Banwell CM, O'Neill LP, Uskokovic MR, Campbell MJ. Targeting 1alpha,25-dihydroxyvitamin D3 antiproliferative insensitivity in breast cancer cells by co-treatment with histone deacetylation inhibitors.
J Steroid Biochem Mol Biol 2004;
89-90:245-9. [PMID:
15225779 DOI:
10.1016/j.jsbmb.2004.03.081]
[Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Proliferation of the non-malignant breast epithelial cell line, MCF-12A, is sensitively and completely inhibited by 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) (ED90 = 70 nM), We used real time RT-PCR to demonstrate that the relative resistance to 1alpha,25(OH)(2)D(3) of MDA-MB-231 cells (ED50 > 100 nM) correlated with significantly reduced Vitamin D receptor (VDR) and increased NCoR1 nuclear receptor co-repressor mRNA (0.1-fold reduction in VDR and 1.7-fold increase in NCoR1 relative to MCF-12A (P < 0.05)). This molecular lesion can be targeted by co-treating cells with 1alpha,25(OH)(2)D(3) or potent analogs and the histone deacetylation inhibitor trichostatin A (TSA). For example, the co-treatment of 1,25-dihydroxy-16,23,Z-diene-26,27-hexafluoro-19-nor Vitamin D(3) (RO-26-2198) (100 nM) plus TSA results in strong additive antiproliferative effects in MDA-MB-231 cells. This may represent novel chemotherapeutic regime for hormone insensitive breast cancer.
Collapse