1
|
Wheeler DB, Randall A, Tsien RW. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 1994; 264:107-11. [PMID: 7832825 DOI: 10.1126/science.7832825] [Citation(s) in RCA: 763] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several types of calcium channels found in the central nervous system are possible participants in triggering neurotransmitter release. Synaptic transmission between hippocampal CA3 and CA1 neurons was mediated by N-type calcium channels, together with calcium channels whose pharmacology differs from that of L- and P-type channels but resembles that of the Q-type channel encoded by the alpha 1A subunit gene. Blockade of either population of channels strongly increased enhancement of synaptic transmission with repetitive stimuli. Even after complete blockade of N-type channels, transmission was strongly modulated by stimulation of neurotransmitter receptors or protein kinase C. These findings suggest a role for alpha 1A subunits in synaptic transmission and support the idea that neurotransmitter release may depend on multiple types of calcium channels under physiological conditions.
Collapse
|
|
31 |
763 |
2
|
Mintz IM, Venema VJ, Swiderek KM, Lee TD, Bean BP, Adams ME. P-type calcium channels blocked by the spider toxin omega-Aga-IVA. Nature 1992; 355:827-9. [PMID: 1311418 DOI: 10.1038/355827a0] [Citation(s) in RCA: 688] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Voltage-dependent calcium channels mediate calcium entry into neurons, which is crucial for many processes in the brain including synaptic transmission, dendritic spiking, gene expression and cell death. Many types of calcium channels exist in mammalian brains, but high-affinity blockers are available for only two types, L-type channels (targeted by nimodipine and other dihydropyridine channel blockers) and N-type channels (targeted by omega-conotoxin). In a search for new channel blockers, we have identified a peptide toxin from funnel web spider venom, omega-Aga-IVA, which is a potent inhibitor of both calcium entry into rat brain synaptosomes and of 'P-type' calcium channels in rat Purkinje neurons. omega-Aga-IVA will facilitate characterization of brain calcium channels resistant to existing channel blockers and may assist in the design of neuroprotective drugs.
Collapse
|
|
33 |
688 |
3
|
Plummer MR, Logothetis DE, Hess P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 1989; 2:1453-63. [PMID: 2560643 DOI: 10.1016/0896-6273(89)90191-8] [Citation(s) in RCA: 510] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The major component of whole-cell Ca2+ current in differentiated, neuron-like rat pheochromocytoma (PC12) cells and sympathetic neurons is carried by dihydropyridine-insensitive, high-threshold-activated N-type Ca2+ channels. We show that these channels have unitary properties distinct from those of previously described Ca2+ channels and contribute both slowly inactivating and large sustained components of whole-cell current. The N-type Ca2+ currents are modulated by GTP binding proteins. The snail toxin omega-conotoxin reveals two pharmacological components of N-type currents, one blocked irreversibly and one inhibited reversibly. Contrary to previous reports, neuronal L-type channels are insensitive to omega-conotoxin. N-type Ca2+ channels appear to be specific for neuronal cells, since their functional expression is greatly enhanced by nerve growth factor.
