Das S, Bellare JR. Dental Pulp Stem Cells in Customized 3D Nanofibrous Scaffolds for Regeneration of Peripheral Nervous System.
Methods Mol Biol 2018;
2125:157-166. [PMID:
30294747 DOI:
10.1007/7651_2018_194]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dental pulp stem cells (DPSCs) are adult multipotent stem cells of neuroectodermal origin; they provide an encouraging perspective in the domain of nerve tissue engineering. DPSCs could be transplanted in biodegradable electrospun neuro-supportive scaffold (optimized in various 3D geometries like coating on the surface of titanium implant, hollow/solid tubes, etc.) for enhanced in vivo recovery of peripheral nerves. Herein, we describe the fabrication of uniform bead-free nanofibrous scaffold which supports DPSCs, proliferation, and their subsequent neural differentiation and thus could be utilized for enhanced regeneration of peripheral nervous system.
Collapse