Bizzozero OA, Soto EF, Pasquini JM. Mechanisms of transport and assembly of myelin proteins.
Cancer Lett 1985;
435:92-100. [PMID:
6240910 DOI:
10.1016/j.canlet.2018.08.006]
[Citation(s) in RCA: 341] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022]
Abstract
The present study was carried out in order to obtain further information regarding the mechanism of transport and assembly of myelin proteins in different subcellular fractions isolated from brain slices incubated in vitro with radioactive amino acids under different experimental conditions. It was found that proteolipid protein (PLP) showed a lag in the entry into the myelin membrane, while basic and Wolfgram proteins appeared to be inserted in this structure immediately after their synthesis. Addition of 500 microM colchicine to the incubation medium blocked the transport of PLP, while the entry of the other proteins was not affected. Pulse-chase experiments using cycloheximide suggest that a precursor-product relationship between microsomes, fraction SN4 and myelin exists only for PLP. The results obtained allow us to draw the following conclusions: The delay in the entry of PLP into myelin membrane is probably due to the time required for its transport towards the final site of assembly; the microtubular network of the oligodendroglial cell is directly involved in the transport of PLP; basic and probably Wolfgram proteins follow a route which clearly differs from that of PLP; delivery of myelin proteins from the site of synthesis towards their site of deposition depends, at least, on two different mechanisms of intracellular transport.
Collapse