Collapse
|
Comparative Study |
36 |
510 |
4
|
Magee JC, Johnston D. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 1995; 487:67-90. [PMID: 7473260 PMCID: PMC1156600 DOI: 10.1113/jphysiol.1995.sp020862] [Citation(s) in RCA: 442] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. We have used dendrite-attached patch-clamp techniques to record single Na+ and Ca2+ channel activity from the apical dendrites (up to 350 microns away from soma) of CA1 pyramidal neurons in rat hippocampal slices (ages: 2-8 weeks). 2. Na+ channels were found in every patch examined (range: 2 to > 20 channels per patch). Channel openings, which had a slope conductance of 15 +/- 0.3 pS (mean +/- S.E.M.), began with test commands to around -50 mV and consisted of both early transient channel activity and also later occurring prolonged openings of 5-15 ms. All Na+ channel activity was suppressed by inclusion of TTX (1 microM) in the recording pipette. 3. Ca2+ channel activity was recorded in about 80% of the patches examined (range: 1 to > 10 channels per patch). Several types of channel behaviour were observed in these patches. Single channel recordings in 110 mM BaCl2, revealed an approximately 10 pS channel of small unitary current amplitude (-0.5 pA at -20 mV). These channels began activating at relatively hyperpolarized potentials (-50 mV) and ensemble averages of this low voltage-activated (LVA) channel activity showed rapid inactivation. 4. A somewhat heterogeneous population of high voltage-activated, moderate conductance (HVAm; approximately 17 pS), Ca2+ channel activity was also encountered. These channels exhibited a relatively large unitary amplitude (-0.8 pA at 0 mV) and ensemble averages demonstrated moderate inactivation. The HVAm population of channels could be tentatively subdivided into two separate groups based upon mean channel open times. 5. Less frequently, HVA, large conductance (27 pS) Ca2+ channel activity (HVA1) was also observed. This large unitary amplitude (-1.5 pA at 0 mV) channel activity began with steps to approximately 0 mV and ensemble averages did not show any time-dependent inactivation. The dihydropyridine Ca2+ channel agonist Bay K 8644 (0.5 or 1 microM) was found to characteristically prolong these channel openings. 6. omega-Conotoxin MVIIC (10 microM), did not significantly reduce the amount of channel activity recorded from the LVA, HVAm or HVA1 channel types in dendritic patches. In patches from somata, omega-conotoxin MVIIC was effective in eliminating a significant amount of HVAm Ca2+ channel activity. Inclusion of 50 or 100 microM NiCl2 to the recording solution significantly reduced the amount of channel activity recorded from LVA and HVAm channel types in dendritic patches. A subpopulation of HVAm channels was, however, found to be Ni2+ insensitive. Dendritic HVA, channel activity was unaffected by these low concentrations of Ni2+.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
research-article |
30 |
442 |
5
|
Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA. Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 1992; 9:1099-115. [PMID: 1334419 DOI: 10.1016/0896-6273(92)90069-p] [Citation(s) in RCA: 435] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A site-directed anti-peptide antibody, CNB-1, that recognizes the alpha 1 subunit of rat brain class B calcium channels (rbB) immunoprecipitated 43% of the N-type calcium channels labeled by [125I]omega-conotoxin. CNB-1 recognized proteins of 240 and 210 kd, suggesting the presence of two size forms of this alpha 1 subunit. Calcium channels recognized by CNB-1 were localized predominantly in dendrites; both dendritic shafts and punctate synaptic structures upon the dendrites were labeled. The large terminals of the mossy fibers of the dentate gyrus granule neurons were heavily labeled, suggesting that the punctate labeling pattern represents calcium channels in nerve terminals. The pattern of immunostaining was cell specific. The cell bodies of some pyramidal cells in layers II, III, and V of the dorsal cortex, Purkinje cells, and scattered cell bodies elsewhere in the brain were also labeled at a low level. The results define complementary distributions of N- and L-type calcium channels in dendrites, nerve terminals, and cell bodies of most central neurons and support distinct functional roles in calcium-dependent electrical activity, intracellular calcium regulation, and neurotransmitter release for these two channel types.
Collapse
|
|
33 |
435 |
6
|
Abstract
Synaptic transmission between dendrites in the olfactory bulb is thought to play a major role in the processing of olfactory information. Glutamate released from mitral cell dendrites excites the dendrites of granule cells, which in turn mediate GABAergic dendrodendritic inhibition back onto mitral dendrites. We examined the mechanisms governing reciprocal dendritic transmission in rat olfactory bulb slices. We find that NMDA receptors play a critical role in this dendrodendritic inhibition. As with axonic synapses, the dendritic release of fast neurotransmitters relies on N- and P/Q-type calcium channels. The magnitude of dendrodendritic transmission is directly proportional to dendritic calcium influx. Furthermore, recordings from pairs of mitral cells show that dendrodendritic synapses can mediate lateral inhibition independently of axonal action potentials.
