Xia JY, Holland WL, Kusminski CM, Sun K, Sharma AX, Pearson MJ, Sifuentes AJ, McDonald JG, Gordillo R, Scherer PE. Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis.
Cell Metab 2015;
22:266-278. [PMID:
26190650 PMCID:
PMC4527941 DOI:
10.1016/j.cmet.2015.06.007]
[Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/16/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022]
Abstract
Sphingolipids have garnered attention for their role in insulin resistance and lipotoxic cell death. We have developed transgenic mice inducibly expressing acid ceramidase that display a reduction in ceramides in adult mouse tissues. Hepatic overexpression of acid ceramidase prevents hepatic steatosis and prompts improvements in insulin action in liver and adipose tissue upon exposure to high-fat diet. Conversely, overexpression of acid ceramidase within adipose tissue also prevents hepatic steatosis and systemic insulin resistance. Induction of ceramidase activity in either tissue promotes a lowering of hepatic ceramides and reduced activation of the ceramide-activated protein kinase C isoform PKCζ, though the induction of ceramidase activity in the adipocyte prompts more rapid resolution of hepatic steatosis than overexpression of the enzyme directly in the liver. Collectively, our observations suggest the existence of a rapidly acting "cross-talk" between liver and adipose tissue sphingolipids, critically regulating glucose metabolism and hepatic lipid uptake.
Collapse