terminal deletion of rbetaA3 (rbetaA3Ntr) significantly increases the enthalpy (+10.9 kcal/mol) and entropy (+40.7 cal/deg mol) of binding relative to unmodified protein. Removal of both N- and C-terminal extensions of rbetaB2 also increases these parameters but to a lesser degree. Deletion of the betaB2-crystallin N-terminal extension alone (rbetaB2Ntr) gave almost no change relative to rbetaB2. The resultant net negative changes in the binding energy suggest that betaAlpha3- and betaB2-crystallin association is entropically driven. The thermodynamic consequences of the loss of betaAlpha3-crystallin terminal extensions by in vivo proteolytic processing could increase their tendency to associate and so promote the formation of higher order associates in the aging and cataractous lens.
Collapse
|
Journal Article |
21 |
26 |
15
|
Giancola C, Pizzo E, Di Maro A, Cubellis MV, D'Alessio G. Preparation and characterization of geodin. A betagamma-crystallin-type protein from a sponge. FEBS J 2005; 272:1023-35. [PMID: 15691335 DOI: 10.1111/j.1742-4658.2004.04536.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Geodin is a protein encoded by a sponge gene homologous to genes from the betagamma-crystallins superfamily. The interest for this crystallin-type protein stems from the phylogenesis of porifera, commonly called sponges, the earliest divergence event in the history of metazoans. Here we report the preparation of geodin as a recombinant protein from Escherichia coli, its characterization through physico-chemical analyses, and a model of its 3D structure based on homology modelling. Geodin is a monomeric protein of about 18 kDa, with an all-beta structure, as all other crystallins in the superfamily, but more prone to unfold in the presence of chemical denaturants, when compared with other homologues from the superfamily. Its thermal unfolding, studied by far- and near-CD, and by calorimetry, is described by a two-state model. Geodin appears to be structurally similar in many respects to the bacterial protein S crystallin, with which it also shares a significant, albeit more modest stabilizing effect exerted by calcium ions. These results suggest that the crystallin-type structural scaffold, employed in the evolution of bacteria and moulds, was successfully recruited very early in the evolution of metazoa.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
16 |
16
|
Gupta R, Srivastava K, Srivastava OP. Truncation of motifs III and IV in human lens betaA3-crystallin destabilizes the structure. Biochemistry 2006; 45:9964-78. [PMID: 16906755 DOI: 10.1021/bi060499v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of our study was to determine the effects of specific truncations on the structural properties of human betaA3-crystallin. The following eight deletion mutants of betaA3-crystallin were generated: (i) N-terminal extension (NTE) 21 amino acids (betaA3[21] mutant), (ii) NTE 22 amino acids (betaA3[22] mutant), (iii) NTE (betaA3[N] mutant), (iv) NTE plus motif I (betaA3[N+I] mutant), (v) NTE plus motifs I and II (betaA3[N+I+II] mutant), (vi) NTE plus motifs I and II and connecting peptide (betaA3[N+I+II+CP] mutant), (vii) motifs III and IV (betaA3[III+IV] mutant), and (viii) motif IV (betaA3 [IV] mutant). The DNA sequencing and MALDI-TOF mass spectrometric methods confirmed desired specific deletions, and the purified mutant proteins exhibited a single band during SDS-PAGE analysis. When ANS bound, all the mutant proteins exhibited fluorescence quenching and a red shift, suggesting that the truncations caused changes in the exposed hydrophobic patches. The CD spectra showed that deletion of either NTE or the N-terminal domain (motifs I and II) had a relatively weaker effect on the structural stability than deletion of the C-terminal domain (motifs III and IV). Intrinsic Trp fluorescence spectral studies suggested changes in the microenvironment of the mutant proteins following truncations. HPLC multiangle light scattering analyses showed that truncation led to higher-order aggregation compared to that in the wild-type protein. Equilibrium unfolding and refolding of WT betaA3 with urea were best fit to a three-state model with transition midpoints at 2.2 and 3.1 M urea. However, the two transition midpoints of betaA3[21] and betaA3[22] and betaA3[N] mutants were similar to those of the wild type, suggesting that these truncations had a minimal effect on structural stabilization. Further, the mutant proteins containing the N-terminal domain (i.e., betaA3[III+IV] and betaA3[IV] mutants) exhibited higher transition midpoints compared to the transition midpoints of the mutant protein with the C-terminal domain (i.e., betaA3[N+I+II+CP] mutant). The results suggested that the N-terminal domain is relatively more stable than the C-terminal domain in betaA3-crystallin.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
15 |
17
|