Collapse
|
|
27 |
393 |
7
|
Hillyard DR, Monje VD, Mintz IM, Bean BP, Nadasdi L, Ramachandran J, Miljanich G, Azimi-Zoonooz A, McIntosh JM, Cruz LJ. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron 1992; 9:69-77. [PMID: 1352986 DOI: 10.1016/0896-6273(92)90221-x] [Citation(s) in RCA: 370] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Voltage-sensitive Ca2+ channels that control neurotransmitter release are blocked by omega-conotoxin (omega-CgTx) GVIA from the marine snail Conus geographus, the most widely used inhibitor of neurotransmitter release. However, many mammalian synapses are omega-CgTx-GVIA insensitive. We describe a new Conus peptide, omega-CgTx-MVIIC, that is an effective inhibitor of omega-CgTx-GVIA-resistant synaptic transmission. Ca2+ channel targets that are inhibited by omega-CgTx-MVIIC but not by omega-CgTx-GVIA include those mediating depolarization-induced 45Ca2+ uptake in rat synaptosome preparations, "P" currents in cerebellar Purkinje cells, and a subset of omega-CgTx-GVIA-resistant currents in CA1 hippocampal pyramidal cells. The characterization of omega-CgTx-MVIIC by a combination of molecular genetics and chemical synthesis defines a general approach for obtaining ligands with novel receptor subtype specificity from Conus.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
33 |
370 |
8
|
Westenbroek RE, Ahlijanian MK, Catterall WA. Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 1990; 347:281-4. [PMID: 2169591 DOI: 10.1038/347281a0] [Citation(s) in RCA: 368] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integration and processing of electrical signals in individual neurons depend critically on the spatial distribution of ion channels on the cell surface. In hippocampal pyramidal neurons, voltage-sensitive calcium channels have important roles in the control of Ca2(+)-dependent cellular processes such as action potential generation, neurotransmitter release, and epileptogenesis. Long-term potentiation of synaptic transmission in the hippocampal pyramidal cell, a form of neuronal plasticity that is thought to represent a cellular correlate of learning and memory, is dependent on Ca2+ entry mediated by synaptic activation of glutamate receptors that have a high affinity for NMDA (N-methyl(-D-aspartate) and are located in distal dendrites. Stimuli causing long-term potentiation at these distal synapses also cause a large local increase in cytosolic Ca2+ in the proximal regions of dendrites. This increase has been proposed to result from activation of voltage-gated Ca2+ channels. At least four types of voltage-gated Ca2+ channels, designated N, L. T and P, may be involved in these processes. Here we show that L-type Ca2+ channels, visualized using a monoclonal antibody, are located in the cell bodies and proximal dendrites of hippocampal pyramidal cells and are clustered in high density at the base of major dendrites. We suggest that these high densities of L-type Ca2+ channels may serve to mediate Ca2+ entry into the pyramidal cell body and proximal dendrites in response to summed excitatory inputs to the distal dendrites and to initiate intracellular regulatory events in the cell body in response to the same synaptic inputs that cause long-term potentiation at distal dendritic synapses.
Collapse
|
|
35 |
368 |
9
|
Sather WA, Tanabe T, Zhang JF, Mori Y, Adams ME, Tsien RW. Distinctive biophysical and pharmacological properties of class A (BI) calcium channel alpha 1 subunits. Neuron 1993; 11:291-303. [PMID: 8394721 DOI: 10.1016/0896-6273(93)90185-t] [Citation(s) in RCA: 331] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transcripts for the class A Ca2+ channel alpha 1 subunit (also known as BI) are present at high levels in many parts of the mammalian CNS and are widely assumed to encode the P-type Ca2+ channel. To characterize the biophysical and pharmacological properties of alpha 1A channels, macroscopic and single-channel recordings were made in Xenopus oocytes injected with alpha 1A cRNA. alpha 1-specific properties were identified by making systematic comparisons with the more familiar class C alpha 1 subunit under the condition of a standard ancillary subunit (alpha 2/delta + beta) makeup. alpha 1A currents activate and inactivate more rapidly and display steeper voltage dependence of gating than alpha 1C currents. Unlike alpha 1C, alpha 1A channels are largely insensitive to dihydropyridines and FPL 64176, but respond to the cone snail peptide omega-CTx-MVIIC(SNX-230), a potent and fairly selective inhibitor. In comparison with P-type Ca2+ channels in rat cerebellar Purkinje cells, alpha 1A channels in oocytes are approximately 10(2)-fold less sensitive to omega-Aga-IVA and approximately 10-fold more sensitive to omega-CTx-MVIIC. alpha 1A channels are not inhibited by Bay K 8644 and inactivate much more rapidly than P-type Ca2+ channels. Thus, alpha 1A is capable of generating a Ca2+ channel phenotype quite different from P-type current.
