1
|
Abstract
Over three decades of molecular-phylogenetic studies, researchers have compiled an increasingly robust map of evolutionary diversification showing that the main diversity of life is microbial, distributed among three primary relatedness groups or domains: Archaea, Bacteria, and Eucarya. The general properties of representatives of the three domains indicate that the earliest life was based on inorganic nutrition and that photosynthesis and use of organic compounds for carbon and energy metabolism came comparatively later. The application of molecular-phylogenetic methods to study natural microbial ecosystems without the traditional requirement for cultivation has resulted in the discovery of many unexpected evolutionary lineages; members of some of these lineages are only distantly related to known organisms but are sufficiently abundant that they are likely to have impact on the chemistry of the biosphere.
Collapse
|
Review |
28 |
1417 |
2
|
Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, Durkin AS, Gwinn M, Kolonay JF, Nelson WC, Peterson JD, Umayam LA, White O, Salzberg SL, Lewis MR, Radune D, Holtzapple E, Khouri H, Wolf AM, Utterback TR, Hansen CL, McDonald LA, Feldblyum TV, Angiuoli S, Dickinson T, Hickey EK, Holt IE, Loftus BJ, Yang F, Smith HO, Venter JC, Dougherty BA, Morrison DA, Hollingshead SK, Fraser CM. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 2001; 293:498-506. [PMID: 11463916 DOI: 10.1126/science.1061217] [Citation(s) in RCA: 1057] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The 2,160,837-base pair genome sequence of an isolate of Streptococcus pneumoniae, a Gram-positive pathogen that causes pneumonia, bacteremia, meningitis, and otitis media, contains 2236 predicted coding regions; of these, 1440 (64%) were assigned a biological role. Approximately 5% of the genome is composed of insertion sequences that may contribute to genome rearrangements through uptake of foreign DNA. Extracellular enzyme systems for the metabolism of polysaccharides and hexosamines provide a substantial source of carbon and nitrogen for S. pneumoniae and also damage host tissues and facilitate colonization. A motif identified within the signal peptide of proteins is potentially involved in targeting these proteins to the cell surface of low-guanine/cytosine (GC) Gram-positive species. Several surface-exposed proteins that may serve as potential vaccine candidates were identified. Comparative genome hybridization with DNA arrays revealed strain differences in S. pneumoniae that could contribute to differences in virulence and antigenicity.
Collapse
|
|
24 |
1057 |
3
|
Ross W, Gosink KK, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K, Gourse RL. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 1993; 262:1407-13. [PMID: 8248780 DOI: 10.1126/science.8248780] [Citation(s) in RCA: 582] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A DNA sequence rich in (A+T), located upstream of the -10, -35 region of the Escherichia coli ribosomal RNA promoter rrnB P1 and called the UP element, stimulates transcription by a factor of 30 in vivo, as well as in vitro in the absence of protein factors other than RNA polymerase (RNAP). When fused to other promoters, such as lacUV5, the UP element also stimulates transcription, indicating that it is a separate promoter module. Mutations in the carboxyl-terminal region of the alpha subunit of RNAP prevent stimulation of these promoters by the UP element although the mutant enzymes are effective in transcribing the "core" promoters (those lacking the UP element). Protection of UP element DNA by the mutant RNAPs is severely reduced in footprinting experiments, suggesting that the selective decrease in transcription might result from defective interactions between alpha and the UP element. Purified alpha binds specifically to the UP element, confirming that alpha acts directly in promoter recognition. Transcription of three other promoters was also reduced by the COOH-terminal alpha mutations. These results suggest that UP elements comprise a third promoter recognition region (in addition to the -10, -35 recognition hexamers, which interact with the sigma subunit) and may account for the presence of (A+T)-rich DNA upstream of many prokaryotic promoters. Since the same alpha mutations also block activation by some transcription factors, mechanisms of promoter stimulation by upstream DNA elements and positive control by certain transcription factors may be related.
