Long G, Wu Z, Wang D, Mi X, Hu K, Zhou L, Tang J. UCHL3 inhibits ferroptosis by stabilizing β-catenin and maintains stem-like properties of hepatocellular carcinoma cells.
Free Radic Biol Med 2024;
212:162-173. [PMID:
38092274 DOI:
10.1016/j.freeradbiomed.2023.11.030]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/31/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary hepatic liver cancer. Dysregulated Wnt/β-catenin activation is closely related to the progression of cancer. Nevertheless, the mechanism that sustains the abnormal expression of β-catenin in HCC has yet to be identified. In this study, we find that UCHL3 is overexpressed in HCC tissues and correlated with β-catenin protein level. High expression of UCHL3 is associated with poor prognosis. UCHL3 knockdown markedly reduces the protein level of β-catenin in HCC cells. TOP-luciferase activity and β-catenin target genes expression are also decreased upon UCHL3 depletion. We find that the ARM domain of β-catenin is required for the interaction with UCHL3. UCHL3 increases β-catenin protein stability via removing K48-specific poly-ubiquitin chains from β-catenin protein. Furthermore, the depletion of UCHL3 induces ferroptosis and hinders the growth, invasion, and stem cell properties of HCC cells. These impacts could be restored by the overexpression of β-catenin. In addition, the UCHL3 inhibitor TCID inhibits the aggressive phenotype of HCC through the degradation of β-catenin. In general, our results indicates that UCHL3 increases the stability of β-catenin, which in turn facilitates tumorigenesis of HCC, suggesting that targeting UCHL3 may be a promising approach for the treatment of HCC.
Collapse