Collapse
|
|
32 |
331 |
10
|
Abstract
Analysis of neuronal migration in mouse cerebellar slice preparations by a laser scanning confocal microscope revealed that postmitotic granule cells initiate their migration only after the expression of N-type calcium channels on their plasmalemmal surface. Furthermore, selective blockade of these channels by addition of omega-conotoxin to the incubation medium curtailed cell movement. In contrast, inhibitors of L- and T-type calcium channels, as well as those of sodium and potassium channels, had no effect on the rate of granule cell migration. These results suggest that N-type calcium channels, which have been predominantly associated with neurotransmitter release in adult brain, also play a transient but specific developmental role in directed migration of immature neurons before the establishment of their synaptic circuits.
Collapse
|
|
33 |
297 |
11
|
Stea A, Tomlinson WJ, Soong TW, Bourinet E, Dubel SJ, Vincent SR, Snutch TP. Localization and functional properties of a rat brain alpha 1A calcium channel reflect similarities to neuronal Q- and P-type channels. Proc Natl Acad Sci U S A 1994; 91:10576-80. [PMID: 7524096 PMCID: PMC45064 DOI: 10.1073/pnas.91.22.10576] [Citation(s) in RCA: 287] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Functional expression of the rat brain alpha 1A Ca channel was obtained by nuclear injection of an expression plasmid into Xenopus oocytes. The alpha 1A Ca current activated quickly, inactivated slowly, and showed a voltage dependence typical of high voltage-activated Ca channels. The alpha 1A current was partially blocked (approximately 23%) by omega-agatoxin IVA (200 nM) and substantially blocked by omega-conotoxin MVIIC (5 microM blocked approximately 70%). Bay K 8644 (10 microM) or omega-conotoxin GVIA (1 microM) had no significant effect on the alpha 1A current. Coexpression with rat brain Ca channel beta subunits increased the alpha 1A whole-cell current and shifted the current-voltage relation to more negative values. While the beta 1b and beta 3 subunits caused a significant acceleration of the alpha 1A inactivation kinetics, the beta 2a subunit dramatically slowed the inactivation of the alpha 1A current to that seen typically for P-type Ca currents. In situ localization with antisense deoxyoligonucleotide and RNA probes showed that alpha 1A was widely distributed throughout the rat central nervous system, with moderate to high levels in the olfactory bulb, in the cerebral cortex, and in the CA fields and dentate gyrus of the hippocampus. In the cerebellum, prominent alpha 1A expression was detected in Purkinje cells with some labeling also in granule cells. Overall, the results show that alpha 1A channels are widely expressed and share some properties with both Q- and P-type channels.
Collapse
|
research-article |
31 |
287 |
12
|
Uchitel OD, Protti DA, Sanchez V, Cherksey BD, Sugimori M, Llinás R. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc Natl Acad Sci U S A 1992; 89:3330-3. [PMID: 1348859 PMCID: PMC48860 DOI: 10.1073/pnas.89.8.3330] [Citation(s) in RCA: 243] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
33 |
243 |
13
|
Wu LG, Borst JG, Sakmann B. R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc Natl Acad Sci U S A 1998; 95:4720-5. [PMID: 9539805 PMCID: PMC22557 DOI: 10.1073/pnas.95.8.4720] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-dependent Ca2+ currents evoke synaptic transmitter release. Of six types of Ca2+ channels, L-, N-, P-, Q-, R-, and T-type, only N- and P/Q-type channels have been pharmacologically identified to mediate action-potential-evoked transmitter release in the mammalian central nervous system. We tested whether Ca2+ channels other than N- and P/Q-type control transmitter release in a calyx-type synapse of the rat medial nucleus of the trapezoid body. Simultaneous recordings of presynaptic Ca2+ influx and the excitatory postsynaptic current evoked by a single action potential were made at single synapses. The R-type channel, a high-voltage-activated Ca2+ channel resistant to L-, N-, and P/Q-type channel blockers, contributed 26% of the total Ca2+ influx during a presynaptic action potential. This Ca2+ current evoked transmitter release sufficiently large to initiate an action potential in the postsynaptic neuron. The R-type current controlled release with a lower efficacy than other types of Ca2+ currents. Activation of metabotropic glutamate receptors and gamma-aminobutyric acid type B receptors inhibited the R-type current. Because a significant fraction of presynaptic Ca2+ channels remains unidentified in many other central synapses, the R-type current also could contribute to evoked transmitter release in these synapses.