Collapse
|
|
32 |
582 |
4
|
Hajdukiewicz PT, Allison LA, Maliga P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 1997; 16:4041-8. [PMID: 9233813 PMCID: PMC1170027 DOI: 10.1093/emboj/16.13.4041] [Citation(s) in RCA: 359] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The plastid genome in photosynthetic higher plants encodes subunits of an Escherichia coli-like RNA polymerase (PEP) which initiates transcription from E.coli sigma70-type promoters. We have previously established the existence of a second nuclear-encoded plastid RNA polymerase (NEP) in photosynthetic higher plants. We report here that many plastid genes and operons have at least one promoter each for PEP and NEP (Class II transcription unit). However, a subset of plastid genes, including photosystem I and II genes, are transcribed from PEP promoters only (Class I genes), while in some instances (e.g. accD) genes are transcribed exclusively by NEP (Class III genes). Sequence alignment identified a 10 nucleotide NEP promoter consensus around the transcription initiation site. Distinct NEP and PEP promoters reported here provide a general mechanism for group-specific gene expression through recognition by the two RNA polymerases.
Collapse
|
research-article |
28 |
359 |
5
|
Gaal T, Bartlett MS, Ross W, Turnbough CL, Gourse RL. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 1997; 278:2092-7. [PMID: 9405339 DOI: 10.1126/science.278.5346.2092] [Citation(s) in RCA: 306] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The sequence of a promoter determines not only the efficiency with which it forms a complex with RNA polymerase, but also the concentration of nucleoside triphosphate (NTP) required for initiating transcription. Escherichia coli ribosomal RNA (rrn P1) promoters require high initiating NTP concentrations for efficient transcription because they form unusually short-lived complexes with RNA polymerase; high initiating NTP concentrations [adenosine or guanosine triphosphate (ATP or GTP), depending on the rrn P1 promoter] are needed to bind to and stabilize the open complex. ATP and GTP concentrations, and therefore rrn P1 promoter activity, increase with growth rate. Because ribosomal RNA transcription determines the rate of ribosome synthesis, the control of ribosomal RNA transcription by NTP concentration provides a molecular explanation for the growth rate-dependent control and homeostatic regulation of ribosome synthesis.
Collapse
|
|
28 |
306 |
6
|
Lambertsen L, Sternberg C, Molin S. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 2004; 6:726-32. [PMID: 15186351 DOI: 10.1111/j.1462-2920.2004.00605.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mini-Tn7 transposon system is a convenient tool for site-specific tagging of bacteria in which the tagging DNA is inserted at a unique and neutral chromosomal site. We have expanded the panel of mini-Tn7 delivery plasmids expressing different fluorescent proteins (stable and unstable) from the Escherichia coli lac derived promoter, P(A1/04/03), or from the growth-rate-dependent Escherichia coli promoter PrrnB P1. The mini-Tn7 transposons were inserted and tested in the soil bacterium, Pseudomonas putida KT2440. Successful and site-specific tagging was verified by Southern blots as well as by PCR. Furthermore, the effect of fluorescent protein expression on the cellular growth rate was tested by growth competition assays.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
228 |
7
|
Xu P, Alves JM, Kitten T, Brown A, Chen Z, Ozaki LS, Manque P, Ge X, Serrano MG, Puiu D, Hendricks S, Wang Y, Chaplin MD, Akan D, Paik S, Peterson DL, Macrina FL, Buck GA. Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 2007; 189:3166-75. [PMID: 17277061 PMCID: PMC1855836 DOI: 10.1128/jb.01808-06] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/29/2007] [Indexed: 11/20/2022] Open
Abstract
The genome of Streptococcus sanguinis is a circular DNA molecule consisting of 2,388,435 bp and is 177 to 590 kb larger than the other 21 streptococcal genomes that have been sequenced. The G+C content of the S. sanguinis genome is 43.4%, which is considerably higher than the G+C contents of other streptococci. The genome encodes 2,274 predicted proteins, 61 tRNAs, and four rRNA operons. A 70-kb region encoding pathways for vitamin B(12) biosynthesis and degradation of ethanolamine and propanediol was apparently acquired by horizontal gene transfer. The gene complement suggests new hypotheses for the pathogenesis and virulence of S. sanguinis and differs from the gene complements of other pathogenic and nonpathogenic streptococci. In particular, S. sanguinis possesses a remarkable abundance of putative surface proteins, which may permit it to be a primary colonizer of the oral cavity and agent of streptococcal endocarditis and infection in neutropenic patients.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
188 |
8
|
Haugen SP, Berkmen MB, Ross W, Gaal T, Ward C, Gourse RL. rRNA Promoter Regulation by Nonoptimal Binding of σ Region 1.2: An Additional Recognition Element for RNA Polymerase. Cell 2006; 125:1069-82. [PMID: 16777598 DOI: 10.1016/j.cell.2006.04.034] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 03/16/2006] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
Regulation of transcription initiation is generally attributable to activator/repressor proteins that bind to specific DNA sequences. However, regulators can also achieve specificity by binding directly to RNA polymerase (RNAP) and exploiting the kinetic variation intrinsic to different RNAP-promoter complexes. We report here a previously unknown interaction with Escherichia coli RNAP that defines an additional recognition element in bacterial promoters. The strength of this sequence-specific interaction varies at different promoters and affects the lifetime of the complex with RNAP. Selection of rRNA promoter mutants forming long-lived complexes, kinetic analyses of duplex and bubble templates, dimethylsulfate footprinting, and zero-Angstrom crosslinking demonstrated that sigma subunit region 1.2 directly contacts the nontemplate strand base two positions downstream of the -10 element (within the "discriminator" region). By making a nonoptimal sigma1.2-discriminator interaction, rRNA promoters create the short-lived complex required for specific responses to the RNAP binding factors ppGpp and DksA, ultimately accounting for regulation of ribosome synthesis.