Sagar V, Chaturvedi SK, Schuck P, Wistow G. Crystal Structure of Chicken γS-Crystallin Reveals Lattice Contacts with Implications for Function in the Lens and the Evolution of the βγ-Crystallins. Structure 2017. [PMID: 28648607 PMCID: PMC5518705 DOI: 10.1016/j.str.2017.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous attempts to crystallize mammalian γS-crystallin were unsuccessful. Native L16 chicken γS crystallized avidly while the Q16 mutant did not. The x-ray structure for chicken γS at 2.3Å resolution shows the canonical structure of the superfamily plus a well-ordered N-arm aligned with a β-sheet of a neighboring N-domain. L16 is also in a lattice contact, partially shielded from solvent. Unexpectedly, the major lattice contact matches a conserved interface (QR) in the multimeric β-crystallins. QR shows little conservation of residue contacts, except for one between symmetry-related tyrosines, but molecular dipoles for the proteins with QR show striking similarities while other γ-crystallins differ. In γS, QR has few hydrophobic contacts and features a thin layer of tightly bound water. The free energy of QR is slightly repulsive and AUC confirms no dimerization in solution. The lattice contacts suggest how γcrystallins allow close packing without aggregation in the crowded environment of the lens.
Collapse
|
Research Support, N.I.H., Intramural |
8 |
14 |
18
|
Xu J, Wang S, Zhao WJ, Xi YB, Yan YB, Yao K. The congenital cataract-linked A2V mutation impairs tetramer formation and promotes aggregation of βB2-crystallin. PLoS One 2012; 7:e51200. [PMID: 23236454 PMCID: PMC3516508 DOI: 10.1371/journal.pone.0051200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/30/2012] [Indexed: 11/28/2022] Open
Abstract
β/γ-Crystallins, the major structural proteins in human lens, are highly conserved in their tertiary structures but distinct in the quaternary structures. The N- and C-terminal extensions have been proposed to play a crucial role in mediating the size of β-crystallin assembly. In this research, we investigated the molecular mechanism underlying the congenital hereditary cataract caused by the recently characterized A2V mutation in βB2-crystallin. Spectroscopic experiments indicated that the mutation did not affect the secondary and tertiary structures of βB2-crystallin. The mutation did not affect the formation of βB2/βA3-crystallin heteromer as well as the stability and folding of the heteromer, suggesting that the mutation might not interfere with the protein interacting network in the lens. However, the tetramerization of βB2-crystallin at high protein concentrations was retarded by the A2V mutation. The mutation slightly decreased the thermal stability and promoted the thermal aggregation of βB2-crystallin. Although it did not influence the stability of βB2-crystallin against denaturation induced by chemical denaturants and UV irradiation, the A2V mutant was more prone to be trapped in the off-pathway aggregation process during kinetic refolding. Our results suggested that the A2V mutation might lead to injury of lens optical properties by decreasing βB2-crystallin stability against heat treatment and by impairing βB2-crystallin assembly into high-order homo-oligomers.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
14 |
19
|
Senthilkumar R, Chaerkady R, Sharma KK. Identification and properties of anti-chaperone-like peptides derived from oxidized bovine lens betaL-crystallins. J Biol Chem 2002; 277:39136-43. [PMID: 12176982 DOI: 10.1074/jbc.m204684200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thermal aggregation of betaL-crystallin was higher in the presence of peptide fragments generated from oxidized and trypsin-digested betaL-crystallin compared with thermal aggregation of the control proteins without oxidized betaL-crystallin fragments. Increased aggregation of betaL-crystallin was also observed despite the presence of alpha-crystallin (which has anti-aggregating properties) in the system. Self-aggregation of the oxidized betaL-crystallin fragments per se was not observed under the experimental conditions. Reverse-phase HPLC analysis of the precipitate obtained after heating a mixture of betaL-crystallin and oxidized betaL-crystallin fragments revealed that more than one peptide co-precipitates with betaL-crystallin. Electrospray mass spectrometry analysis of the peptides revealed that the molecular weight(s) of the peptides ranged from 1400-1800. Tandem mass spectrometry and a data base search revealed that two of the peptides originated from betaA4-crystallin (LTIFEQENFLGR, residues 121-132) and betaB3-crystallin (AINGTWVGYEFPGYR, residues 153-167) respectively. Oxidized synthetic peptides representing the same sequence were also found to enhance the aggregation of betaL-crystallin in a manner similar to oxidized lens betaL-crystallin peptides. These data suggest that the polypeptides generated after oxidation and proteolysis of betaL-crystallins interact with denaturing proteins and facilitate their aggregation and light scattering, thus behaving like anti-chaperones.