Collapse
|
research-article |
27 |
242 |
14
|
Dubel SJ, Starr TV, Hell J, Ahlijanian MK, Enyeart JJ, Catterall WA, Snutch TP. Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. Proc Natl Acad Sci U S A 1992; 89:5058-62. [PMID: 1317580 PMCID: PMC49228 DOI: 10.1073/pnas.89.11.5058] [Citation(s) in RCA: 241] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Of the four major types of Ca channel described in vertebrate cells (designated T, L, N, and P), N-type Ca channels are unique in that they are found specifically in neurons, have been correlated with control of neurotransmitter release, and are blocked by omega-conotoxin, a neuropeptide toxin isolated from the marine snail Conus geographus. A set of overlapping cDNA clones were isolated and found to encode a Ca channel alpha-1 subunit, designated rbB-I. Polyclonal antiserum generated against a peptide from the rbB-I sequence selectively immunoprecipitates high-affinity 125I-labeled omega-conotoxin-binding sites from labeled rat forebrain membranes. PCR analysis shows that, like N-type Ca channels, expression of rbB-I is limited to the nervous system and neuronally derived cell lines. This brain Ca channel may mediate the omega-conotoxin-sensitive Ca influx required for neurotransmitter release at many synapses.
Collapse
|
research-article |
33 |
241 |
15
|
Ellinor PT, Zhang JF, Randall AD, Zhou M, Schwarz TL, Tsien RW, Horne WA. Functional expression of a rapidly inactivating neuronal calcium channel. Nature 1993; 363:455-8. [PMID: 8389006 DOI: 10.1038/363455a0] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diverse types of calcium channels in vertebrate neurons are important in linking electrical activity to transmitter release, gene expression and modulation of membrane excitability. Four classes of Ca2+ channels (T, N, L and P-type) have been distinguished on the basis of their electrophysiological and pharmacological properties. Most of the recently cloned Ca2+ channels fit within this functional classification. But one major branch of the Ca2+ channel gene family, including BII (ref. 15) and doe-1 (ref. 16), has not been functionally characterized. We report here the expression of doe-1 and show that it is a high-voltage-activated (HVA) Ca2+ channel that inactivates more rapidly than previously expressed calcium channels. Unlike L-type or P-type channels, doe-1 is not blocked by dihydropyridine antagonists or the peptide toxin omega-Aga-IVA, respectively. In contrast to a previously cloned N-type channel, doe-1 block by omega-CTx-GVIA requires micromolar toxin and is readily reversible. Unlike most HVA channels, doe-1 also shows unusual sensitivity to block by Ni2+. Thus, doe-1 is an HVA Ca2+ channel with novel functional properties. We have identified a Ca2+ channel current in rat cerebellar granule neurons that resembles doe-1 in many kinetic and pharmacological features.
Collapse
|
|
32 |
197 |
16
|
Fujita Y, Mynlieff M, Dirksen RT, Kim MS, Niidome T, Nakai J, Friedrich T, Iwabe N, Miyata T, Furuichi T. Primary structure and functional expression of the omega-conotoxin-sensitive N-type calcium channel from rabbit brain. Neuron 1993; 10:585-98. [PMID: 8386525 DOI: 10.1016/0896-6273(93)90162-k] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The complete amino acid sequence of a rabbit brain calcium channel (BIII) has been deduced by cloning and sequencing the cDNA. The open reading frame encodes 2339 amino acids, which corresponds to an M(r) of 261,167. A phylogenetic tree representing evolutionary relationships indicates that BIII is grouped together with the other rabbit brain calcium channels, BI and BII, into a subfamily that is distinct from the dihydropyridine-sensitive L-type subfamily. Transient expression in cultured skeletal muscle myotubes derived from muscular dysgenic mice demonstrates that the BIII channel mediates an omega-conotoxin-sensitive calcium current with kinetics and voltage dependence like those previously reported for whole-cell N-type current. Cell-attached patch recordings, with isotonic barium as the charge carrier, revealed distinct single channels with an average slope conductance of 14.3 pS.