Collapse
|
|
19 |
181 |
9
|
Vezzi A, Campanaro S, D'Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 2005; 307:1459-61. [PMID: 15746425 DOI: 10.1126/science.1103341] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Deep-sea life requires adaptation to high pressure, an extreme yet common condition given that oceans cover 70% of Earth's surface and have an average depth of 3800 meters. Survival at such depths requires specific adaptation but, compared with other extreme conditions, high pressure has received little attention. Recently, Photobacterium profundum strain SS9 has been adopted as a model for piezophily. Here we report its genome sequence (6.4 megabase pairs) and transcriptome analysis. The results provide a first glimpse into the molecular basis for life in the largest portion of the biosphere, revealing high metabolic versatility.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
176 |
10
|
Yap WH, Zhang Z, Wang Y. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 1999; 181:5201-9. [PMID: 10464188 PMCID: PMC94023 DOI: 10.1128/jb.181.17.5201-5209.1999] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe here the presence of two distinct types of rRNA operons in the genome of a thermophilic actinomycete Thermomonospora chromogena. The genome of T. chromogena contains six rRNA operons (rrn), of which four complete and two incomplete ones were cloned and sequenced. Comparative analysis revealed that the operon rrnB exhibits high levels of sequence variations to the other five nearly identical ones throughout the entire length of the operon. The coding sequences for the 16S and 23S rRNA genes differ by approximately 6 and 10%, respectively, between the two types of operons. Normal functionality of rrnB is concluded on the basis of the nonrandom distribution of nucleotide substitutions, the presence of compensating nucleotide covariations, the preservation of secondary and tertiary rRNA structures, and the detection of correctly processed rRNAs in the cell. Comparative sequence analysis also revealed a close evolutionary relationship between rrnB operon of T. chromogena and rrnA operon of another thermophilic actinomycete Thermobispora bispora. We propose that T. chromogena acquired rrnB operon from T. bispora or a related organism via horizontal gene transfer.
Collapse
MESH Headings
- Actinomycetales/classification
- Actinomycetales/genetics
- Base Sequence
- Blotting, Southern
- Cloning, Molecular
- DNA, Bacterial
- DNA, Ribosomal/analysis
- Evolution, Molecular
- Gene Amplification
- Gene Expression
- Genetic Variation
- Genome, Bacterial
- Molecular Sequence Data
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- RNA, Bacterial
- RNA, Ribosomal, 16S
- Sequence Analysis, DNA
- rRNA Operon
Collapse
|
research-article |
26 |
166 |
11
|
Schmid M, Schmitz-Esser S, Jetten M, Wagner M. 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol 2001; 3:450-9. [PMID: 11553235 DOI: 10.1046/j.1462-2920.2001.00211.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, anaerobic ammonium-oxidizing bacteria (AAOB) were identified by comparative 16S rDNA sequence analysis as a novel, deep-branching lineage within the Planctomycetales. This lineage consists currently of only two, not yet culturable bacteria which have been provisionally described as Candidatus 'Brocadia anammoxidans' and Candidatus 'Kuenenia stuttgartiensis'. In this study, a large fragment of the rDNA operon, including the 16S rDNA, the intergenic spacer region (ISR) and approximately 2 000 bases of the 23S rDNA, was polymerase chain reaction (PCR) amplified, cloned and sequenced from both AAOB. The retrieved 16S rDNA sequences of both species contain an insertion at helix 9 with a previously overlooked pronounced secondary structure (new subhelices 9a and 9b). This insertion, which is absent in all other known prokaryotes, is detectable by fluorescence in situ hybridization (FISH) and thus present in the mature 16S rRNA. In contrast with the genera Pirellula, Planctomyces and Gemmata that possess unlinked 16S and 23S rRNA genes, both AAOB have the respective genes linked together by an ISR of approximately 450 bp in length. Phylogenetic analysis of the obtained 23S rRNA-genes confirmed the deep branching of the AAOB within the Planctomycetales and allowed the design of additional specific FISH probes. Remarkably, the ISR of the AAOB also could be successfully detected by FISH via simultaneous application of four monolabelled oligonucleotide probes. Quantitative FISH experiments with cells of Candidatus 'Brocadia anammoxidans' that were inhibited by exposure to oxygen for different time periods demonstrated that the concentration of transcribed ISR reflected the activity of the cells more accurately than the 16S or 23S rRNA concentration. Thus the developed ISR probes might become useful tools for in situ monitoring of the activity of AAOB in their natural environment.