Collapse
|
|
23 |
11 |
20
|
Regini JW, Grossmann JG, Timmins P, Harding JJ, Quantock AJ, Hodson SA, Elliott GF. X-Ray- and Neutron-Scattering Studies of α-Crystallin and Evidence That the Target Protein Sits in the Fenestrations of the α-Crystallin Shell. ACTA ACUST UNITED AC 2007; 48:2695-700. [PMID: 17525201 DOI: 10.1167/iovs.06-0559] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Alpha-crystallin, a ubiquitous molecular chaperone, is found in high concentrations in the lens. Its structure and precise mechanism of action, however, are unknown. The purpose of these experiments was to further the understanding of the chaperone function of alpha-crystallin. METHODS X-ray- and neutron-solution-scattering studies were used to measure the radius of gyration of bovine lens alpha-crystallin when complexed with its target protein beta-crystallin in both normal and heavy-water-based solutions. Spectrophotometry was used as a chaperone assay. RESULTS The radius of gyration of alpha-crystallin on its own and when mixed with beta-crystallin was 69 +/- 1 A at 35 degrees C and increased with the temperature. In contrast to H2O-buffered solutions, the radius of gyration did not increase significantly in D2O-buffered solutions up to 55 degrees C, and at 70 degrees C was, on average, some 15 to 20 A smaller. CONCLUSIONS Bovine lens alpha-crystallin in solution can be modeled as a fenestrated spherical shell of diameter 169 A. At physiological temperatures, a weak interaction between alpha- and beta-crystallin occurs, and beta-crystallin is located in the fenestrations. Deuterium substitution indicates that the superaggregation process is controlled by hydrogen bonding. However, the chaperone process and superaggregation appear not to be linked.
Collapse
|
|
18 |
11 |
21
|
Barnwal RP, Jobby MK, Sharma Y, Chary KVR. NMR assignment of M-crystallin: a novel Ca2+ binding protein of the betagamma-crystallin superfamily from Methanosarcina acetivorans. JOURNAL OF BIOMOLECULAR NMR 2006; 36 Suppl 1:32. [PMID: 16607466 DOI: 10.1007/s10858-006-0016-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
Letter |
19 |
9 |
22
|
Suman SK, Ravindra D, Sharma Y, Mishra A. Association properties and unfolding of a βγ-crystallin domain of a Vibrio-specific protein. PLoS One 2013; 8:e53610. [PMID: 23349723 PMCID: PMC3551895 DOI: 10.1371/journal.pone.0053610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
The βγ-crystallin superfamily possesses a large number of versatile members, of which only a few members other than lens βγ-crystallins have been studied. Understanding the non-crystallin functions as well as origin of crystallin-like properties of such proteins is possible by exploring novel members from diverse sources. We describe a novel βγ-crystallin domain with S-type (Spherulin 3a type) Greek key motifs in protein vibrillin from a pathogenic bacterium Vibrio cholerae. This domain is a part of a large Vibrio-specific protein prevalent in Vibrio species (found in at least fourteen different strains sequenced so far). The domain contains two canonical N/D-N/D-X-X-S/T-S Ca2+-binding motifs, and bind Ca2+. Unlike spherulin 3a and other microbial homologues studied so far, βγ-crystallin domain of vibrillin self-associates forming oligomers of various sizes including dimers. The fractionated dimers readily form octamers in concentration-dependent manner, suggesting an association between these two major forms. The domain associates/dissociates forming dimers at the cost of monomeric populations in the presence of Ca2+. No such effect of Ca2+ has been observed in oligomeric species. The equilibrium unfolding of both forms follows a similar pattern, with the formation of an unfolding intermediate at sub-molar concentrations of denaturant. These properties exhibited by this βγ-crystallin domain are not shown by any other domain studied so far, demonstrating the diversity in domain properties.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
7 |
23
|
Takata T, Shimo-Oka T, Kojima M, Miki K, Fujii N. Differential analysis of d-β-Asp-containing proteins found in normal and infrared irradiated rabbit lens. Biochem Biophys Res Commun 2006; 344:263-71. [PMID: 16630575 DOI: 10.1016/j.bbrc.2006.03.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 03/20/2006] [Indexed: 12/26/2022]
