Dai Z, Jin Y, Zheng J, Liu K, Zhao J, Zhang S, Wu F, Sun Z. MiR-217 promotes cell proliferation and osteogenic differentiation of BMSCs by targeting DKK1 in steroid-associated osteonecrosis.
Biomed Pharmacother 2018;
109:1112-1119. [PMID:
30551361 DOI:
10.1016/j.biopha.2018.10.166]
[Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) have recently been recognized to play an important role in bone-associated diseases. This study aims to explore the expression profile and biological function of miR-217, which is known to be related to tumor cell proliferation and migration, to the proliferation and osteogenic differentiation of MSCs from the patients with steroid-associated osteonecrosis (ONFH). Bone marrow was obtained from the proximal femur of 10 patients with ONFH and 10 patients with femoral neck fractures. Bone marrow-derived mesenchymal stem cells (MSCs) were isolated and cultured. The expression profile, biological function of miR-217 and the interaction between miR-217 and DKK1 were assayed using cell viability measurement, western blot, Real-time PCR, luciferase reporter assay, Alizarin Red S (ARS) staining. We noted that the expression level of miR-217 was significantly decreased in the ONFH samples compared to the control samples (P < 0.0001). By targeting DKK1, miR-217 promoted nuclear translocation of β-catenin, increased expression of RUNX2, COL1A1 and obviously promoted the proliferation and differentiation of MSCs. Restoring the expression of DKK1 in the MSCs partially reversed the role of miR-217. These findings suggest that miR-217 promotes cell proliferation and osteogenic differentiation by inhibiting DKK1 during the development of steroid-associated osteonecrosis.
Collapse