Collapse
MESH Headings
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/genetics
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligonucleotide Probes
- Oxidation-Reduction
- Phylogeny
- Quaternary Ammonium Compounds/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Terminology as Topic
- rRNA Operon
Collapse
|
|
24 |
159 |
12
|
Dame RT, Wyman C, Wurm R, Wagner R, Goosen N. Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. J Biol Chem 2002; 277:2146-50. [PMID: 11714691 DOI: 10.1074/jbc.c100603200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Escherichia coli H-NS protein is a nucleoid-associated protein involved in both transcription regulation and DNA compaction. Each of these processes involves H-NS-mediated bridge formation between adjacent DNA helices. With respect to transcription regulation, preferential binding sites in the promoter regions of different genes have been reported, and generally these regions are curved. Often H-NS binding sites overlap with promoter core regions or with binding sites of other regulatory factors. Not in all cases, however, transcriptional repression is the result of preferential binding by H-NS to promoter regions leading to occlusion of the RNA polymerase. In the case of the rrnB P1, H-NS actually stimulates open complex formation by forming a ternary RNAP.H-NS.DNA complex, while simultaneously stabilizing it to such an extent that promoter clearance cannot occur. To define the mechanism by which H-NS interferes at this step in the initiation pathway, the architecture of the RNAP.H-NS.DNA complex was analyzed by scanning force microscopy (SFM). The SFM images show that the DNA flanking the RNA polymerase in open initiation complexes is bridged by H-NS. On the basis of these data, we present a model for the specific repression of transcription initiation at the rrnB P1 by H-NS.
Collapse
|
|
23 |
143 |
13
|
Dennis PP, Ehrenberg M, Bremer H. Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiol Mol Biol Rev 2004; 68:639-68. [PMID: 15590778 PMCID: PMC539008 DOI: 10.1128/mmbr.68.4.639-668.2004] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first part of this review contains an overview of the various contributions and models relating to the control of rRNA synthesis reported over the last 45 years. The second part describes a systems biology approach to identify the factors and effectors that control the interactions between RNA polymerase and rRNA (rrn) promoters of Escherichia coli bacteria during exponential growth in different media. This analysis is based on measurements of absolute rrn promoter activities as transcripts per minute per promoter in bacterial strains either deficient or proficient in the synthesis of the factor Fis and/or the effector ppGpp. These absolute promoter activities are evaluated in terms of rrn promoter strength (V(max)/K(m)) and free RNA polymerase concentrations. Three major conclusions emerge from this evaluation. First, the rrn promoters are not saturated with RNA polymerase. As a consequence, changes in the concentration of free RNA polymerase contribute to changes in rrn promoter activities. Second, rrn P2 promoter strength is not specifically regulated during exponential growth at different rates; its activity changes only when the concentration of free RNA polymerase changes. Third, the effector ppGpp reduces the strength of the rrn P1 promoter both directly and indirectly by reducing synthesis of the stimulating factor Fis. This control of rrn P1 promoter strength forms part of a larger feedback loop that adjusts the synthesis of ribosomes to the availability of amino acids via amino acid-dependent control of ppGpp accumulation.