Collapse
|
|
32 |
194 |
17
|
Caulfield MP, Brown DA. Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 1992; 106:231-2. [PMID: 1327374 PMCID: PMC1907498 DOI: 10.1111/j.1476-5381.1992.tb14321.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cannabinoid receptor ligands irreversibly inhibited peak voltage-activated Ca currents (44%) in NG108-15 cells; this inhibition was Pertussis toxin-sensitive. Inhibition was largely due to a reduction in the omega-conotoxin sensitive portion of high-voltage activated (HVA) current, although there was also a significant decrease in low-voltage activated current (56%) and in the nifedipine-sensitive portion of HVA current (41%).
Collapse
|
research-article |
33 |
194 |
18
|
Malmberg AB, Yaksh TL. Effect of continuous intrathecal infusion of omega-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hot-plate tests in rats. Pain 1995; 60:83-90. [PMID: 7715945 DOI: 10.1016/0304-3959(94)00094-u] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of continuous intrathecal infusion of omega-conopeptides in the rat was examined to determine whether antinociception, as measured on the formalin and hot-plate (52.5 degrees C) tests, was altered and whether tolerance developed with chronic infusion of these agents. Infusion of 0.030 and 0.003 nmol/h SNX-111 and 0.290 nmol/h SNX-239 was performed for either 2 days ('acute') or 7 days ('chronic') and was compared to the effect of 20 nmol/h morphine or saline. Both doses of SNX-111 and SNX-239 produced a significant reduction of the response to the hot-plate and formalin tests at both 2 and 7 days of infusion compared to saline infusion. In contrast, morphine only produced a significant effect on day 2, but not on infusion day 7, indicating that tolerance had developed. The effect of SNX-111 was reversible, as shown by a return to nociceptive responses similar to saline-infused rats 2 days after the minipumps had been disconnected after a 7-day infusion period. These data indicate that chronic infusion of omega-conopeptides that block N-type voltage-sensitive calcium channels produce a powerful antinociception, with minimal development of tolerance.
Collapse
|
|
30 |
168 |
19
|
Valentino K, Newcomb R, Gadbois T, Singh T, Bowersox S, Bitner S, Justice A, Yamashiro D, Hoffman BB, Ciaranello R. A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc Natl Acad Sci U S A 1993; 90:7894-7. [PMID: 8102803 PMCID: PMC47249 DOI: 10.1073/pnas.90.16.7894] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Calcium influx is believed to play a critical role in the cascade of biochemical events leading to neuronal cell death in a variety of pathological settings, including cerebral ischemia. The synthetic omega-conotoxin peptide SNX-111, which selectively blocks depolarization-induced calcium fluxes through neuronal N-type voltage-sensitive calcium channels, protected the pyramidal neurons in the CA1 subfield of the hippocampus from damage caused by transient forebrain ischemia in the rat model of four-vessel occlusion. SNX-111 provided neuroprotection when a single bolus injection was administered intravenously up to 24 hr after the ischemic insult. These results suggest that the window of opportunity for therapeutic intervention after cerebral ischemia may be much longer than previously thought and point to the potential use of omega-conopeptides and their derivatives in the prevention or reduction of neuronal damage resulting from ischemic episodes due to cardiac arrest, head trauma, or stroke. Microdialysis studies showed that SNX-111 was 3 orders of magnitude less potent in blocking potassium-induced glutamate release in the hippocampus than the conopeptide SNX-230, which, in contrast to SNX-111, failed to show any efficacy in the four-vessel occlusion model of ischemia. These results imply that the ability of a conopeptide to block excitatory amino acid release does not correlate with its neuroprotective efficacy.
Collapse
|
research-article |
32 |
167 |
20
|
Mogul DJ, Adams ME, Fox AP. Differential activation of adenosine receptors decreases N-type but potentiates P-type Ca2+ current in hippocampal CA3 neurons. Neuron 1993; 10:327-34. [PMID: 8382501 DOI: 10.1016/0896-6273(93)90322-i] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Adenosine is released in the brain in significant quantities in response to increased cellular activity. Adenosine has been shown either to decrease synaptic transmission or to produce an excitatory response in hippocampal synapses, resulting in increased glutamate release. Previous reports have shown that adenosine or its analogs reduced Ca2+ current in dorsal root ganglion and hippocampal neurons. Here we show that the selective activation of adenosine receptor subtypes has different effects on Ca2+ channels from acutely isolated pyramidal neurons from the CA3 region of guinea pig hippocampus. Activation of A1 receptors inhibited primarily N-type Ca2+ current. In contrast, activation of A2b receptors resulted in significant potentiation of P-type but not N-type Ca2+ current. This potentiation could be inhibited by blocking the cAMP-dependent protein kinase. Because of the ubiquity of adenosine, the differential effects on Ca2+ channels of adenosine receptor subtype activation may have significant implications for neuronal excitability.
