Li RW, Douglas TD, Maiyoh GK, Adeli K, Theriault AG. Green tea leaf extract improves lipid and glucose homeostasis in a fructose-fed insulin-resistant hamster model.
JOURNAL OF ETHNOPHARMACOLOGY 2006;
104:24-31. [PMID:
16202550 DOI:
10.1016/j.jep.2005.08.045]
[Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 05/04/2023]
Abstract
The present study evaluated the effect of green tea (Camellia sinensis L.) leaf extract on triglyceride and glucose homeostasis in a fructose-fed hypertriglyceridemic, insulin-resistant hamster model. There was a significant decrease in plasma triglyceride levels following supplementation of the green tea epigallocatechin gallate-enriched extract (42% at 150 mg/(kg day) to 62% at 300 mg/(kg day) for 4 weeks). Compared to baseline, the fructose control group at the end of the study showed elevated serum insulin and apolipoprotein B levels, and decreased serum adiponectin levels. The fructose/green tea extract group showed a reversal in all of these metabolic defects, including an improvement in glucose levels during a glucose tolerance test. Triglyceride content was also examined in various tissues and compared to the control fructose group; supplementation of the green tea extract (300 mg/kg) reduced triglyceride content in liver and heart tissues. There was molecular evidence of improved lipid and glucose homeostasis based on peroxisome proliferator-activated receptor (PPAR) protein expression. Compared to the control fructose group, supplementation of the green tea extract (300 mg/kg) significantly increased PPARalpha and PPARgamma protein expression. In summary, the data suggest that intake of the green tea extract ameliorated the fructose-induced hypertriglyceridemia and the insulin-resistant state in part through PPAR.
Collapse