Collapse
|
Review |
21 |
128 |
14
|
Bach HJ, Tomanova J, Schloter M, Munch JC. Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J Microbiol Methods 2002; 49:235-45. [PMID: 11869788 DOI: 10.1016/s0167-7012(01)00370-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Real-time quantitative PCR assays were developed for the absolute quantification of different groups of bacteria in pure cultures and in environmental samples. 16S rRNA genes were used as markers for eubacteria, and genes for extracellular peptidases were used as markers for potentially proteolytic bacteria. For the designed 16S rDNA TaqMan assay, specificity of the designed primer-probe combination for eubacteria, a high amplification efficiency over a wide range of starting copy numbers and a high reproducibility is demonstrated. Cell concentrations of Bacillus cereus, B. subtilis and Pseudomonas fluorescens in liquid culture were monitored by TaqMan-PCR using the 16S rDNA target sequence of Escherichia coli as external standard for quantification. Results agree with plate counts and microscopic counts of DAPI stained cells. The significance of 16S rRNA operon multiplicity to the quantification of bacteria is discussed.Furthermore, three sets of primer pair together with probe previously designed for targeting different classes of bacterial extracellular peptidases were tested for their suitability for TaqMan-PCR based quantification of proteolytic bacteria. Since high degeneracy of the probes did not allow accurate quantification, SybrGreen was used instead of molecular probes to visualize and quantify PCR products during PCR. The correlation between fluorescence and starting copy number was of the same high quality as for the 16S rDNA TaqMan assay for all the three peptidase gene classes. The detected amount of genes for neutral metallopeptidase of B. cereus, for subtilisin of B. subtilis and for alkaline metallopeptidase of P. fluorescens corresponded exactly to the numbers of bacteria investigated by the 16S rDNA targeting assay. The developed assays were applied for the quantification of bacteria in soil samples.
Collapse
|
Comparative Study |
23 |
128 |
15
|
Sauer C, Stackebrandt E, Gadau J, Hölldobler B, Gross R. Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1877-1886. [PMID: 11034499 DOI: 10.1099/00207713-50-5-1877] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The systematic relationships of intracellular bacteria of 13 Camponotus species (carpenter ants) from America and Europe were compared to those of their hosts. Phylogenetic trees of the bacteria and the ants were based on 16S rDNA (rrs) gene sequences and mitochondrial cytochrome oxidase subunit I (COI) gene sequences, respectively. The bacterial endosymbionts of Camponotus spp. form a distinct lineage in the y-subclass of the Proteobacteria. The taxa most closely related to these bacteria are endosymbionts of aphids and the tsetse fly. The bacterial and host phylogenies deduced from the sequence data show a high degree of congruence, providing significant evidence for cospeciation of the bacteria and the ants and a maternal transmission route of the symbionts. The cloned rrs genes of the endosymbionts contain putative intervening sequences (IVSs) with a much lower G+C content than the mean of the respective rrs genes. By in situ hybridization specific 16S rDNA oligonucleotide probes verified the presence of the bacteria within tissues of three of the eukaryotic hosts. It is proposed that the endosymbionts of these three carpenter ants be assigned to a new taxon 'Candidatus Blochmannia gen. nov.' with the symbionts of the individual ants being species named according to their host, 'Candidatus Blochmannia floridanus sp. nov.', 'Candidatus Blochmannia herculeanus sp. nov.' and 'Candidatus Blochmannia rufipes sp. nov.'.
Collapse
|
|
25 |
126 |
16
|
Stone GG, Shortridge D, Versalovic J, Beyer J, Flamm RK, Graham DY, Ghoneim AT, Tanaka SK. A PCR-oligonucleotide ligation assay to determine the prevalence of 23S rRNA gene mutations in clarithromycin-resistant Helicobacter pylori. Antimicrob Agents Chemother 1997; 41:712-4. [PMID: 9056021 PMCID: PMC163779 DOI: 10.1128/aac.41.3.712] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have developed a rapid PCR-oligonucleotide ligation assay that can discriminate single base substitutions that are associated with clarithromycin resistance in Helicobacter pylori. Susceptible isolates were wild type at positions 2143 and 2144 (cognate to 2058 and 2059 in Escherichia coli), while 93% of the resistant isolates contained A-to-G mutations at either position and 7% of the isolates contained A-to-C mutations at position 2143. In addition, the MIC for 86% of the resistant isolates with an A2143 mutation was > or = 64 micrograms per ml, and that for 89% of the resistant isolates with an A2144 mutation was < or = 32 micrograms per ml.