Abstract
Although proteins are generally composed of l-alpha-amino acids, d-beta-aspartic acid (Asp)-containing proteins have been reported in various elderly tissues. Our previous study detected several d-beta-Asp-containing proteins in a rabbit lens derived from epithelial cell line by Western blot analysis of a 2D-gel using a polyclonal antibody that is highly specific for d-beta-Asp-containing proteins. The identity of each spot was subsequently determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and the Ms-Fit online database searching algorithm. In this study, we discovered novel d-beta-Asp-containing proteins from rabbit lens. The results indicate that beta-crystallin A3, beta-crystallin A4, beta-crystallin B1, beta-crystallin B2, beta-crystallin B3, gamma-crystallin C, gamma-crystallin D, and lambda-crystallin in rabbit lens contain d-beta-Asp residues. Furthermore, the occurrence of d-beta-Asp residues increases with infrared ray (IR) irradiation. Additionally, some d-beta-Asp-containing proteins only appear after IR irradiation. One such protein is the alpha-enolase, which shows homology to tau-crystallin.
Collapse
|
|
19 |
4 |
24
|
Krishnan B, Srivastava SS, Sankeshi V, Garg R, Srivastava S, Sankaranarayanan R, Sharma Y. βγ-Crystallination Endows a Novel Bacterial Glycoside Hydrolase 64 with Ca 2+-Dependent Activity Modulation. J Bacteriol 2019; 201:e00392-19. [PMID: 31527113 PMCID: PMC6832075 DOI: 10.1128/jb.00392-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/05/2019] [Indexed: 01/10/2023] Open
Abstract
The prokaryotic βγ-crystallins are a large group of uncharacterized domains with Ca2+-binding motifs. We have observed that a vast number of these domains are found appended to other domains, in particular, the carbohydrate-active enzyme (CAZy) domains. To elucidate the functional significance of these prospective Ca2+ sensors in bacteria and this widespread domain association, we have studied one typical example from Clostridium beijerinckii, a bacterium known for its ability to produce acetone, butanol, and ethanol through fermentation of several carbohydrates. This novel glycoside hydrolase of family 64 (GH64), which we named glucanallin, is composed of a βγ-crystallin domain, a GH64 domain, and a carbohydrate-binding module 56 (CBM56). The substrates of GH64, β-1,3-glucans, are the targets for industrial biofuel production due to their plenitude. We have examined the Ca2+-binding properties of this protein, assayed its enzymatic activity, and analyzed the structural features of the β-1,3-glucanase domain through its high-resolution crystal structure. The reaction products resulting from the enzyme reaction of glucanallin reinforce the mixed nature of GH64 enzymes, in contrast to the prevailing notion of them being an exotype. Upon disabling Ca2+ binding and comparing different domain combinations, we demonstrate that the βγ-crystallin domain in glucanallin acts as a Ca2+ sensor and enhances the glycolytic activity of glucanallin through Ca2+ binding. We also compare the structural peculiarities of this new member of the GH64 family to two previously studied members.IMPORTANCE We have biochemically and structurally characterized a novel glucanase from the less studied GH64 family in a bacterium significant for fermentation of carbohydrates into biofuels. This enzyme displays a peculiar property of being distally modulated by Ca2+ via assistance from a neighboring βγ-crystallin domain, likely through changes in the domain interface. In addition, this enzyme is found to be optimized for functioning in an acidic environment, which is in line with the possibility of its involvement in biofuel production. Multiple occurrences of a similar domain architecture suggest that such a "βγ-crystallination"-mediated Ca2+ sensitivity may be widespread among bacterial proteins.
Collapse
|
research-article |
6 |
4 |
25
|
Krivandin AV, Muranov KO, Ostrovsky MA. Heat-induced complex formation in solutions of alpha- and beta L-crystallins: a small-angle X-ray scattering study. DOKL BIOCHEM BIOPHYS 2004; 394:1-4. [PMID: 15116556 DOI: 10.1023/b:dobi.0000017141.52122.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
Research Support, Non-U.S. Gov't |
21 |
3 |