Collapse
|
|
32 |
161 |
21
|
Motomura M, Lang B, Johnston I, Palace J, Vincent A, Newsom-Davis J. Incidence of serum anti-P/O-type and anti-N-type calcium channel autoantibodies in the Lambert-Eaton myasthenic syndrome. J Neurol Sci 1997; 147:35-42. [PMID: 9094058 DOI: 10.1016/s0022-510x(96)05303-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease in which autoantibodies are directed against voltage-gated calcium channels (VGCCs) at presynaptic nerve terminals. We first demonstrated the presence of P/Q-type and N-type VGCCs in digitonin extracts prepared from human and rabbit cerebellum using the specific ligands 125I-omega-conotoxin MVIIC (125I-omega-CmTx) and 125I-omega-conotoxin GVIA (125I-omega-CgTx), respectively. We then tested sera from 72 LEMS patients' 25 with proven small cell lung cancer (SCLC) and 66 healthy or other neurological, SCLC or autoimmune disease controls in an immunoprecipitation assay using 125I-omega-CmTx-labelled (P/Q-type) VGCCs in human cerebellar extract. Sixty-six of 72 LEMS serum samples (91.7%) were positive for the presence of VGCC antibodies, as defined as a titre greater than 3 standard deviations above the mean for the healthy controls (n = 22). Rabbit cerebellar extract as antigen gave similar results (r = 0.94, P < 0.001, n = 30). By contrast, only 24/72 (33%) LEMS sera were positive in the assay for anti-N-type VGCC antibodies using 125I-omega-CgTx. All these 24 were also positive in the 125I-omega-CmTx assay. All healthy and disease control sera were negative in both assays. The anti-P/Q-type VGCC antibody titres did not correlate with an electrophysiological index of disease severity across individuals; however, longitudinal studies in a LEMS patient with SCLC receiving chemotherapy, and in a non-SCLC LEMS patient receiving immunosuppressive therapy showed an inverse relation between antibody titre and disease severity. These results support the view that anti-P/Q-type VGCC antibodies are implicated in the motor disorder in LEMS, and show that the omega-CmTx radioimmunoassay is a highly specific and sensitive means of detecting them.
Collapse
|
|
28 |
158 |
22
|
Poncer JC, McKinney RA, Gähwiler BH, Thompson SM. Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 1997; 18:463-72. [PMID: 9115739 DOI: 10.1016/s0896-6273(00)81246-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transmitter release at most central synapses depends on multiple types of calcium channels. Identification of the channels mediating GABA release in hippocampus is complicated by the heterogeneity of interneurons. Unitary IPSPs were recorded from pairs of inhibitory and pyramidal cells in hippocampal slice cultures. The N-type channel antagonist omega-conotoxin MVIIA abolished IPSPs generated by interneurons in st. radiatum, whereas the P/Q-type antagonist omega-agatoxin IVA had no effect. In contrast, omega-agatoxin IVA abolished IPSPs generated by st. lucidum and st. oriens interneurons, but omega-conotoxin MVIIA had no effect. After unitary IPSPs were blocked by toxin, transmission could not be restored by increasing presynaptic calcium entry. The axons of the two types of interneurons terminated within distinct strata of area CA3. Thus, GABA release onto pyramidal cells, unlike glutamate release, is mediated entirely by either N- or P-type calcium channels, depending on the presynaptic cell and the postsynaptic location of the synapse.