Collapse
|
research-article |
28 |
122 |
17
|
Mylvaganam S, Dennis PP. Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 1992; 130:399-410. [PMID: 1372578 PMCID: PMC1204860 DOI: 10.1093/genetics/130.3.399] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The halophilic archaebacterium, Haloarcula marismortui, contains two nonadjacent ribosomal RNA operons, designated rrnA and rrnB, in its genome. The 16S rRNA genes within these operons are 1472 nucleotides in length and differ by nucleotide substitutions at 74 positions. The substitutions are not uniformly distributed but rather are localized within three domains of 16S rRNA; more than two-thirds of the differences occur within the domain bounded by nucleotides 508 and 823. This domain is known to be important for P site binding of aminoacylated tRNA and for 30-50S subunit association. Using S1 nuclease protection, it has been shown that the 16S rRNAs transcribed from both operons are equally represented in the functional 70S ribosome population. Comparison of these two H. marismortui sequences to the 16S gene sequences from related halophilic genera suggests that (i) in diverging genera, mutational differences in 16S gene sequences are not clustered but rather are more generally distributed throughout the length of the 16S sequence, and (ii) the rrnB sequence, particularly within the 508-823 domain, is more different from the out group sequences than is the rrnA sequence. Several possible explanations for the evolutionary origin and maintenance of this sequence heterogeneity within 16S rRNA of H. marismortui are discussed.
Collapse
|
|
33 |
120 |
18
|
Parveen S, Portier KM, Robinson K, Edmiston L, Tamplin ML. Discriminant analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution. Appl Environ Microbiol 1999; 65:3142-7. [PMID: 10388715 PMCID: PMC91468 DOI: 10.1128/aem.65.7.3142-3147.1999] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/1999] [Accepted: 04/26/1999] [Indexed: 11/20/2022] Open
Abstract
Estuarine waters receive fecal pollution from a variety of sources, including humans and wildlife. Escherichia coli is a ubiquitous bacterium in the intestines of warm-blooded animals and is used as an indicator of fecal pollution. However, its presence does not specifically differentiate sources of pollution. A total of 238 E. coli isolates from human sources (HS) and nonhuman sources (NHS) were collected from the Apalachicola National Estuarine Research Reserve, from associated sewage treatment plants, and directly from animals and tested for ribotype (RT) profile. HS and NHS isolates showed 41 and 61 RT profiles, respectively. At a similarity index of ca. 50%, HS and NHS isolates demonstrated four clusters, with the majority of HS and NHS isolates located in clusters C and D; isolates obtained directly from human and animal feces also could be grouped within these clusters. Discriminant analysis (DA) of RT profiles showed that 97% of the NHS isolates and 100% of the animal fecal isolates were correctly classified. The average rate of correct classification for HS and NHS isolates was 82%. We conclude that DA of RT profiles may be a useful method for identifying HS and NHS fecal pollution and may potentially facilitate management practices.
Collapse
|
research-article |
26 |
113 |
19
|
Stevenson BS, Schmidt TM. Life history implications of rRNA gene copy number in Escherichia coli. Appl Environ Microbiol 2005; 70:6670-7. [PMID: 15528533 PMCID: PMC525164 DOI: 10.1128/aem.70.11.6670-6677.2004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the rRNA gene copy number as a central component of bacterial life histories was studied by using strains of Escherichia coli in which one or two of the seven rRNA operons (rrnA and/or rrnB) were deleted. The relative fitness of these strains was determined in competition experiments in both batch and chemostat cultures. In batch cultures, the decrease in relative fitness corresponded to the number of rRNA operons deleted, which could be accounted for completely by increased lag times and decreased growth rates. The magnitude of the deleterious effect varied with the environment in which fitness was measured: the negative consequences of rRNA operon deletions increased under culture conditions permitting more-rapid growth. The rRNA operon deletion strains were not more effective competitors under the regimen of constant, limited resources provided in chemostat cultures. Enhanced fitness in chemostat cultures would have suggested a simple tradeoff in which deletion strains grew faster (due to more efficient resource utilization) under resource limitation. The contributions of growth rate, lag time, Ks, and death rate to the fitness of each strain were verified through mathematical simulation of competition experiments. These data support the hypothesis that multiple rRNA operons are a component of bacterial life history and that they confer a selective advantage permitting microbes to respond quickly and grow rapidly in environments characterized by fluctuations in resource availability.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
106 |
20
|
Moran P, Martinez JL, Garcia-Vazquez E, Pendas AM. Sex chromosome linkage of 5S rDNA in rainbow trout (Oncorhynchus mykiss). CYTOGENETICS AND CELL GENETICS 1996; 75:145-50. [PMID: 9040781 DOI: 10.1159/000134466] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The karyotype of the rainbow trout is characterized by a primitive XX/XY sex-determining chromosomal system. (Thorgaard et al., 1977). In the present study using FISH we have physically linked the 5S rRNA genes to the partially undifferentiated X chromosome pair. PCR amplified 5S rDNA was used for FISH and hybridization signals indicated that the genes were duplicated, present in one acrocentric and one metacentric pair of chromosomes. After analyzing several individuals, the female metaphases showed four fluorescent signals whereas males presented only three signals. Two of the three signals obtained in males corresponded to the metacentric pair whereas the single signal was mapped to the heterochromatin that cytologically differentiates the X chromosome from the Y chromosome. Double FISH experiments demonstrated that the 5S rDNA which is not sex linked is located at the NOR bearing arm close to the major ribosomal RNA genes (5.8S, 18S and 28S), similar to the situation observed in Atlantic salmon (Pendas et al., 1994a).
Collapse
|
|
29 |
105 |
21
|
Vergin KL, Urbach E, Stein JL, DeLong EF, Lanoil BD, Giovannoni SJ. Screening of a fosmid library of marine environmental genomic DNA fragments reveals four clones related to members of the order Planctomycetales. Appl Environ Microbiol 1998; 64:3075-8. [PMID: 9687477 PMCID: PMC106819 DOI: 10.1128/aem.64.8.3075-3078.1998] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A fosmid library with inserts containing approximately 40 kb of marine bacterial DNA (J. L. Stein, T. L. Marsh, K. Y. Wu, H. Shizuya, and E. F. DeLong, J. Bacteriol. 178:591-599, 1996) yielded four clones with 16S rRNA genes from the order Planctomycetales. Three of the clones belong to the Pirellula group and one clone belongs to the Planctomyces group, based on phylogenetic and signature nucleotide analyses of full-length 16S rRNA genes. Sequence analysis of the ends of the genes revealed a consistent mismatch in a widely used bacterium-specific 16S rRNA PCR amplification priming site (27F), which has also been reported in some thermophiles and spirochetes.
Collapse
|
research-article |
27 |
105 |
22
|
Everett KDE, Thao M, Horn M, Dyszynski GE, Baumann P. Novel chlamydiae in whiteflies and scale insects: endosymbionts 'Candidatus Fritschea bemisiae' strain Falk and 'Candidatus Fritschea eriococci' strain Elm. Int J Syst Evol Microbiol 2005; 55:1581-1587. [PMID: 16014485 DOI: 10.1099/ijs.0.63454-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria called 'Fritschea' are endosymbionts of the plant-feeding whitefly Bemisia tabaci and scale insect Eriococcus spurius. In the gut of B. tabaci, these bacteria live within bacteriocyte cells that are transmitted directly from the parent to oocytes. Whiteflies cause serious economic damage to many agricultural crops; B. tabaci fecundity and host range are less than those of Bemisia argentifolii, possibly due to the presence of this endosymbiont. The B. tabaci endosymbiont has been characterized using electron microscopy and DNA analysis but has not been isolated or propagated outside of insects. The present study compared sequences for 11 endosymbiont genes to genomic data for chlamydial families Parachlamydiaceae, Chlamydiaceae and Simkaniaceae and to 16S rRNA gene signature sequences from 330 chlamydiae. We concluded that it was appropriate to propose 'Candidatus Fritschea bemisiae' strain Falk and 'Candidatus Fritschea eriococci' strain Elm as members of the family Simkaniaceae in the Chlamydiales.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
103 |
23
|
Gourse RL. Visualization and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro. Nucleic Acids Res 1988; 16:9789-809. [PMID: 3054811 PMCID: PMC338779 DOI: 10.1093/nar/16.20.9789] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have established conditions that stabilize the interaction between RNA polymerase and the rrnB P1 promoter in vitro. The requirements for quantitative complex formation are unusual for E. coli promoters: (1) The inclusion of a competitor is required to allow visualization of a specific footprint. (2) Low salt concentrations are necessary since complex formation is salt sensitive. (3) The addition of the initiating nucleotides ATP and CTP, resulting in a low rate of dinucleotide production, is required in order to prevent dissociation of the complexes. The complex has been examined using DNAase I footprinting and filter binding assays. It is characterized by a region protected from DNAase I cleavage that extends slightly upstream of the region protected by RNA polymerase in most E. coli promoters. We find that only one mole of active RNA polymerase is required per mole of promoter DNA in order to detect filter-bound complexes. Under the conditions measured, the rate of association of RNA polymerase with rrnB P1 is as rapid as, or more rapid than, that reported for any other E. coli or bacteriophage promoter.