Collapse
|
Comparative Study |
28 |
145 |
23
|
Jones OT, Kunze DL, Angelides KJ. Localization and mobility of omega-conotoxin-sensitive Ca2+ channels in hippocampal CA1 neurons. Science 1989; 244:1189-93. [PMID: 2543080 DOI: 10.1126/science.2543080] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Voltage-dependent Ca2+ channels (VDCCs) are modulators of synaptic plasticity, oscillatory behavior, and rhythmic firing in brain regions such as the hippocampus. The distribution and lateral mobility of VDCCs on CA1 hippocampal neurons have been determined with biologically active fluorescent and biotinylated derivatives of the selective probe omega-conotoxin in conjunction with circular dityndallism, digital fluorescence imaging, and photobleach recovery microscopy. On noninnervated cell bodies, VDCCs were found to be organized in multiple clusters, whereas after innervation the VDCCs were concentrated and immobilized at synaptic contact sites. On dendrites, VDCC distribution was punctate and was interrupted by extensive bare regions or abruptly terminated. More than 85% of the dendritic VDCCs were found to be immobile by fluorescence photobleach recovery. Thus, before synaptic contact, specific mechanisms target, segregate, and immobilize VDCCs to neuronal cell bodies and to specialized dendritic sites. Regulation of this distribution may be critical in determining the firing activity and integrative properties of hippocampal CA1 neurons.
Collapse
|
|
36 |
128 |
24
|
Yawo H, Chuhma N. Preferential inhibition of omega-conotoxin-sensitive presynaptic Ca2+ channels by adenosine autoreceptors. Nature 1993; 365:256-8. [PMID: 8396730 DOI: 10.1038/365256a0] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Adenosine is a potent modulator of transmitter release at a variety of synapses. The adenosine A1 receptor is assumed to reside in presynaptic terminals and to function as a negative autoreceptor. How adenosine reduces transmitter release is uncertain; it may reduce the calcium influx during nerve terminal depolarization by either activating K+ currents or inhibiting Ca2+ currents, although other mechanisms have been proposed. We have directly measured intracellular Ca2+ concentrations of giant pre-synaptic terminals in the chick ciliary ganglion. We report here that adenosine inhibited the nerve-evoked Ca2+ influx in the terminal by activating A1 receptors. Reduced Ca2+ influx was due largely to inhibition of omega-conotoxin GVIA-sensitive Ca2+ channels in the presynaptic terminal.
Collapse
|
|
32 |
127 |
25
|
Colbourne F, Li H, Buchan AM, Clemens JA. Continuing postischemic neuronal death in CA1: influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats. Stroke 1999; 30:662-8. [PMID: 10066868 DOI: 10.1161/01.str.30.3.662] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Transient forebrain ischemia results in a 24- to 72-hour delayed loss of CA1 neurons. Previous work has not assessed whether insult durations can vary the degree and maturation rate of CA1 injury and whether there are different ultrastructural features of death after brief or severe ischemia. We also tested whether known cytoprotective drugs achieve permanent or transient neuroprotection. METHODS In the first experiment, ischemia was induced for 5, 15, or 30 minutes with the use of the 4-vessel occlusion rat model with 1- to 28-day survival. Others subjected to 5 or 15 minutes of ischemia and allowed to survive for 14 or 7 days, respectively, were examined with electron microscopy. Finally, we determined whether NBQX (30 mg/kg x3 at 0 or 6 hours after ischemia), an AMPA antagonist, and SNX-111 (5 mg/kg at 6 hours after ischemia), an N-type Ca2+ channel antagonist, provided enduring CA1 protection against 10 minutes of ischemia. RESULTS CA1 damage was not detected at 24 hours. Thirty minutes of ischemia produced 47% and 84% CA1 damage at 2 and 3 days, respectively. A 15-minute occlusion yielded 11%, 74%, and 86% loss at 2, 3, and 7 days, respectively. Five minutes of ischemia produced an even slower progression with 24%, 52%, and 59% loss at 3, 7, and 14 days, respectively. Ultrastructural examination after 5 and 15 minutes of ischemia revealed necrosis with no morphological evidence of apoptosis. Both NBQX (P<0.021) and SNX-111 (P<0.001) significantly reduced CA1 death at 7 days (</=35%) but not at 28 days (>/=80%) compared with saline treatment ( approximately 79%). CONCLUSIONS Brief forebrain ischemia results in a slower progression of CA1 loss than more severe insults. Nonetheless, neuronal injury had necrotic, not apoptotic, morphology. NBQX and SNX-111 only postponed CA1 injury.
Collapse
|
|
26 |
123 |