Collapse
|
research-article |
37 |
101 |
24
|
Wang Y, Zhang Z, Ramanan N. The actinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J Bacteriol 1997; 179:3270-6. [PMID: 9150223 PMCID: PMC179106 DOI: 10.1128/jb.179.10.3270-3276.1997] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Here we present the first description of the presence of two distinct types of 16S rRNA genes in the genome of a (eu)bacterium, Thermobispora bispora. We cloned and determined the nucleotide sequences of all four rRNA operons of T. bispora. Sequence comparisons revealed that the genome of T. bispora contains two distinct types of 16S rRNA genes, each type consisting of two identical or nearly identical copies, and three identical copies of the 23S RNA gene. The nucleotide sequences of the two types of 16S rRNA genes differ at 98 nucleotide positions (6.4% of total nucleotides) together with six regions of deletion-insertions. None of the base substitutions or insertion-deletions corresponds to any of the approximately 600 evolutionarily invariable or rarely variable nucleotides, indicating that both genes are functional. Both types of 16S rRNA genes are transcribed and processed as determined by Northern (RNA) hybridization and reverse transcriptase-mediated PCR.
Collapse
MESH Headings
- Actinomycetales/genetics
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Cloning, Molecular
- Codon
- DNA, Ribosomal/genetics
- Molecular Sequence Data
- Polymerase Chain Reaction
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/isolation & purification
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/isolation & purification
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- rRNA Operon
Collapse
|
research-article |
28 |
95 |
25
|
Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF. Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 2004; 186:3980-90. [PMID: 15175312 PMCID: PMC419955 DOI: 10.1128/jb.186.12.3980-3990.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 02/28/2004] [Indexed: 11/20/2022] Open
Abstract
More than one copy of rRNA operons, which code for both the small-subunit (SSU) and large-subunit (LSU) rRNA, are often found in prokaryotes. It is generally assumed that all rRNA operons within a single cell are almost identical. A notable exception is the extremely halophilic archaeal genus Haloarcula, most species of which are known to harbor highly divergent rRNA operons that differ at approximately 5% of the nucleotide positions in the SSU gene and at 1 to 2% of the nucleotide positions in the LSU gene. We report that such intragenomic heterogeneity is not unique to Haloarcula, as high levels of intragenomic sequence variation have been observed for the SSU genes of two other genera of extreme halophiles, Halosimplex and Natrinema. To investigate this in detail, the two rRNA operons of Halosimplex carlsbadense and the four operons of Natrinema sp. strain XA3-1 were cloned and completely sequenced. The SSU and LSU genes of H. carlsbadense show the highest levels of intragenomic heterogeneity observed so far in archaea (6.7 and 2.6%). The operons of Natrinema sp. strain XA3-1 have additional unusual characteristics, such as identical internal transcribed spacers, while one of four SSU genes is 5% divergent and all LSU genes differ from each other by 0.9 to 1.9%. The heterogeneity among the Natrinema sp. strain XA3-1 LSU genes is localized in hot spots, and one of these regions is shown to be the result of a recombination event with a distantly related halophile. This is the first example of interspecies recombination between rRNA genes in archaea, and the recombination occurred over one of the largest phylogenetic distances ever reported for such an event. We suggest that intragenomic heterogeneity of rRNA operons is an ancient and stable trait in several lineages of the Halobacteriales. The impact of this phenomenon on the taxonomy of extremely halophilic archaea is discussed.
Collapse
|
research-article |
21 |
92 |